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Abstract

This thesis describes the dynamics of both electrons and atoms in periodic
potentials. In particular, it explores how such potentials can be used to realise a
new type of quantum chaos in which the effective classical Hamiltonian originates
from the intrinsically quantum nature of energy bands.

Firstly, this study examines electron dynamics in a superlattice with an ap-
plied voltage and a tilted magnetic field. This system displays a rare type of
chaos known as non-KAM (Kolmogorov-Arnold-Moser) chaos, which switches on
abruptly when an applied perturbation reaches certain critical values. The onset
of chaos in the system leads to the formation of complex patterns in phase space
known as stochastic webs. The electron behaviour under these conditions is anal-
ysed both semiclassically and quantum mechanically, and the results compared
to experimental studies. We show that the presence of stochastic webs strongly
enhances electron transport. We calculate Wigner functions of the electron wave-
function at various times and show that, when compared to the Poincaré sections,
evidence of stochastic web formation is observed in the quantum mechanical phase
space. Two designs of superlattice are studied and we show, in a full quantum
mechanical analysis, that the design of the superlattice has a pronounced effect
on the probability of inter-miniband tunnelling and hence the calculated and
measured transport characteristics.

Secondly, we explore the dynamics of an ultra-cold sodium atom falling through
an optical lattice whilst confined in a harmonic gutter potential that is tilted at
an angle to the lattice axis. We show this system is analogous to the case of an
electron in a superlattice, and that the atomic dynamics show similar enhanced
transport properties for certain trapping frequencies. We also find that in a full
quantum mechanical calculation, the atomic wavepacket tends to fragment as the
angle at which the gutter potential is tilted is increased.

Finally, we examine the dynamics of a Bose-Einstein condensate falling through
an optical lattice whilst confined in a harmonic gutter potential. We vary the
strength of the interatomic interaction parameter to investigate the role of in-
teractions in the system and find that, even for small tilt angles, the condensate
wavefunction fragments. For large interaction parameters combined with large

tilt angles, the wavefunction explodes catastrophically.
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List of Symbols

Symbol | Meaning
Ap | Amplitude of Bloch oscillations:
Agyp/eF for electrons in a superlattice
Aor/mgg for an atom in an optical lattice
B | The strength of the applied magnetic field:
By | Magnetic field at which Feshbach resonance occurs
E..;; | Critical energy for LO-phonon scattering
F' | The strength of the applied electric field
G | Differential conductance, dI/dV
., | Energy of ith minigap within superlattice
I | The electronic current along the x axis
1;,0; | The action-angle variables associated with the Hamiltonian
J; | A Bessel function of the first kind
K | Wavevector associated with the plane waves driving the simple
harmonic oscillator derived in section 3.2.5, dtan/h
2,2 | Characteristic length or spread of a wavepacket in a given direction
N4 | Number of atoms in a Bose-Einstein condensate
P | Scattering probability
P, | A direction in phase space considered in in section 3.2.5, p,/wj
T | Temperature
T, | Transition temperature
Us | Effective interaction between two atoms in a condensate, 47hi%a/m,
V' | Voltage
Vet | Potential due to externally applied fields
Vo | Amplitude of optical lattice potential
Vor, | Optical lattice potential
Vs, | Superlattice potential
a | Binary s-wave scattering length
dx | Period of a periodic potential
X = SL for superlattice, X = OL for optical lattice
—e | The charge on an electron
g | Acceleration due to gravity
m | Mass
m* | Effective mass of a particle moving in a periodic potential
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Mass of #Na atom

Mass of an electron

Mass of a proton

Atom density

Momentum

Linearised momentum along the y-axis

Cyclotron radius, 7. = y/h/Be

Order of resonance, wg/wj

Drift velocity

Tilted co-ordinate system

Width of ith band arising from periodic potential

X = SL for superlattice, X = OL for optical lattice
Time steps employed in numerical methods

Spatial steps employed in numerical methods

Width of Feshbach resonance

Dimensionless parameter representing strength of perturbation
Phase

Laser wavelength

Thermal de Broglie wavelength

The Bloch frequency:

eFdgy,/h for electrons in a superlattice

mgdoy/h for an atom in an optical lattice

Cyclotron frequency, eB/m*

Frequency characterising curvature of gutter potential
Equal to w, for superlattice system, w, for optical lattice system
Trapping frequencies in the z;, z; directions

Component of wg in the direction of the lattice, wg cos 6
Angle by which gutter potential is tilted with respect to lattice axis
Polar coordinates in 2D (see equation (3.57))

Time period of Bloch oscillations:

h/eFdgy, for electrons in a superlattice

h/mgdoy, for an atom in an optical lattice

The scattering time of an electron in a superlattice
Healing length, or coherence length
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Chapter 1

Periodic potentials

1.1 Introduction

Periodic potentials arise in countless areas of physics, giving rise to unique dynam-
ical effects that have interested scientists for many years. In particular, periodic
potentials facilitate realisation of a rare type of chaos known as non-KAM chaos
(which will be discussed in detail in chapter 3). This subject forms the bulk of
this thesis, and its effects will be studied within two categories of periodic poten-
tial: namely superlattices and optical lattices. Superlattices are semiconductor
heterostructures originally proposed by Esaki and Tsu [1] in 1970 and shall form
the basis of the system considered in chapter 4. Optical lattices are standing light
waves generated by counter-propagating lasers and have become invaluable tools
for investigating the dynamics of cold atoms during the last decade. They form
the basis of the system studied in chapters 5 and 6. Whilst later chapters will try
to understand the correspondence between the classical and quantum dynamics
of particles in such systems, we shall begin here by considering the general system
properties arising from periodic potentials, before going on to consider in greater

detail the characteristics of each lattice type.

1.2 Band Theory

Periodic potentials have a profound effect upon quantum transport. Band theory
predicts that particles propagating through such a potential are restricted to
certain permitted energy ranges, known as bands. Allowed bands are separated

by band gaps of forbidden energy states.
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To illustrate the existence of such regions, we begin by considering the periodic
potential which occurs due to an atomic crystal lattice structure. Such a three-
dimensional crystal lattice is specified as follows [2]. The directions of the crystal
co-ordinate axes are defined by three primitive lattice vectors a;, as and az. These
vectors join any lattice point to three near neighbours, and thus a lattice vector

R between any two lattice points may be constructed:
R = nija; + neas + nzas (11)

where n; is an integer.
A particle of energy F moving within the periodic potential V'(r) set up by
such a crystal lattice must be in an eigenstate 1)(r) that satisfies

Hy = (—%W + V(r)> Y(r) = Ei(r). (1.2)

Bloch’s theorem is a direct result of the fact that the lattice potential V'(r) is
periodic [3], and states that:

Y(r+R) = e*By(r). (1.3)
In this expression k represents a vector in reciprocal space, or wavevector:
k - llbl + l2b2 + l3b3 (14)

where [,, are integers. The vectors by, by and bs generate the reciprocal lattice
in the same way as a;, a; and az generate the real space lattice. They are known

as the primitive reciprocal lattice vectors and must satisfy the conditions:
bz' caj = 27T(5ij. (15)

Note that the primitive cell in reciprocal space is known as the first Brillouin
zone.
A wavefunction which satisfies Bloch’s theorem is known as a Bloch function

and may be written:
Ui (1) = u(r)e™". (1.6)

It is clear from equations (1.3) - (1.6) that uk(r) must have the periodicity of
the lattice. A second important property to note is the fact that any value of
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k is equivalent to some wavevector that lies within the first Brillouin zone. For

example, consider a Bloch function
Ui (r + R) = &Ry (r) (1.7)

for which k = k’ + K, where k lies outside the first Brillouin zone and k'’ is the

equivalent wavevector within it. The vector K is defined by
K= Tllbl + TLQbQ + TL3b3 (18)

where n; is an integer. A simple substitution for k in equation (1.7), and knowl-

edge of the fact that K - R = 2n;m, where n; is an integer, demonstrates that:
U (r + R) = €W Ry, (1) = K Be® Ry, (1) = e Rypy (). (1.9)

Hence comparing equations (1.3) and (1.9), we see that k' is indeed equivalent to
k, and so we need only consider wavevectors within the first Brillouin zone from
here on.

In general, the first Brillouin zone does not have simple geometry, however we
will consider the case where it is centred at the origin in reciprocal space. Hence
the limits of the first Brillouin zone in this case lie at :i:%. Applying the condition
specified in (1.5) it is clear that the Brillouin zone boundary in the direction b,
given by :I:dli, where d; is the spatial period of the lattice in the direction a;.

The possible values which k can take are determined by applying the Born-

Von Karman boundary condition to Bloch’s theorem:
W(r + N;a;) = ¢(r). (1.10)

N; are integers whose product is the total number of lattice points, N [3]. We

find that bl 2 b by
LAl b1 e i b
N;’ N; 7 ’ 2

where k is the component of k in the direction of b;.

k=0,+

(1.11)

In addition, we find that for each allowed crystal momentum, there are an
infinite number of energy eigenvalues E,,, where n is a quantum number known
as the band indez. A typical plot of energy E as a function of n and k is shown
in figure 1.1 for k along the direction of a reciprocal lattice vector. Note that

since all values of k have an equivalent within the first Brillouin zone, all possible
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solutions to the Schrodinger equation for a periodic potential are represented in

the diagram (for the direction b;) - this is known as the reduced zone scheme.

1.2.1 Semiclassical model of band transport

The semiclassical model of transport in a periodic potential is used to describe
the motion of particles when exposed to externally applied electric and magnetic
fields which vary slowly over the dimensions of the particle wavepacket [3]. Tt is
known as the semiclassical model for the following reason. The external fields are
treated classically - the evolution of the position and wavevector of the particle
when subjected to slowly spatially-varying forces are determined by considering
classical equations of motion. On the other hand, the periodic potential which
gives rise to the band structure varies on a scale that is small compared to the
particle wavepacket and therefore must be treated quantum mechanically. Thus
the semiclassical model takes the dispersion relation F/(k) for the band in which
the particle moves (which arises from the quantisation of allowed k-states) as a
given function to enable the calculation of the transport properties.

It is important to note that although in the case of free particles, the momen-
tum is given by hk, this is not the case in the semiclassical model. In the case of
Bloch electrons, the quantity Ak is known as the crystal momentum. The rate of
change of the crystal momentum is determined by the forces exerted by externally
applied fields - whereas the rate of change of the actual momentum must consider
the total force acting on the particle, including the force experienced due to the

periodic potential.

1.2.2 Bragg reflection and Bloch oscillations

We now consider briefly the effect of some externally applied scalar potential
energy field G upon a particle in a periodic potential, according to the semiclas-
sical model. As discussed previously, the rate of change of crystal momentum is

determined by the force due to G:
hk = —VG. (1.12)

In addition, the semiclassical model states that a particle moving in band n with
wavevector k has velocity

va(k) = £ Vi, () (1.13)
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Figure 1.1: Typical dispersion relation in the reduced zone scheme, describing
the band structure arising from a periodic potential.
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(for a full derivation of this expression, refer to [3]).

There is a startling consequence arising directly from equation (1.13). Con-
sider the case when the system is subjected to a constant force Fa;. Equation
(1.12) becomes

—L-F 1.14
h— (1.14)

Thus the effect of the force upon the wavevector is to push the particle through
k-space in the positive direction. Now refer to the form of the typical dispersion
relation illustrated in figure 1.1. It is clear that for a particle which starts at rest
in the centre of the Brillouin zone, as k; begins to increase the gradient of the
dispersion relation is increasingly positive and hence the particle accelerates in
real space in the a; direction, attaining a positive velocity. The velocity reaches its
maximum when % is maximal. As the particle is further accelerated through the
band, the gradient of the dispersion becomes less and less steep and consequently
the particle begins to decelerate and its velocity decreases. Eventually, the edge
of the Brillouin zone is reached. Here the gradient of the dispersion relation is
zero and the particle comes to a standstill.

However, the reader will recall that in the previous section it was demonstrated
that any wavevector outside the first Brillouin zone has an equivalent wavevector
within the range 4-%. Therefore upon reaching the edge of the Brillouin zone
at ky = +7% the particle is imagined to reappear at the opposite boundary at
ki = —7%, where it continues to move through k-space at a constant speed in the
positive direction. But now the dispersion curve has a negative gradient - resulting
in a negative velocity in real space. Thus, when the particle passes through the
Brillouin zone boundary, it changes direction in real space. This is known as Bragg
reflection. The reflected particle continues to accelerate in the negative direction
according to the increasingly negative gradient of the dispersion relation. Then
as the gradient becomes less steep, the particle slows, until it reaches k; = 0
whereupon it arrives back at its original starting point in real space (due to the
symmetry of the dispersion curve about k; = 0). This process is known as a
Bloch oscillation.

Note that the amplitude, Ap, and time period, 75, of a Bloch oscillation are
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—_—
Superlattice unit cell

Figure 1.2: Schematic diagram of a semiconductor superlattice sample, showing
the repeating layer structure in the z direction. The sample is biased by means of
an electric field F' applied in the opposite direction to the z-axis, and a magnetic
field B is applied in the z-z plane.

easily determined by integration of equations (1.13) and (1.14):

A
Ap = F (1.15)
h

where A is the bandwidth of the occupied band.

1.3 Semiconductor superlattices

A superlattice is a semiconductor heterostructure. It is made of layers of different
semiconductors sandwiched together in a regular arrangement (see figure 1.2).
Each semiconductor material has a periodic crystal form implying the existence
of electronic bands. However, the band structure varies between each layer. This
leads to offsets in the conduction bands of the different constituent materials
relative to one another. Hence we have a periodic variation of the conduction band
edge which also gives rise to additional band structure. This superlattice is so
called since its lattice period is much larger than in a conventional semiconductor
(of order 30 times larger). Consequently, the bandwidth in reciprocal space is
significantly smaller than ordinary band structures, therefore we refer to these
bands as minibands.

A schematic diagram of a general superlattice is shown in figure 1.2. The
z-axis of the system is defined perpendicular to the superlattice layers, whilst the
y-z plane is parallel to the layers. Note also that all dopants in this discussion are

n-type, and np is taken to be the doping density. Superlattice crystals are grown
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by molecular beam epitaxy, which is carried out under ultra high vacuum (UHV)
conditions to prevent the introduction of impurities into the sample. The samples
generally take the form of an initial semiconductor substrate upon which layers
of atoms are grown - firstly, highly doped layers (np ~ 10'® ¢m™2) which form
the emitter contact whose thickness (of the order of hundreds of nanometers) is
very large relative to that of the superlattice structure. This is followed by the
superlattice itself, built up of alternating layers of lightly doped semiconductors
(of the order of tens of nanometers thick, and with np ~ 10'® ¢cm™2) that define
barriers and wells in the profile of the conduction bands. It is usual to begin and
end this section of the sample with a barrier layer, and to incorporate a minimum
of roughly 15 periods to validate theoretical assumptions of an infinite periodic
lattice. More highly doped thick layers are added to form the collector contact
before the heterostructure is capped and processed into circular mesas of tens of
pm in diameter. The purpose of the highly doped regions surrounding the lightly
doped centre is to modulation-dope the superlattice. This technique avoids the
problem of electron mobility being decreased at high doping concentrations due
to scattering by the ionised dopants. The highly doped regions outside the su-
perlattice provide a high density of charge carriers, some of which are transferred
into the superlattice where the density of ionised dopants is much lower. Finally,
the sample is completed by the addition of ohmic contacts to the substrate and
capping layers. In this study, positive bias will be defined at the cap.

Two superlattice samples of differing structure will be considered in this thesis.
The first, NU2299, consists of barriers of Aly3Gag7As separating quantum wells
of GaAs. (The band gap in Alg3Gag7As is larger than that in GaAs, and hence
the conduction band is higher causing it to act as a barrier.) The variation of the
conduction band edge and the resultant dispersion relation are illustrated in figure
1.3. The conduction band edge in GaAs is defined to be the zero of the energy
scale. The sample consists of 1000 nm of GaAs with a doping concentration of
np = 2.0x10'"® em~3, followed by a 30 nm layer of Alyg3Gagg7As with np = 2.0 x
10* cm=3. Next, 15 layers of Alg3Gag7As of thickness 2.5 nm (np = 1.4 x 10
cm™3) alternate with 10 nm sections of GaAs (np = 2.0 x 10'® ¢m™3). There
follows a 30 nm layer of Alj3GaggrAs with np = 2.0 x 10 cm™3, and finally
600 nm of GaAs with np = 2.0 x 10'® cm™3.

The second sample, NU2293, is shown in figure 1.4. The unit cell of this su-
perlattice consists of AlAs, GaAs, InAs and GaAs layers whose respective thick-

nesses are 1 nm, 3.5 nm, 0.241 nm and 3.5 nm. The doping concentration is
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np = 3.0 x 10’ ¢cm™3 [4]. On each side of the 14-period growth are 50 nm GaAs
layers with np = 1.0 x 10'7 cm =3, followed by 600 nm emitter and collector layers
with np = 2.0 x 10" ecm—3.

When designing superlattice structures, one of the challenges to overcome is
the injection of electrons from the emitter contact into the superlattice itself. If
the bottom of the first miniband in the superlattice lies at a higher energy than the
Fermi energy of the emitter contact, the electrons are presented with a potential
barrier which prevents direct injection from the emitter into the miniband [5].
The samples studied in this thesis employ different approaches to surmounting
this problem. In NU2293, the introduction of an InAs niche in the centre of the
GaAs wells has the effect of substantially lowering the energy of the first miniband
so that it lies close to the Fermi level of the emitter (which is 12 meV above the
conduction band edge of GaAs) [4]. Should a sample be fabricated which was
identical except for the presence of the niche, the bottom of the first miniband
would have an energy approximately 60 meV higher [6]. The second miniband,
however, is virtually unchanged by the presence of the niche and consequently
there is a large bandgap (~240 meV) observed between minibands one and two in
NU2293. This minimises the possibility of interminiband tunelling thus increasing
the likelihood of agreement with the semiclassical model of transport in a single
miniband presented previously in this section.

In sample NU2299, rather than focusing on the design of the superlattice, the
emphasis is placed upon the emitter contact. By introducing a 3% Al content into
the emitter, the energy of the conduction band edge is raised so that it becomes
resonant with the lowest miniband in the superlattice. In contrast to the previous
approach, the minigap in NU2299 is small (~60 meV) and thus gives rise to a
much greater probability of interminiband tunelling.

Unfortunately for theorists wishing to undertake full quantum transport in
such systems rather than use a semiclassical model, the discontinuous nature of
superlattice potentials can lead to great difficulties. In particular, modelling the
motion of a wavepacket in a superlattice with the electric and magnetic fields
shown in figure 1.2 requires solution of the full two-dimensional time-dependent
Schrodinger equation, in which the superlattice potential must be explicitly in-
cluded. To reproduce the discontinuities in the potential with satisfactory pre-
cision in a finite difference approximation to the Schrodinger equation requires
a minimum of approximately seven points to define the smallest feature of the
structure - in the case of NU2293 this is the niche, and in NU2299 the barrier.
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Modelling a simple sinusoidally varying potential only calls for around ten points
per whole lattice period. In view of the fact that the niche accounts for only
3% of the lattice period in NU2293, whilst in NU2299 the barrier is 20% of the
period, it is clear that a much higher resolution is necessary to study transport in
superlattices than in smoothly varying systems. In particular, simulations based
upon NU2293 are severely limited by the huge increase in runtime, data storage

and memory requirements.

1.3.1 Effective mass approximation

It is clear that the response of a particle in a Bloch state to an external force
is very different to that of a free particle. An important concept employed in
understanding this difference is the idea of effective mass. The effective mass
is the mass a free particle would have if it were to respond to applied forces in
the same way as a particle in a Bloch state. Consider the case of an applied
constant force Fa; as described in the previous section. Equation (1.13) may be

differentiated to obtain an expression for the acceleration:

dv 1d<dE>_1¥Edh 117

dt ~ hdt \dk,)  hdk? dt’

Substituting from (1.14) and rearranging for F' gives

F:(if£>1@ (1.18)
h? dk? dt
and equating this to Newton’s second law shows that the effective free mass of a
Bloch particle is ,
m* = h? %. (1.19)

The effective mass is a measure of the forces exerted upon the particle by a
periodic potential and takes negative values when the particle is demonstrating
a negative acceleration in response to a force in the positive direction. A typical
plot of the variation of the effective mass in k-space in shown in figure 1.5.

In the case of a superlattice, the electron is subject to two different periodic
potentials: firstly, the rapidly varying potential due to the crystal structure, and
secondly, the slow variation of the conduction band edge in different layers (see

figures 1.3(a) and 1.4(a)). It is this second potential that we call the superlattice
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Figure 1.3: (a) Effective superlattice potential arising from the variation in con-
duction band edge energy in the different layers of sample NU2299, where U; = 247
meV, d; =25 A and dy = 100 A (not to scale). (b) Dispersion relation of the first
three minibands arising from the potential in (a).
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(a) Effective superlattice potential arising from the variation in
conduction band edge energy in the different layers of sample NU2293, where
U = 1064 meV, Uy = —698 meV, d; = 10 A, do = 35 A and d3 = 241 A
(not to scale). (b) Dispersion relation of the first three minibands arising from the
potential in (a).
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Figure 1.5: Ratio of the effective electron mass m* to the bare electron mass
me for a typical dispersion relation of the lowest energy band. The dotted lines
represent the point in k-space for which the dispersion relation has d*E/dk* = 0.

potential, Vgr,, and it is the dynamics induced by this potential that are of interest.
The purpose of the effective mass approximation is to take into account the crystal
potential without the need to include it explicitly in the calculations. An effective

Schrodinger equation is considered:

St VSL> é(z) = Eo(x) (1.20)

where m? (x) is the effective electron mass (and is dependent upon position in the
superlattice), whilst ¢ () is a so-called envelope function which satisfies the same
Schrodinger equation as a free electron with mass m} (z). Thus the new kinetic
energy operator term takes into account the variation in effective mass throughout
the superlattice layers, with the envelope function describing the amplitude and
phase modulation of the underlying Bloch functions [6]. This is illustrated in
figure 1.6. Clearly the variation of the envelope function at any given point must
be small in comparison with the variation of the Bloch functions enveloped.
Note that since GaAs forms the bulk of both superlattice samples studied
in this thesis, it is reasonable to assume that m (z) is constant with respect to
x, and that m} = 0.067m,, the effective mass in GaAs. This will be assumed
throughout, and hence the usual form of the kinetic energy operator is recovered
in equation 1.20. Note also that the effective mass approximation is valid only
when there is no interband mixing, that is, the external fields must be weak and

slowly varying [6].
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Figure 1.6: Effective mass approximation (EMA): the slowly varying envelope
function ¢epny(z) due to the changing conduction band edge is separated out from
¢(z), the rapidly varying function due to the crystal structure.

1.3.2 Electronic drift velocity

The discussion of Bloch oscillations in section 1.2.2 suggests that when a DC elec-
tric field is applied to the superlattice samples, the electrons will simply oscillate
about their initial position and no net current will be measured. In reality this
is clearly not the case. A net current is observed because the electrons undergo
collisions and are scattered before they have sufficient time to complete an entire
Bloch oscillation. Thus the electrons have some net velocity induced by the field.
This is known as the drift velocity.

The relaxation time approximation assumes that collisions occur in an in-
finitesimal time dt, and that the time taken for the momentum distribution to
relax to an equilibrium configuration is given by 7. Relaxation taken place via
scattering events, so 7 is often known as the scattering time. This gives the mean
time between scattering events. Inelastic scattering arises mainly from electron-
phonon interactions. Sources of elastic scattering are ionised impurities, small
concentrations of bulk impurities and roughness in the superlattice structure at
the interfaces between different materials. In the case of NU2293, a further source
is straining at the niche interface which arises due to the difference in the lattice
constant of InAs and GaAs. Elastic scattering dominates since the elastic scat-
tering time is so short (~20 fs) that miniband electrons don’t gain enough kinetic
energy to emit LO phonons before they scatter elastically.

Esaki and Tsu [1], in their famous 1970 paper, apply a path integration

method to write the average drift velocity taking into account the scattering
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time as

1 > —t/T

Vg = — v, (t)e M7 dt. (1.21)
T Jo

1/7 is the scattering rate, and the decay term gives the probability of the electron

remaining unscattered after time ¢. In the absence of a magnetic field the velocity,

as stated previously, is
1 0F

Uy = —

h Ok,

where the dispersion relation may be written as a Fourier series (see Appendix
A:

(1.22)

E(k,) = % (ao — ian cos(nkmdgL)) (1.23)

n=1
where dgy, is the superlattice period, n is an integer and a,, are the Fourier coef-

ficients. Substituting equations (1.22) and (1.23) into equation (1.21) gives

AdSL

Znan/ sin(nk,(t)dgg)e /"dt/T (1.24)

for an electron initially at the bottom of the miniband i.e. k,(0) = 0. If the drift
has been induced by an electric field of magnitude F' applied in the negative z

direction, then

F
k(1) = %t (1.25)
and thus integrating equation (1.24) by parts results in
AdSL nwpT
a, | —2BT 1.26
Zn <1 + (nwpT)? (1.26)

where wp = eFdgy,/h is the Bloch frequency. Applying a simple miniband ap-

proximation of ag = a; = 1, a,~1; = 0 such that
A
E(k,) = 3 (1 — cos(kdsy)) (1.27)

leads to the following simple expression for the drift velocity when B = 0:

. AdSL WRBT
Y= Ton (1 + (cuBT)2> ' (1.28)

The drift velocity - field relation described by this expression is known as the
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Esaki-Tsu curve. It predicts a maximum in the drift velocity when wp = 1/7. For
wp << 1/7 the behaviour is ohmic: the long Bloch period allows many scattering
events to take place before a Bloch oscillation can be completed, therefore electron
localisation is suppressed. However for wp > 1/7 a surprising phenomenon is
predicted: a region of so-called negative differential velocity (NDV). This arises
because the Bloch oscillations become increasingly rapid at higher fields, thus
allowing a manifestation of the localisation effects before scattering occurs.

In the samples studied, a,, falls off sharply as n increases therefore the simple
miniband representation is a good guide to the E(k,) curve; however, when we
consider the full quantum analysis of the transport we must consider higher terms
to ensure accurate agreement between the semiclassical and quantum mechani-
cal pictures. We find that including contributions up to n = 10 is more than

sufficient.

1.4 Optical lattices

Crystal structures are not the only way to realise energy band transport. A pair
of counter-propagating laser beams may be employed to create a standing light
wave, providing another example of a periodic potential in which a band structure
arises. In this case, instead of describing atomic positions, the primitive lattice
vectors now describe the peaks in the standing wave. The electric field due to
the lasers produces a periodic potential energy profile that may be used to act
upon ultra-cold (< 1 pK) alkali atoms. For a clearer understanding of this, we
will first consider the reaction of a single atom to a static electric field.
The presence of an electric field E;,s induces an electric dipole moment, d,
in the atom by shifting its energy levels. The polarisability, o, of the atom is a
measure of the tendency of its electron cloud to be distorted by external electric
fields, and is defined as [7]:
d = aE;,;. (1.29)

The resultant energy shift of the atom may be calculated by
dE = —d - dE,4;, (1.30)

and hence )
AE = — / By - dEjqs = —§aE§m. (1.31)
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For the case of an electric field oscillating with frequency w, Ej,(t) = E?

las

cos(wt),
this energy becomes a function of the dynamical polarisability o' (w):

AE = —%O/(w) (Eras(r, £)2) (1.32)

t

where the field has been time-averaged over the period of oscillation. If the
time-average is spatially varying, the changing energy shift is equivalent to an

externally varying potential and gives rise to a force:

o/ (w)
2

Fdipole = —VV(I‘) = V <Ela3(1‘,t)2> (133)

.
This is known as the dipole force and is due to the interaction of the induced
dipole moment with a spatially varying electric field [7].

In the case of a one-dimensional optical lattice, we consider two lasers whose
beams are aligned in opposing directions along the z-axis of the system. We

describe the electric fields associated with the two sources of wavelength A as

B,
Ej,, = =yttt (1.34)

and
E?
las ei(—kx—wt)

E2 =

1.35
las 2 ’ ( )

where £ = 27 /). The sum of equations (1.34) and (1.35) gives the overall field
as [8]
Eis(z,t) = EJ) , cos(kx)e ™! (1.36)

las

of which we need consider only the real part:

Ef(2,t) = EY , cos(kx) cos(wt). (1.37)

las

Substitution of equation (1.37) into (1.32) yields the effective potential experi-

enced by an atom due to the optical lattice:

AFE = —%o/(w)(E?as)2 cos? (k) <Cosz(cut)>t = Vp cos®(kx) (1.38)
where Vj is a constant: 0 \o
!
E
v — @) () (1.39)

4
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Applying the trigonometric identity cos?(A) = (1 + cos(2A))/2 and substituting

for k£ in terms of \ we have

AE = % + ? cos <27T)\i/2> (1.40)
so clearly the period of the optical lattice, dor, is \/2.

It is essential to choose the wavelength of the lasers carefully depending on
the species of atom to be studied. The main point of importance is making
certain that the lasers are detuned from any atomic resonances that may result
in excitation. Another factor is ensuring that the de Broglie wavelength of the
atoms will be of the order of several lattice periods. This is to guarantee that the
motion of the atomic wavepacket is indeed governed by quantum mechanical band
dynamics and not simply the case of a classical particle in a single well. The period
of the lattice is usually of the order of several hundreds of nanometres and so is
roughly ten times that of the superlattices discussed in section 1.3, and a thousand
times that of an atomic crystal. This, coupled with the fact that atomic masses
are much larger than the mass of an electron, means that the dynamics occur
on much longer timescales (~ ms) than is the case for electronic (~ ps) crystal
dynamics (refer to equation (1.16)). Thus phenomena such as Bloch oscillations
are far more accessible and easier to observe in optical lattices. Another major
advantage over superlattice systems is the fact that optical lattices are free of
defects [9] and are not subject to thermal vibrations, therefore essentially no
scattering occurs. This means that it is possible to study dynamics whose Bloch
periods are substantially longer than in superlattices [10].

Further advantages include the exact knowledge of the form of the potential [9]
and indeed the ability to select a desirable potential, and hence choose the band
structure, by careful selection of the period and depth of the lattice. Furthermore,
by detuning the laser beams with respect to one another, the acceleration of the
atoms may be controlled [11]. The depth of the potential wells is governed simply
by the intensity of the beams. If switched off entirely, direct measurement of the
momentum of the atoms is possible [12]. This is another huge advantage of optical

lattices, since this is obviously not possible in a natural crystal.



Chapter 2

Cold atoms

2.1 Introduction

The study of cold atoms has applications in a diverse range of fields such as
Bose-Einstein condensation, quantum fluids, atom and photon optics, coherence,
spectroscopy, ultracold collisions and quantum devices, to name but a few. In-
deed, the enormous scope of applications for cold atoms is one of the reasons
why the 1997 Nobel Prize was awarded to Phillips, Chu and Cohen-Tannoudji
for their work on laser cooling and trapping of atoms. This chapter will dis-
cuss the techniques required to trap and cool atoms to ultracold (uK and below)
temperatures, focusing in particular upon their application to the attainment of

Bose-Einstein condensation, which will be considered in detail in section 2.3.

2.2 Atomic trapping and cooling

2.2.1 The Zeeman effect

We begin this section by extending the previous discussion of atoms in electric
fields to consider the effects of magnetic fields. We will consider the case of the
alkali metals since later chapters study systems of sodium-23 atoms. In the ground
state, the alkalis have a number of filled electron shells plus one single electron
in the lowest available s-orbital. The net electronic orbital angular momentum,
L, is zero, and the total electronic spin, S, is 1/2. J is the quantum number of

total electronic angular momentum, and is given by:

IL-S|<J<L+S58 (2.1)
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hence J = 1/2 for alkali atoms.
The hyperfine interaction describes the coupling between the nuclear spin, I,
and the magnetic field produced at the nucleus by the electrons. This causes a

splitting of the energy levels which is described in the Hamiltonian by a term [13]
Hyp= Ap -3 (2.2)

where Apy is a constant and i, J are the operators for nuclear spin and total
electronic angular momentum. These hyperfine levels are further split in the
presence of an externally applied magnetic field. This is known as the Zeeman
effect [7,9,13] and arises from the interaction of the applied field with the mag-
netic moments of both the nucleus and the outer electron. For a field Bz the

contribution to the Hamiltonian due to spin is now

Hopin = Apf1-3 4+ CJ, + DI, (2.3)
where
and
K
D= —TB. (2.5)

In equations (2.4) and (2.5) pup is the Bohr magneton, which is defined as

eh
KB = (2.6)

2m,’

and p is the magnetic moment of the nucleus, which is of the order of the nuclear

iy = (ﬁ) . 2.7)

2m,, my

magneton py [7]:

In equations (2.6) and (2.7) m,, m, represent the electron and proton masses
respectively, thus it is clear that © << pp and hence D may be neglected. In
equation (2.4) g, is referred to as the g-factor of the electron and is defined as

J(J+1)+S(S+1)—L(L+1)
2J(J +1)

gr =1+ : (2.8)

For alkali atoms we recall that L = 0 and S = 1/2 thus g; = 2. Note also that
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the total spin, with quantum number F, is given by:
I—J <F<I+] (2.9)

which for alkalis gives F' = [ +1/2. In the specific case of *Na, I = 3/2 and thus
F=2orl.

Under the application of low-strength magnetic fields the Zeeman splitting is
small compared with the hyperfine splitting, and the energy of the atom may be
expressed by the following relationship to first order:

where F(F) is the energy of the atom in the absence of an external magnetic field
and mp is the quantum number relating to the z-component of the total angular
momentum F. The reader should note that equation (2.10) will form the basis of
the cold atom trapping techniques discussed in later sections. In this equation,

gr is the Landé g-factor given by:

FF+1)+J(J+1)—I(I+1)
2F(F +1) '

gr = 9j (2.11)

Since J =1/2, I =3/2 and F =1 or 2 as detailed previously, gr = +1 for ?*Na.

2.2.2 Magnetic trapping

Neutral atoms may be trapped by the Zeeman effect [12]. Spatially varying mag-
netic fields can be engineered in order that an atom travelling through the field
experiences a shift in its energy levels such that its kinetic energy is exchanged
for an effective potential energy originating from the change in internal energy of
the atom (see equation (2.10)). It is usual to select the field parameters such that
states exist whose energy varies linearly with B. Thus we may write the energy
of an atom in state 7 as

E; =C; — ;B (2.12)

(see equation (2.10)) where C; is a constant and p; = —mpgpup is the magnetic
moment of the state. If the magnetic moment of the atom is positive, it is known
as a high field seeker since its energy is lowest in regions of high magnetic field.

Conversely, if pu; is negative the atom is a low field seeker and is attracted to
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regions of low field in order to achieve the lowest possible energy configuration.
This fact may be used to design a magnetic atom trap. Experimentalists cannot
create a local maximum in the magnetic field in the absence of electric currents
[14-16], therefore the trap must make use of a local minimum in a spatially
varying field. Hence we can only trap neutral atoms whose magnetic moment is
negative.

Still considering alkali atoms, we find that two states in particular are suitable
for the trapping technique proposed: the doubly polarised state and the mazimally
stretched state. The doubly polarised state is characterised by F' = 2 and mp = 2,
and the maximally stretched state by /' = 1 and mrp = —1. For both states,
we see from equation (2.10) that their energy is directly proportional to the
magnetic field for small B, and provided the Zeeman splitting is much less than
the hyperfine splitting, both have negative magnetic moments.

Another issue of importance is that of losses from the trap [7]. As the atom
moves through the trap, it is subjected to an effective time-dependent magnetic
field. If the temporal frequency at which the effective field changes is of the
order of the frequency of transitions (x B) between Zeeman sublevels, a low
field seeker may be flipped into a high field seeking state and consequently be
ejected from the trap. The greater the temporal frequency of the field compared
with the transition frequencies, the more appreciable the losses from the trap.
The transition frequencies are of order pgB, therefore if the field minimum is at
B = 0 (as is the case for the quadrupole trap) there is a virtual hole in the trap
which leads to serious losses.

Cornell and Wieman [17] overcame this problem by employing the time-
averaged orbiting potential (TOP) trap which superimposes a rotating, spatially
uniform magnetic field upon the quadrupole trap [7]. This has the effect of con-
stantly repositioning the node of the trap. The frequency of the additional field
must be chosen carefully - it must be low compared to the frequency of transitions
between Zeeman sublevels (~ 10° Hz), but must also be high in relation to the
atomic motion (~ 10? Hz). This ensures that the atoms experience an effective
potential equal to the time average of the field over one period of rotation. Typ-
ically the frequency of rotation is chosen to be of order 10> Hz. An alternative
solution is also offered by the Iloffe-Pritchard trap which employs a magnetic field
profile whose minimum is non-zero [18,19].

Another trap of great experimental importance is the magneto-optical trap

(MOT). This consists of a spatially-varying magnetic field supplemented by six
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laser beams - two counter-propagating along each axis [7]. The MOT may also
be used to cool atoms, and is often used to prepare the atoms before transferring

them to alternative traps for further study.

2.2.3 Cooling techniques

Attaining the ultra-low temperatures necessary for cold atom experiments re-
quires state of the art cooling techniques. We shall shortly proceed to a discussion
of the processes employed by experimentalists in achieving uK temperatures. As
alluded to previously, the MOT is instrumental in the initial stages of cooling.
This is because the lasers exert radiation pressure upon atoms. When residing in
the beam of a laser with wavevector k, an atom may be excited and acquire a mo-
mentum fik, by absorbing a photon. The atom then relaxes to the ground state
by spontaneously emitting a photon. The emission occurs in a random direction
and there is therefore no net transfer of momentum to the atom when many such
events are considered. The total force resulting from absorption processes is equal
to

F,o = hk,ly (2.13)

where Ty is the rate of excitation of the ground state. Radiation pressure forms
the basis of both Doppler and Sisyphus cooling, which we will go on to describe
in more detail. The final cooling step is a purely magnetic phenomenon and is

known as evaporative cooling.

Doppler Cooling

When the alkali atoms are initially vaporised, they are at a temperature of several
hundred kelvin. The first stage in the cooling process is Doppler cooling. This is
carried out via a laser beam directed opposite the atom beam, which slows the
atoms causing cooling in one dimension [20]. The atoms absorb photons which
are on-resonance with an atomic transition, are excited into a higher energy state,
then proceed to re-emit the absorbed photon. The absorption process provides a
momentum kick opposing the direction of motion, however emission occurs in a
random direction. Thus the net effect is to retard the atom beam in one direction.
Due to the Doppler effect, the frequency of the atomic transition in the lab frame
is not constant as the atoms slow. There are two possible methods employed to

surmount this. This first is known as chirping, in which the laser frequency is
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varied in a rapid sweep. The second is to employ a Zeeman slower, where the
atoms travel along the axis of a tapered solenoid. The inhomogeneous magnetic
field means that, due to the Zeeman effect, the spacing between the atomic levels
varies with distance, cancelling out the Doppler effect. Such methods cool the
atoms to temperatures of order 1 K.

Atoms are then loaded into a magneto-optical trap (MOT) which performs
both trapping and cooling functions. A pair of Helmholtz coils with opposite
currents generate the quadrupole profile which provides the magnetic effects,
whilst three orthogonal pairs of counter-propagating lasers which intersect at the
centre of the coils set up the optical potential. The inhomogeneous magnetic
field means that the frequency of the atomic transition depends on position, thus
efficient cooling is possible for a range of velocities [7]. The Zeeman splitting
of the atomic levels depends on the position in the field and thus there is an
imbalance in the radiation pressure due to absorption of photons from the lasers.
The polarisation of the lasers may be chosen such that this imbalance acts to
push atoms towards the centre of the trap from all sides.

An effect called optical molasses occurs, so called because the intersection of
the laser beams causes the atoms to move as if they were in a viscous, treacle-
type fluid. This is a three-dimensional slowing effect, as opposed to the one-
dimensional cooling described earlier, achieved by detuning the three orthogonal
standing waves to a few linewidths below the atomic resonance frequency. Since
the Doppler effect means that the atom is always shifted towards the resonance
of the beam opposing its motion, slowing is achieved regardless of the direction of
motion. The limiting factor on the effectiveness of optical molasses is due to the
random-directional recoil of the atoms as they re-emit photons. We model this
diffusing effect as a random walk in momentum space, with step size ik equal to
the photon momentum. To quantify the limiting effect upon the cooling process,
we must consider the ratio of the diffusion coefficient to the damping coefficient
of the force. Assuming low velocities and intensities and a saturated transition,
and by taking into account fluctuations in the number of absorbed photons, a
three-dimensional treatment of the diffusion [20] gives the minimum temperature
attainable as

kgT = % (2.14)
where 7g is the lifetime for spontaneous emission of photons. This is known as

the Doppler cooling limit. It allows temperatures as low as 240 pK in sodium.
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Sisyphus Cooling

Further cooling is achievable within the MO, however this requires a more com-
plex treatment than that so far. We know that in reality alkali atoms have
degenerate sublevels in the ground and excited states, known as hyperfine states.
When placed in a radiation field, these sublevels shift by amounts dependent upon
the polarisation and intensity of the radiation. This may lead to a greater re-
duction in temperature via a process termed optical pumping. Consider a ground
state which has split into two hyperfine levels. If the applied radiation is resonant
with a transition from the higher energy of the two hyperfine ground states, to
a hyperfine state of the excited level, atoms will be excited and then fall back.
However they may decay into either of the hyperfine ground levels. Since there is
no resonant excitation of the lower hyperfine ground level to a higher state, the
net effect is to drop atoms into the lowest sublevel. Note that the timescale for
optical pumping is greater than that for spontaneous emission, therefore consid-
ering equation (2.14), it is immediately clear that for an optical pumping time
Tp > Tg, the temperatures that can be reached via this process are lower than
in the previous discussion. The mechanism by which sub-Doppler cooling occurs
in a MOT is known as the Sisyphus effect. It is dependent upon the fact that
the radiation field of the lasers is inhomogeneous. If the lasers are linearly po-
larised in orthogonal directions, the polarisation of the resultant standing wave
varies between circular and linear with a period of half the optical wavelength.
The shift in energy of each sublevel depends on each of the circularly polarised
components of the radiation field, which are spatially varying. It can be shown
that for an atom with two substates of the ground level (g, and g_ say), the
energies, V' and V', to which these substates shift vary out of phase with each
other according to

VE =V, (=2 +sin 2k2), (2.15)

where the value of V;; depends upon the particular atom and substates in question,
and we consider the variation along the z-axis. Note that 1} is positive for red
detuning [7]. Tt is found that at positions where the field is linearly polarised,
no net pumping occurs. Pumping from ¢, to ¢g_ is at a rate proportional to
the intensity of circular polarisation in the negative sense, (1 + sin 2kz) /2, whilst
pumping from ¢g_ to g, is proportional to the intensity of the positive circular
polarisation componenent, (1 — sin 2kz) /2. Hence, detuning the lasers to the red

results in an increase in the population of the lower energy ¢g_ state, and can lead
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to temperatures of only a few pK. The limit of Sysiphus cooling is the photon

recoil energy Ex [12], which corresponds to a temperature Tx given by:

R k?

Er=kgTp = )
2m

(2.16)

Sisyphus cooling is so called because when it was described by Dalibard and
Cohen-Tannoudji in 1989 [21], they compared it to the mythological Greek whom
the Gods sentenced to an eternity of pushing a rock up a hill, only for it to roll
down again when he reached the summit. Consider the case of an atom positioned
at a point in the radiation field where the substates have equal energy. As the
atom moves away from this point, its energy must shift due to the radiation field.
If it moves into a higher energy region, conservation of energy dictates that its
kinetic energy must decrease accordingly. Also, the probability that the atom is
pumped into the lower energy state is increased. Alternatively, if it enters a region
shifted to a lower energy and gains kinetic energy, the likelihood of pumping to
a higher energy state decreases. Thus the overall effect is that the atoms tend
to drop down into the lowest energy state, in the same way that the rock would

always roll back into the valley.

Evaporative Cooling

The next step in the generation of ultra-cold atomic vapours is evaporative cool-
ing. Evaporative cooling works on the principle that if we can selectively remove
particles whose energy is greater than the average energy per particle, the temper-
ature of the remaining particles will fall. For this stage, we confine the atoms in a
purely magnetic trapping potential, and recall the conclusion in section 2.2.2 that
magnetically trapped atoms must have a negative magnetic moment. Particles
are removed by the application of a radio frequency pulse which flips the atomic
spins from negative to positive, thus causing them to be ejected from the trap.
Since the amount by which the Zeeman levels are shifted for a particular atom is
a function of position in the trap, we can tune the rf pulse to the resonance of the
most energetic atoms, namely those located in the regions of strongest magnetic
field. When the gas rethermalises via elastic processes its temperature is lowered.
As the atom vapour cools, the pulse frequency is adjusted to remove atoms of
increasingly low energy. This way the temperature can be reduced to as little as
roughly 1 pK. Note also that in order to attain densities high enough to make

evaporative cooling effective, it is necessary to magnetically squeeze the vapour
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whilst it is contained in the trap [22].

2.3 Bose-Einstein condensation

Bose-Einstein condensation (BEC) is a macroscopic quantum phenomenon first
predicted by Einstein in 1925. Einstein recognised that if a non-interacting gas
of bosons was cooled below a certain temperature, a quantum mechanical phase
transition would occur in which a macroscopic fraction (approximately 99%) of
the gas would fall into the ground state of the system. Note that in this case,
the term condensation is used to describe not a localisation in real space but a
localisation in phase space. No analogous effect is observed in a fermionic gas
since fermions are subject to the Pauli exclusion principle, which dictates that
two or more fermions may not exist in the same quantum state.

Despite the fact that this conceptually simple quantum mechanical effect was
predicted in the 1920s, it was a further 60 years before it was produced exper-
imentally. This delay was due to the technological innovation required for its
realisation: it wasn’t until relatively recently that the previously discussed cool-
ing and trapping techniques that enable experimentalists to achieve the ultra-low
temperatures required for BEC were refined. In June 1995, a research group at
JILA led by Cornell and Wieman applied these techniques and became the first
to generate a BEC using rubidium, followed closely by Ketterle’s group at MIT
in September with sodium. In the same year Hulet’s group obtained indirect ev-
idence of BEC in lithium. In 1998 Greytak and Kleppner added hydrogen to the
growing list of condensates [23], and in 2001 the first helium-4 condensate was
produced from metastable atoms in the lowest spin-triplet state [7]. Following
these advances, Ketterle, Wieman and Cornell recieved the 2001 Nobel prize in
physics for their work on BEC.

Wieman notes that the intuitive approach to obtaining the necessary con-
ditions for BEC is to compress the atoms to reduce the inter-particle spacing
- however this will obviously cause the atoms to form a solid [22]. Similarly,
attempts to cool the atoms lead to solidification well before we even begin to ap-
proach the temperatures required, unless dilute gases (of typical density 1013-101°
cm ™3 [7]) are used to prevent this. However this means that the temperatures
now required to achieve BEC are of order 100nK. Wieman’s approach to attaining
such low temperatures was a two-step process - first by laser cooling and trap-

ping, followed by magnetic trapping and evaporative cooling. The tendency of
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the system to solidify is overcome by creating a vapour that is quick to equilibrate
to its proper thermal distribution as a spin-polarised gas, but which is slow to
reach true equilibrium i.e. solidify. He worked with very dilute gases so that the
formation time for a solid or liquid due to three-body collisions was of the order
of seconds or minutes, whilst the elastic binary collision thermalisation time was
of order 10 ms making BEC possible [23]. While the gas is in its metastable
supersaturated-vapor the BEC is produced [22].

Originally the quest for a condensate began with hydrogen, but the laser
cooling techniques which finally led to the realisation of BEC were not as well
suited to hydrogen [24]. It was much more difficult to attain BEC in hydrogen
due to dipole-dipole spin-flip collisions, which allow atoms to enter a lower-energy
spin state and consequently escape from the trap [22]. Wieman knew that the key
to successful evaporative cooling of a laser cooled sample is to attain a high elastic
collision rate between the magnetically trapped atoms, therefore he decided to try
the same approach with a heavy alkali gas (rubidium). He realised that although
the rate of “bad” collisions was likely to be similar to that in hydrogen, the
rate of two-body elastic collisions required to thermalise the gas for evaporative
cooling was likely to be larger for alkalis due their larger cross section for “good”
collisions. This is because the magnetic moments of hydrogen and rubidium are
the same, but rubidium atoms are larger.

Since the attainment of BEC, the field has attracted worldwide interest. Mo-
tivations for research include the fact that BEC is known to be the basis of effects
such as superconductivity and superfluidity. In addition, BECs offer experimen-
talists a robust and versatile platform for the study of mesoscopic many body
physics [25]. The possibility of using BEC to create an atom laser is also a strong
attraction. This would consist of an intense, highly directional, coherent atom
beam [26]. A true continuous laser would require steady-state BEC formation
and continuous replenishment - challenges which await physicists in the future.
However, once achieved, the applications for such a system are manifold. Sugges-
tions based on coherent atom optics range from use in precision measurements
(of fundamental constants for example) to atom lithography, atom holography
and non-linear atom optics, for which interactions are crucial. We may even find
eventually that BEC (of nucleon pairs) is important inside neutron stars, which
would have profound implications for current theories of supernovae and evolution

of neutron stars [7].
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2.4 Theoretical Discussion

In the following section, we will use the Bose distribution to explain why Bose-
Einstein condensation occurs. We shall then proceed to a discussion of how the
interatomic forces which are present in a non-ideal gas may be incorporated to

provide a model suitable for practical application.

2.4.1 Statistical Mechanics

Einstein extended Bose’s work on quantum statistics from photons to atoms to
produce the now familiar Bose-Einstein distribution function. He considered the
theory of a non-interacting, degenerate Bose gas with atoms of zero spin. Bowley
[27] states that the chemical potential, p, of such a system at high temperatures
is approximately

p=kTIn (nA)g), (2.17)

where kp is Boltzmann’s constant, 7" is the temperature, n is atom density and
Agp is the thermal de Broglie wavelength. Note that equation (2.17) is only true
provided the condition V' >> N4\% holds, where V' is the volume and N, the
number of atoms. In this regime, p is negative because nA3, < 1. That is,
equation (2.17) is valid for low-densities and high temperatures.

At this point, the number of particles in each single particle state is governed
by the Maxwell-Boltzmann distribution. However as the temperature is reduced,

the distribution narrows and takes the form of a Bose-Einstein distibution

1
f(E) = W (2.18)

e *BT _—

where f (F) is the mean occupation number of the single particle state having
energy E (k) = h?k?/2m. For particles in a box of volume V', k is the wavevector

2¢xp (ik - r). Since the total number of atoms

labelling the plane wave state V'~
is given by

N = Z f(k), (2.19)

allstates
in order that N be conserved, ; must increase as the temperature falls. Even-
tually, some critical temperature is reached at which the chemical potential ap-
proaches zero. This is the upper limit of u since a positive value of the chemical

potential would cause low energy states to have a mean occupation number of
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less than zero - clearly a physical impossibility. Now consider the occupation of

the ground state, which we take to have zero energy, at this critical temperature:

f(k=0)= L ~ kel (2.20)

B(h=0)—p

e kBT 1 H

It is clear that as the chemical potential tends to zero from negative values, the
ground state of the system develops a macroscopic population. Atoms condense
into the ground state with a uniform spread in real space - Bowley [27] confirms, as
Einstein realised many years ago, that the appearance of such condensed particles
indicates the presence of a new phase of matter.

Each atom is a quantum mechanical wavepacket. As the atoms are cooled,
the wavepackets of neighbouring atoms begin to overlap. Indistinguishability
then becomes important and Bose statistics must be applied. When the phase
transition occurs, the de Broglie wavelength of the characteristic thermal motions

is known to be of the order of the mean inter-particle spacing [25], i.e.

ol

N ~ 1~ (2.21)

where n is the atom density. This knowledge may be used to approximate the
transition temperature. The thermal de Broglie wavelength of an atom of mass
m is given by [7]

2mh?

T (2.22)

AiB ~

so by substituting equation (2.22) into the condition for BEC given in equation

(2.21) and rearranging, we obtain an estimate for the transition temperature, 7T,

onhini

T, ~
ka

(2.23)

In order to determine a more accurate expression for 7, we need to consider
the density of states. Kittel [28] derives the single-particle density of states in
three dimensions, and finds that

Vk?

D(B)dE = o (%@C)) dE. (2.24)
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The total number of atoms present is given by
N, = / f(E) D (E)dE, (2.25)
0

which reduces to

dE. (2.26)

v, _ 2V (@m)* /°° B2
! h? 0 e’“BLTc—l

If we now change the variable of integration to z = E/ (kgT.), and substitute
n = N4/V we obtain

2rmkpT. (9 [ L2
— (ZEE2Ble Sl dz V. 2.97
" ( h? ) {\/7? /0 e —1 (2.27)

Thus, evaluating the standard integral using look-up tables, we find that

9 2
kT, = 3317 (2.28)
m

For a more rigorous derivation of T, refer to [7]. We should note at this point
that due to the finite volume of a real atomic gas, the transition temperatures are
not precisely defined. In addition, inter-particle interactions shift the transition
temperature by a few percent [25].

Another important parameter to derive is known as the condensate fraction.
This tells us what proportion of the atoms present have condensed into the ground
state. Recall that in order to derive the more accurate expression for the transition
temperature, we began by integrating over all states to find the total number of
particles. We should note that such an integral gives no weight to the ground
state - what we actually calculate is the population of the excited states, N.;.
At temperatures above T, the proportion of particles in the ground state, Ny
is negligible, so the method is reliable for the determination of 7,.. However, at

temperatures below T, equation (2.25) should be written
Ny = Ny— Ny = / £ (E) D (E)dE. (2.29)
0

Hence from equation (2.28) we can write

Wl

n2 (N,
T=331—(=2=) . 2.
kg 33m<V> (2.30)
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Dividing equation (2.28) by equation (2.30) and rearranging gives us

3
Ny T\?2

— =1—-1=) . 2.31
NA <Tc> ( 3)

Remember that this expression is not valid for T" > T, since we have assumed

w=0.

2.4.2 Gross-Pitaevskii Equation

The treatment so far has not taken into account the fact that in a real system,
interactions are present. BEC is a robust phenomenon - it is not destroyed despite
the leading role that interactions play in the energetics of the system [25], however
we must still give quantitative consideration to the effects of the interactomic
forces. For instance, when we say that a dilute gas is required for the observation
of BEC, what exactly is meant by this? As alluded to in section 2.3, for an
atom vapour to be dilute requires that the dominant effects of interaction result
from two-body scattering [7]. The strength of the interactions is characterised by
a parameter a, known as the binary s-wave scattering length, which is of order
100qy for alkali atoms (where ag is the Bohr radius). Therefore put quantitatively,
we desire a ratio a/r ~ 0.01, where r is the inter-particle separation.

Once a dilute vapour is achieved, the atoms may be considered to be discrete
interacting particles [25]. Pethick and Smith [7] show that at low energies the true
interatomic potential can be replaced by a zero range (delta function) interaction
of strength Uy where

Uy — 47rh2a‘ (2.32)

m

Naturally, this term forms part of the equation governing the motion of the BEC.
In constructing the BEC equation of motion, the atoms in the condensate are
treated using a mean-field approximation, allowing us to write the wavefunction

describing the N-particle system as

N

\Ij(r17r27"'7r]\7) = H¢(rz) (233)

i=1
where ¢ (r;) is the wavefunction describing the single particle ground state that all
the atoms enter at 7' = (0. We assume that each atom experiences an additional

potential due to the combined effect of all other atoms present [25] and write the
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effective Hamiltonian as

H=>" {p? —|—V(r,~)] +Up» 6(ri—1j), (2.34)

where p;, is the momentum of the ith atom, and V' (r) the external potential. From
equation (2.34) it is possible to derive an expression for the energy of the state
given in (2.33) [7]. Minimising the energy with respect to variation of ¥ yields a
Schrédinger-type equation governing the evolution of the BEC wavefunction [7]:

ov(r) R

th——

S = VR (1) V()W (1) + Uy U () (r). (2.35)

This is known as the time-dependent Gross-Pitaevskii equation and is simply
an extension of the usual time-dependent Schrodinger equation, where the first
term relates to the kinetic energy of each particle present, and the second to the
energy of each particle due to the trapping potential. The only difference is that
the potential energy term has been extended to include a nonlinear term which
takes into account the mean field due to interactions between each atom and the
rest, described within the mean-field approximation.

Unsurprisingly there is also an analogue to the time-independent Schrodinger

equation:
u@(ﬂ::—g%vkp@)+xf@yy@y+UMW(nF@(m. (2.36)

Note that the eigenvalue of equation (2.36) is no longer the energy per particle
as in the original linear form, but has been replaced by the chemical potential.
In the case of non-interacting particles in the same quantum state, the chemical
potential is simply equal to the energy per particle, however this is not so in the
case where interactions are present.

It is useful to consider equation (2.36) in the case where the confining potential
takes the form of a box with infinitely hard walls. Naturally, the wave function
reduces to zero at the walls. We may estimate the distance over which the wave
function approaches its bulk value from zero by considering the kinetic energy

and interaction energy within the box. These two energies are equal when

h2
2m&?

= nlj (2.37)
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where £ is the spatial scale of variations and n is the density as previously. Re-
arranging equation (2.37) gives

h2
= 9mnl,’

£2 (2.38)
If we consider a sphere of radius 75 to have a volume equal to the average volume

per particle, we may write n as

1
n= /30 (2.39)

and can thus substitute equation (2.32) for Uy to rewrite equation (2.38) as

2Ty
== 2.40
g=" (2.0
& is known as the healing, or coherence, length, and describes the distance over
which the wave function tends to its bulk value when subjected to a localised
perturbation [7]. Note that by substituting equation (2.32) directly into equation

(2.37), the healing length may also be written as

1
f=— (2.41)

Note that in this thesis, we consider BECs whose atoms experience repul-

sive interactions, i.e. a > (0. Condensates have however been created whose
interactions are attractive - namely the lithium condensates studied by the Rice
University group [29]. Negative s-wave scattering lengths prevent BEC in un-
trapped gases, however this is not so for trapped gases. Because the interaction
energy decreases as the density increases, the condensate tends to collapse in-
wardly. However provided Uy is small compared to the energy-level spacing of
the confining potential, the tendency to implode is tempered by the kinetic pres-
sure of the gas. Restricting Uy necessitates that there is a maximum number of
atoms for which a metastable BEC may form. The condensate number is limited

to approximately 1000 for the case where a < 0.

2.4.3 Solitons and Vortices

Solitons and vortices are topological excitations characteristic of BECs [12, 30].

Solitons are one-dimensional waves that propagate without spreading [30]. They
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are localised disturbances that arise from a combination of nonlinearity and dis-
persion [7]. Their behaviour is generally particle-like - for instance, they can
interact with other solitons without altering their shape [30]. Strictly speaking,
these features should be known as solitary waves rather than solitons [7], how-
ever the term “solitons” has been adopted throughout BEC literature, and will
be used for the remainder of this thesis.

There are two types of soliton which may occur: dark solitons, which occur
in repulsively interacting BECs, and bright solitons, which occur in attractively
interacting BECs. A bright soliton is characterised by a peak in the condensate
density, whilst dark solitons are distinguished by a local decrease in density and a
macroscopic phase difference between each side of the soliton [31]. Dark solitons
may be either black or grey: black solitons are stationary, have a minimum
density of zero and exhibit a sharp 7 phase change; grey solitons can have non-
zero velocity, have a non-zero minimum and display a smoother phase change,
whose magnitude is less than 7 [12,31].

Solitons are able to maintain their shape due to a balance between the dis-
persion and the nonlinearity. The kinetic energy term in the Gross-Pitaevskii
equation, a function of the second derivative of the wavefunction, causes disper-
sion and is minimised by smoothing the wavefunction, i.e. broadening the soliton.
Interactions (i.e. the nonlinearity factor in the medium) oppose this change and
tend to narrow soliton. If a > 0, the interactions are repulsive therefore try to
push particles into the minima causing the minima to narrow, and if a < 0 attrac-
tive interactions narrow the feature by pulling particles into the soliton resulting
in a local density maximum [12]. Since this thesis is concerned with condensates
whose interactions are repulsive, only dark solitons will be considered.

Solitons are exact solutions to the time-dependent Gross-Pitaevskii equation
in 1D (assuming uniform density). For the case of a soliton propagating through
a uniform condensate with velocity v,, with boundary conditions n — ny as
x — +oo, the density, n, is found to be described by [32]

(2.42)

— V.t
n(z,t) = Nmin + (N0 — Nnin) tanh? {x Uz } ,

V28!

where ng is the bulk density, n,,i, is the minimum density of the soliton, and &’
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is the width of the soliton:
§ = ————. (2.43)
Here, v, is speed of sound in the uniform BEC, and is given by

noUp
o

(2.44)

Vs =

It is also possible to derive an expression for the phase offset Ay between z = oo

L <7¢> = Mmin (2.45)

Vs Q)

and z = —oo:

Note that for v, = 0, equation (2.45) does indeed describe a black soliton, since
we find 7, = 0 and Ay = 7.

Solitons moving in an applied potential behave as particles of mass 2m would
if subjected to same potential. However, solitons are thought to be inherently
dynamically unstable. Since the phase offset determines the soliton depth and
velocity, any small perturbations of the depth or nonlinearity strength result in
a nonuniform transverse velocity profile, causing it to preferentially form more
stable structures [31]. Unlike solitons, vortices are stable in two and three di-
mensions, therefore if a one-dimensional soliton is subjected to perturbations in
the other dimensions, this can cause the soliton to disintegrate into vortex pairs
in a two-dimensional system or a vortex loop in a three-dimensional system [7].
Vortices are one-dimensional cores of vanishing density, around which the flow of
a fluid is quantised. This can be shown as follows.

Consider integrating the phase, ¢, of the condensate around a closed loop 1.

Since the BEC has a single valued wavefunction, it must hold that

A¢ = j[ Vo - dl = 27, (2.46)

where ¢ is an integer. The circulation is defined as

A= j[v L dL. (2.47)

It can be shown the the velocity v of the condensate is related to the phase by

v = %v(p (r,1), (2.48)
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thus it is trivial to show that
h h
A= —2mq¢=q—. (2.49)
m m

Anderson et al. have observed the decay of dark solitons into vortex rings
via the snake instability [31]. Vortices may also be generated by giving a BEC
a degree of angular momentum [12]. Note that in general, a system prefers to
form multiple singly-quantised vortices rather than a single vortex with large q.
In real 3D condensates, vortices usually take the form of rings or lines, where the

terms are used to describe the shape of the core [12].



Chapter 3

Stochastic dynamics

3.1 Introduction

Chaos theory is the study of nonlinear dynamical systems that give rise to un-
predictable, seemingly random behaviour. Chaos is commonly summarised as
an extreme sensitivity to initial conditions. This means that if we consider two
sets of initial conditions for a given system, where these initial conditions differ
only infinitesimally from one another, the resulting trajectories of the system will
diverge exponentially.

Despite the fact that there may be no obvious order to the dynamics of a
chaotic system, such systems may still be deterministic [33]. That is, the system’s
equations of motion are known and, given a set of initial conditions, one can
predict the future motion of the system. Hypothetically, the behaviour at all
times could be predicted. However, in practice, numerical errors are a limiting
factor.

During the last 30 years, chaotic systems have been widely studied, and it has
emerged that these apparently random dynamics often show common features
[34], leading to general theories that are applicable in a diverse range of situations.
In this chapter, both classical and quantum descriptions of chaos are summarised

and the correspondence between the two regimes is addressed.
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3.2 Classical chaos

3.2.1 Hamiltonian systems

This thesis limits itself to the study of Hamiltonian systems - that is to say, it
considers only systems in which there is no dissipation [33]. Such systems are
described in terms of the position, ¢;, and momentum, p;, of each particle in the
system, where 7 is the co-ordinate axis of a specific particle. If a system requires
N pairs of co-ordinates (g;, p;) to fully describe the motion of all its component
particles, it is said to have N degrees of freedom. Hamilton’s equations govern

the dynamics of the system:

dg; _ 9H(q,p,?)

7 0, (3.1)

o 90, (3.2)

therefore a Hamiltonian system is defined by 2N coupled differential equations.
We can apply the chain rule to determine the temporal derivative of the

Hamiltonian:

dH(q,p,t):Z{aH@ OH%} oOH (3.3)

Substituting equations (3.1) and (3.2) into equation (3.3) gives

dH(q,p,t) OH (—-0H OH (0H OH
TS o \ g ) " og \ap, ) | T o (3-4)

i

which reduces to
dH(q,p,t) _ OH

dt ot

Hamiltonian systems are also described as conservative systems since they

(3.5)

often have physical properties that are constant in time, known as conserved
quantities. The systems studied in later chapters have time-independent Hamil-
tonians and, since H is the total energy, it follows from equation (3.5) that the
total energy is conserved throughout.

A useful tool employed when exploring the dynamics of such systems is a
concept known as phase space. Rather than plotting the motion in real space,

axes of ¢;(t), pi(t) are considered. It follows therefore that phase space is 2N
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dimensional. Plotting the dynamics in phase space often gives more information
about a system than may be easily apparent in a simple real space plot. It is
clear that if energy is conserved, a particle may only move through points in phase
space whose energy is equal to that of the initial condition. Thus the conservation
of energy limits the particle trajectories to a 2N — 1 dimensional surface in phase
space. Similarly, the trajectories are restricted to a (2N — k) dimensional surface
in phase phase if & quantities are conserved.

We calculate an expression known as the Poisson bracket in order to deter-
mine whether a quantity is conserved. Consider the temporal derivative of some

quantity f(q,p,t) which we suspect may be conserved:

A _9f 0fda 0f dp

dt ot  oqdt Opdt (3.6)

Assuming the Hamiltonian is time-independent and using Hamilton’s equations
(3.1) and (3.2) to substitute for time derivatives of q and p in equation (3.6)
gives

df of OJ0foH o0OfoH Of

J g 7 H]. 3.7

it~ ot "aqop opaq ot M (3.7)
If f does not depend explicitly on time, so that df/0t = 0, and in addition the

Poisson bracket [f, H] = 0, then we can say that f is a constant of the motion.

3.2.2 Integrability of a system

A constant of motion is also known as an integral of motion since it allows a
reduction in the number of equations to be solved [35]. A Hamiltonian system
with N degrees of freedom requires N integrals of motion if it is to be fully solved
analytically. Thus we say a system is integrable if the number of independent
conserved quantities is equal to the number of degrees of freedom (k = N). A
conserved quantity is only independent if it may not be expressed as a function
of other conserved quantities. This condition is known as being in involution [33]

and is satisfied if the Poisson bracket

[fi, i1 =0 (3.8)

for all constants of motion f;. If a system is found to be integrable then all
possible trajectories of the system lie on the surface of an N-dimensional torus in

phase space, and the motion is periodic with /N characteristic frequencies that are
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Figure 3.1: (a) Schematic representation of a phase space trajectory which lies
on the surface of a torus. (b) The irreducible paths -; defined by action-angle
variables I; and 9;.

defined by w; = w; (f1,...,fn) (i =1,2,3,...,N) [35]. For example, figure 3.1(a)
depicts a possible phase space trajectory around a two-dimensional torus. The
two characteristic frequencies in this case would relate to motion around the small
cross-section of the torus (dotted line in figure 3.1(a)) and around the ring of the
torus (dashed line in figure 3.1(a)). The ratio of these frequencies is referred to as
the winding number and tells us how many small circuits a trajectory completes
in a single circuit of the whole torus.

It is possible to make a canonical change of variables as follows:

1
I;=— ¢ p-dq (3.9)

2m [,

where w; = OH/0I;. These new variables are known as action-angle variables, I;
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being the action and 6; the angle. All points on the torus may now be defined
by a sum of I; vectors. The 6; determine the orientation of the path traversed
when calculating each ;. Varying one value of 6; whilst all the others remain
constant defines the so called irreducible paths, v;, referred to in equation (3.9)
in the definition of each action variable. Each angle variable defines a path upon
the torus in phase space, and hence the entire motion is defined by N irreducible
paths. This is illustrated in figure 3.1(b).

The surface of a given torus represents a particular set of values of conserved
quantities. For a different set of initial values, the surface of a different torus is
defined. Trajectories on the tori lead to periodic motion when the paths have
commensurate frequencies (i.e. rational winding numbers), and quasi-periodic
motion occurs where an irrational ratio of frequencies occurs [36]. Quasi-periodic
motion allows a trajectory to explore the entire surface of the torus, returning
arbitrarily close to the original start point after some time ¢ [12]. (Note that if a
trajectory in phase space returns to its original start point after some time 7,
then the motion in real space is also periodic with period 7,;, and similarly, if
the motion is quasi-periodic in phase space then it is also quasi-periodic in real
space.) Since these possibilities account for all values the winding number may
take, it is obvious that integrable systems do not display chaotic behaviour.

Now consider the situation where a perturbation is applied to an integrable
system so that it becomes non-integrable. Non-integrable systems are those where
the number of conserved quantities k is less than N. The perturbation removes
constraints from trajectories so that they are no longer confined to the torus [36].
Non-integrability is a necessary condition for a system to exhibit chaotic motion.
However, it is important to remember that whilst a chaotic system must be non-
integrable, non-integrable systems are not necessarily chaotic. Trajectories in a
chaotic system are mostly aperiodic. Any periodic orbits which may exist tend
to be unstable. This is very different from the case of an integrable system where
all the trajectories are stable [36], and it is this instability of orbits which is used
to differentiate between chaotic and non-chaotic systems, as is now shown.

Chaos is often described as extreme sensitivity to initial conditions. The
extent to which two trajectories diverge when starting from infinitesimally close
initial points in phase space is used as a measure of the degree of instability. The

separation of the trajectories as a function of time is given approximately by

d(t) = doe (3.11)
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where dj is the initial separation. The constant A is known as the Lyapunov
exponent and must be a real positive number for a chaotic region to exist. The
reader should note that the introduction of a perturbation may not necessarily
cause the Lyapunov exponent to become real and positive in all parts of phase
space - regions may remain where motion is still stable, although the tori in these
regions will still be distorted by the perturbation.

A final important point to note is that chaotic systems are still deterministic
despite their random-seeming nature - all motion is governed by well-defined
equations. However they are still unpredictable even though we have access to
the equations of motion: since we can only specify the initial conditions with finite
accuracy, once some sufficiently long time has elapsed, any predicted solutions

will have diverged from the real behaviour.

3.2.3 Poincaré sections

Poincaré sections [33] are used to gain an overview of specific regions of phase
space. Rather than attempting to imagine the entire multi-dimensional phase
space which has been described so far, the situation is greatly simplified by con-
sidering a single plane or cross-section of the space. An image of the cross-section
is constructed by selecting two phase space variables of interest which are plotted
every time a trajectory crosses some plane that has been defined to intersect the
phase space. This concept is illustrated in figure 3.2(a) for the idea of the nested
tori introduced in section 3.2.2: we imagine defining some plane in phase space
which cuts a section through the tori.

A point is added to the Poincaré section each time the motion of the system
causes it to cross this imaginary plane. From this we can gain information about
whether chaotic or stable regions are present. Figure 3.2 shows typical Poincaré
sections for (b) periodic motion, (c¢) quasi-periodic motion, (d) mixed stable and
chaotic motion (where both stable and chaotic regions appear in the phase space)
and (e) strong chaos (where the Lyapunov exponent is positive throughout the
whole of phase space, hence there are no stable regions). The concepts of weak

and strong chaos will be discussed in section 3.2.4.
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Figure 3.2: Schematic representation of (a) nested tori intersecting a plane in
phase space (b) Poincaré section of a periodic orbit (¢) Poincaré section of a quasi-
periodic orbit (d) Poincaré section of mixed stable/chaotic phase space (e) Poincaré

section of a strongly chaotic phase space
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3.2.4 The KAM theorem and non-KAM chaos

Kolmogorov, Arnold and Moser [35,37] studied an integrable system perturbed

by some non-integrable function so that the total Hamiltonian is
Ho(I) + eH((1,0) (3.12)

where the parameter € determines the magnitude of the perturbation. The KAM
theorem states that for small perturbations of a non-degenerate Hamiltonian
system, most of the tori corresponding to Hy are not destroyed but instead remain
in a slightly distorted form [35]. The tori whose winding numbers are rational
(i.e. resonant tori) are destroyed, whilst those with irrational winding numbers
(non-resonant tori) survive and are known as KAM tori. As the strength of the
perturbation is increased, the KAM tori are also gradually destroyed. This results
in two possible descriptions of the chaotic motion observed in such systems: mized
stable-chaotic behaviour, in which there are remaining KAM tori, and strong chaos
where all KAM tori have disappeared. Thus in a KAM system, a gradual descent
into chaos occurs with increasing strength of the perturbation.

In a 2N-dimensional phase space, the constant energy surface is 2N —1 dimen-
sional. Therefore if the phase space is to be divided into separate regions by the
invariant tori, such tori must have dimensionality 2N — 2. Hence, N-dimensional

tori may only divide phase space if
N >2N —1, (3.13)

i.e. if N < 2. Therefore when N = 2 as in the example system studied in section
3.2.2, the different tori cannot intersect and the phase space is filled with nested
tori. However, in systems with N > 2, the tori may intersect. The resonant
trajectories is the case where N = 2 are those which satisfy
w n
2= (3.14)
W9 No
that is, the ratio between the frequencies is rational. In the general case, the

resonance condition is given by

N
=1
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where the n; are integers (not all zero). In a system such as (3.12), if Hy is

non-degenerate, such that

8(.4)1‘
oI,

02 H,
o101,

det 40, (3.16)

:det‘

then when the condition (3.15) is satisfied, the perturbation acts to destroy tori
that lie close to the resonance tori. Provided N > 2, the invariant tori intersect,
therefore under this condition the destroyed tori may join together forming a
web-like network of so-called stochastic layers which extends infinitely through
phase space. Zaslavsky describes a stochastic layer as a region of many overlap-
ping trajectories whose width varies linearly with the perturbation strength [38].
A trajectory located in this region of phase space has the potential to spread
arbitrarily far along this web. This is known as Arnold diffusion [35] and the
unique form of the phase space under such conditions is described as a stochastic
web.

The following dimensionless Hamiltonian governs the nonlinear pendulum and
obeys the KAM theorem:

1
Hy = §p2 —coszx (3.17)

where the mass and frequency have been set to 1. The potential energy profile
and phase space of the system are illustrated in figure 3.3.

The trajectory of an oscillator is determined by its energy. There are three
types of trajectory possible: if the oscillator does not have enough energy to es-
cape the potential well in which it is contained, it follows a closed orbit trajectory
(which lies on an invariant torus in phase space). If it has sufficient energy to
escape, its trajectory is open. However if it has just enough energy to reach the
maximum of the potential well in the cosz part of equation (3.17) it remains
indefinitely in an unstable state. Such a trajectory is known as a separatriz.
Points corresponding to maxima in the potential are unstable and are known as
hyperbolic points, whilst the potential minima are stable and are referred to as
elliptic points.

If the Hamiltonian Hj is subjected to a perturbation such that a new Hamil-
tonian

H = Hy+€eV(I,0)cosvt (3.18)

may be written, where V' (I,0) and € govern the amplitude and strength of the
perturbation respectively and v is the frequency of the oscillation. When v =
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Figure 3.3: (a) Periodic potential and (b) phase space plots for the Hamiltonian
in equation 3.17. The different curves in (b) correspond to different values of Hy:
closed orbits correspond to the case when Hy < 1, the separatrix applies when
Hy =1, and for Hy > 1 there are open orbits. Corresponding plots are shown in
(a). Reproduced from [6].
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w,2w, 3w, ... (where w = 1) a nonlinear resonance is induced in the system,
that in turn leads to the destruction of the separatrix and to the formation of
a stochastic layer, whose width is proportional to the strength of the applied
perturbation [6]. Trajectories close to the hyperbolic points are highly perturbed,
whilst the unperturbed resonant tori fill the remaining phase space away from
resonant points, albeit in a somewhat distorted form.

In the case of degenerate systems, the KAM theorem breaks down. In this in-
stance we find that providing the applied perturbation is time-dependent, stochas-
tic webs can form for N = 1. In such a non-KAM system, chaos switches on
abruptly throughout the entire phase space when the temporal frequency of the
perturbation reaches certain critical values (see below). Chaos switches on glob-
ally rather than locally, making the system attractive as a switching mecha-
nism [39]. By contrast, in a KAM system the appearance of chaos in the system

occurs gradually in small parts of the phase space.

3.2.5 Prediction of the stochastic web

The one-dimensional driven harmonic oscillator is an example of a non-KAM
system - since its frequency is independent of energy, Hy = [w and, from equation
(3.16), it is degenerate. Consequently the KAM theorem does not apply. It follows
that any system which reduces to a one-dimensional oscillator perturbed by set of
plane waves is also non-KAM. It will be shown that the semiclassical Hamiltonian
for the systems studied in chapters 4 and 5 may be reduced to an equation of this
form. In the cases studied, the perturbation is generated by the sinusoidal form
of the dispersion relation of the band structure caused by the periodic lattice
potential.

We begin by constructing the semiclassical Hamiltonian, H, for a particle in
a band. The kinetic energy of the particle is given by

v, | P’

Kp=F —= 4 == 3.19

assuming the lattice potential is in the z-direction. To determine F (p,) we must
consider the dispersion relation of the band. This may be described by a Fourier

series:

n=1

B(k,) = % <a0 =3y cos (nkmd)) (3.20)
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where d is the lattice constant, A is the width of the first energy band and
ke = p/h. Appendix A shows how the a, coefficients are determined. Thus
E (p.) is given by

Bp,) = % <a0 _ gan cos <n]%i>) (3.21)

We now consider the potential energy. A tilted magnetic field is applied to confine
the particle in the z-z plane within a gutter-shaped potential. This can be done
both for electrons in a superlattice using a tilted uniform B-field (see figure 1.2),
and for neutral atoms in an optical lattice with an inhomogeneous B-field (refer
to section 2.2.2 for details on trapping neutral atoms magnetically). If we choose
a magnetic gauge

A =(0,B(zsinf — zcosb),0) (3.22)

and define new variables x;, z; along the axes of the trap:
xy = xcos + zsin b (3.23)

2 = —xsinf + zcosf (3.24)

where 0 is the tilt angle of the field, recalling that the canonical momentum p,

may be replaced with linear momentum ¢,, where
qy =py +eA, (z,2) =p, +eB(rsinf — zcosb), (3.25)

we find that the gutter potential due to the tilted field may be written

1
§mw22t2 (3.26)

where w is the frequency characterising the curvature of the gutter potential.

A single atom in a harmonic trap is also confined by a harmonic potential in
the y-direction. By contrast, an electron in a superlattice with a tilted magnetic
field moves freely along the y-direction (see section 4.2). Consequently, for both

the single atom and electronic systems, we may write

«Q 1
Virap = ?smwzgf + §mw22t2, (3.27)

where a, = 0 for the electronic system and «ay = 1 for the single atom system.
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A linear accelerating force & is also applied to the particle in the = direction to

push it through the lattice. The full semiclassical Hamiltonian is now

Q 1
imwzyQ + —mw?z? — &, (3.28)

1
H=E(ps) +-— (0} +p?) + 5

2m

To determine the semiclassical dynamics we consider Hamilton’s equations of

motion:
H
i g_px (3.29a)
0H
Dy = ——— 3.29b
D o (3.29b)
OH
)= — 3.30a
Opy ( )
OH
O 3.30b
Py Ay ( )
H
3= gpz (3.31a)
OH
, = O 3.31b
P o (3.31b)
Applying Hamilton’s equations to (3.28) results in the following:
L AdE [ np.d
=5 s ( £ ) (3:32)
Pe = —mw?(zsin? @ — zsinf cos B) + &, (3.33)
. Dy
— Yy .34
y=" (3.34)
Dy = —mwiyas (3.35)
. _ P
p= B (3.36)
p. = —mw?(z cos® O — xsin O cos 0) (3.37)

It is a simple matter to show that, for both the electronic and single atom systems,
the motion in the y-direction separates from motion in the z-z plane. Differenti-

ating equation (3.34) with respect to ¢ and substituting equation (3.35) into the



3.2.5 Prediction of the stochastic web 54

result gives
ij = —wyya (3.38)

which, for the single atom system, describes simple harmonic motion [40] in the
y-direction.

Having ascertained that the motion is indeed separable, we will continue by
only considering motion in the z-z plane, which is described by the same equation
of motion in both the electron and single atom cases. We begin by showing that
equations (3.32), (3.33), (3.36) and (3.37) may be reduced to a single second-order
differential equation in p,. Firstly, differentiate equation (3.37) with respect to t.
Thus

P = —mw?* (2 cos® @ — @ sinfcosb) . (3.39)

Secondly, substitute for i and Z using equations (3.32) and (3.36) to give

Ad &
P, = —mw? cos® 0 <&> + mw? sin @ cos  —— Z nay, sin <np
n=1

od
- o ; ) (3.40)

It still remains to eliminate p, from equation (3.40). This is achieved via the

following steps. Combining equations (3.33) and (3.37) gives
Py = —p, tanfd + &,. (3.41)

Integrating the above equation with respect to time and rearranging results in an

expression for p, in terms of p, we find

Pe = P2(0) + &t — (p. — p.(0)) tan b (3.42)

where p,(0) and p,(0) are the values of p, and p, at ¢ = 0. Finally we can
substitute equation (3.42) to write (3.40) as

D + wﬁpz =A Z nay, sin (n (Kp, — wpt — ¢)) (3.43)

n=1
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where terms are defined as follows:

w| = wecosb (3.44)
—mw?dA sin f cos §
A = .
- (3.45)
Ko dtanf (3.46)
h
d&s
wp = % (3.47)
d
6 = L (pul0) 4 p.0) tan). (3.49

This non-linear equation has the form of a driven simple harmonic oscillator.
The natural frequency of the oscillator is wj, whilst the driving term has the
form of a series of plane waves with frequency nwg and wave vector nk, where
the amplitude of the nth wave decreases rapidly with increasing n. This set of
plane waves is determined by the dispersion relation of the band through which
the particle is moving.

When the tilt angle is zero, the driving term is also zero. Under these condi-
tions we have a separable Hamiltonian and expect to observe the particle Bloch
oscillating along the lattice with frequency wp whilst performing simple harmonic
oscillations with frequency w in the z direction. As # is increased from zero, the
motion of the particle in the z direction plays a dominant role in determining
the overall behaviour. Equation (3.42) shows that the relation between p, and p,
depends on tan #, implying an increasingly large exchange in momentum between
p, and p, as the tilt angle becomes greater. The effect of changing 6 on the

single-particle motion is more apparent if we rewrite equation (3.43) as follows:

. 9 mAd sin 20 _ B
Pz + wj <pz + — Znan sin (n (Kp, —wpt —¢)) | = 0. (3.49)

n=1
It is clear from this form that the amplitude of the plane-wave perturbation will
be strongest for systems with tilt angles of # = 45°, and will also be increased by
the existence of wide bands (large A) and long lattice periods (large d).

The motion of the particle is entirely determined by solving equation (3.43)
for p,, since we can subsequently solve (3.42) to obtain p,, (3.32) to obtain
x and (3.36) to obtain z. The system is on resonance when the frequency of

motion associated with the magnetic potential, w, is commensurate with the
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Figure 3.4: Poincaré sections of the (P,,p.) phase space (where P, = p,/w)
for (a) r is non-integer and (b) r is an integer value (r = 3 in this case). Where
the system is off resonance in (a), the phase space is filled with concentric rings,
whereas when the resonance condition is fulfilled in (b), the rings become linked
by filaments and a stochastic web is formed. A chaotic region can be seen in the
centre of the web.

Bloch frequency, wg. Therefore when the ratio

r= 2 (3.50)

Wy
is an integer we expect to observe an increase in the delocalisation of the particle
in real space, and the formation of a stochastic web in phase space in accordance
with the theory of non-KAM chaos as discussed in section 3.2.4. To view such a
stochastic web we construct a stroboscopic Poincaré section; that is, the points
are plotted at equally spaced times. In this case, (P,,p,) are sampled every time

that the time elapsed since the last point was plotted satisfies

_27T

At (3.51)

wy’
where P, = p,/w. Examples of the phase space for on and off resonance condi-
tions are shown in figure 3.4.
The geometric form of the stochastic web

It will now be shown how the form of stochastic webs such as that shown in

figure 3.4(b) can be predicted by analysing the form of the Hamiltonian for the
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driven harmonic oscillator described by equation (3.43). The derivation follows
that described in [38].

We have seen how the system is described by a single semiclassical equation
of motion, given in (3.43). Here we will consider only the n = 1 term (known
as the tight binding approximation in solid state physics). We effectively as-
sume a simple cosinusoidal dispersion relation equivalent to a single plane wave
perturbation, so equation (3.43) becomes

—mw?dA sin 0 cos 0

D. + wﬁpz = 5T ar sin (Kp, —wpt — ¢). (3.52)

Defining a dimensionless parameter

1
€= 5mAK?al (3.53)
as a measure of the strength of perturbation and substituting this into equation

(3.52) gives

€
K

The Hamiltonian corresponding to this driven harmonic oscillator, with an effec-

P + wiip, = wﬁ sin (Kp, — wpt — ¢). (3.54)

tive displacement p, from equilibrium is

1
H = wﬁe cos (Kp, — wpt — @) . (3.55)

)~ =

DN | —

(92 + wiip?

Although this Hamiltonian does not have units of energy, it can still be used to
analyse the structure of the phase space with variables (P,,p,). To see this, we

begin by making a change of variables:

p. = psing (3.56a)
P, = pcosgy (3.56b)

recalling that P, = p, /w”. Therefore a Poincaré section of p, versus P, can be

described by the polar co-ordinates:

p = /p:+P? (3.57a)

— Z:Z
= t B .57b
© an (R;) (3.57b)

where p is the radial distance of a point in phase space from (0, 0) and ¢ is the an-
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gle that such a line makes in phase space with the (1,0) direction. Implementing

our new variables in equation (3.55) results in

1
H= wHe cos (Kpsingp — wpt — ¢).  (3.58)

(wiip? cos® p + wifp? sin® ) — e

l\DIr—\

The cosine term may then be rewritten in the form of a Bessel function of the
first kind:

cos (Kpsingp — wpt — @) = Z Jy (Kp) cos (lp — wpt — @) . (3.59)
|=—

Substituting equation (3.59) into the modified Hamiltonian (3.58), and simplify-

ing gives:

1 1
H= §wﬁp2 K2w||e Z Jy (Kp)cos (lp —wpt — ). (3.60)

l=—
Next we expand a term [ = r to give:

1

1
H = §wﬁp2 K2w||eJ (Kp) cos (r¢ — wpt — @)
1
K2w||e Z Jy (K p)cos (lp —wpt — @) (3.61)

l#r

before introducing a second change of variables:

2
wyp
] = .62
o (3.62a)
0 = ry—wst. (3.62b)
If we define a new Hamiltonian
H=H-—wgl (3.63)

and substitute for p? and ¢ in equation (3.63) using equations (3.62a) and (3.62b),
we have:

e, (Kp) cos (6 - 9

1 ! l
_ KQw”eZ Jy (Kp) cos <;0 - <1 - ;) wpt — q§> . (3.64)

l#r

H = (er—wB)I
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This new Hamiltonian is then rewritten as

H=Hy,(I)+V(I,6;1) (3.65)
where )
Hy(I) = (rwy —wp) I — ﬁwﬁGJr (K p) cos (6 — ¢) (3.66)

~ 1 [ l
V(I,0;t) = —ﬁw”ez Jy (Kp) cos <;0 - <1 - ;) wpt — qﬁ) : (3.67)
l#r
Here, we consider I:TO to be the unperturbed part of H and V to be the pertur-

bation [38]. When rwj = wp, i.e. the system is on resonance, we have

Hy = ! wieJ, (Kp)cos (0 — ¢), (3.68)

K?

and substituting for p in terms of I gives

- /
Hy = —%wﬁejr (K (%1 2)) cos (0 — ¢) (3.69)

Thus we can see that when the system is on resonance I:TO and V are propor-
tional to the perturbation strength, which means that the stationary component
is induced by the perturbation [6]. In order to locate the separatrices in phase
space corresponding to the unperturbed Hamiltonian, we must determine the

singularities of ﬁo. Therefore we solve simultaneously the following:

OH,

oH,
=0 (3.70D)

Performing the differentials in equations (3.70a) and (3.70b) gives

J (Kp)cos(@—¢)=0 (3.71a)
Jr (Kp)sin (0 —¢) =0 (3.71Db)
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whose solution yields a set of hyperbolic points (potential maxima):

J, (Kpp) = 0 (3.72a)
O,—¢ = 7/2,31/2,... (3.72b)

and a set of elliptic points (potential minima):

T (Kp) = 0 (3.73a)
bo—¢ = O,m,... (3.73b)

When plotting a stroboscopic Poincaré section we find that the phase angle of

the hyperbolic points is given by

o T ¢ 3w
=4 — =4 —, ... 3.74
oh r+27“’7“+2r’ (3.74)
and that of the elliptic points is
=22, (3.75)
rr oo

Hyperbolic points are the unstable points in phase space which represent the
potential maxima of the system. Elliptic points are the potential minima and
are stable. Therefore for a given resonance equations (3.71a) and (3.71b) predict
the characteristics of the Poincaré section. The position of the hyperbolic and
elliptic points may be determined from the roots of the Bessel functions (refer
to table 3.1 for a selection of solutions). We find that the hyperbolic points
define radial filaments in the (P, p,) plane of phase space, and that consequently
the separatrices define a web of cells, each containing an elliptic point. This is
illustrated for the case r = 3 and ¢ = 0° in figure 3.5.

When there is no perturbation (as is the case so far) particles can diffuse
along the radial filaments as far as the hyperbolic points, whereupon all of the
particle’s kinetic energy becomes potential energy. However, once the pertur-
bation ‘7(1 ,0;t) is introduced the separatrices are destroyed in accordance with
the theory of non-KAM chaos outlined in section 3.2.4. They are replaced by
channels of chaotic trajectories which allow the particle to diffuse past the unper-
turbed hyperbolic points: these channels make up the stochastic web. In theory,
the presence of the web allows for the possibility of unbounded diffusion in both

phase space and hence real space. In practice this is not so since the thickness of
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1 r=1 r=2 r=3
Kpn | Kp. Kpn | Kpe Kpn | Kpe
1]/ 0.00000 | 1.84118 || 0.00000 | 3.05424 || 0.00000 | 4.20119
2 || 3.83171 | 5.33144 || 5.13562 | 6.70613 || 6.38016 | 8.01524
3 || 7.01559 | 8.53632 || 8.41724 | 9.96947 | 9.76102 | 11.3459
4 11 10.1735 | 11.7060 || 11.6198 | 13.1704 || 13.0152 | 14.5858
5 || 13.3237 | 14.8636 || 14.7960 | 16.3475 || 16.2235 | 17.7887
Table 3.1: The first five roots of equations (3.72a) and (3.73a). These may be

used to predict the locations of features in the stochastic web.
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Figure 3.5: A schematic diagram of the stochastic web predicted in the case when
r = 3. Circles and squares indicate the positions of elliptic and hyperbolic points
respectively. The quantity p, is the z component of momentum, whilst P, = p,/ Wi
The labels pp, pe depict the radial distances of hyperbolic and elliptic points from
the origin respectively. The polar coordinates satisfy p = /pZ+ P2 and ¢ =
tan~!(p,/P,). Radial filaments are separated by an angle o = 27/2r = /3.
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the channels is proportional to e~v? [35]. Thus, the further the particle travels
from the centre of the web, the more constricted the channel down which it is
diffusing, leading to a very low probability of traversing an infinite path. Yet we
do still expect to see a marked increase in the delocalisation of a particle when
the system is on resonance.

We find that for a resonance r, we expect the hyperbolic points to define
2r radial filaments in the stochastic web. These are linked together by circular
filaments - so each root, S, (r = 1,2,3,...), of the Bessel function of order r
defines a ring of radius p, = S,/K in the web. If the initial state of a particle
lies upon the web, it will diffuse along the web indefinitely, following a chaotic
trajectory. Note that the probability of radial diffusion is also proportional to the
strength of the driving term. If the initial conditions define a point within one
of the islands marked out by the web, the particle will follow a stable trajectory
centred around the elliptic point. It should also be noted from equations (3.74)
and (3.75) that if the initial phase of the particle is non zero we expect to observe
a rotation of the web pattern through an angle ¢/r [6].

When the band through which the particle is moving is not a simple cosinu-
soidal function (which is typically the case in real systems), providing that the
coefficients a; (I > 1) are rapidly decreasing, the behaviour is very similar to that
described above. The additional plane waves present in the Fourier expression
for the band will cause a slight deviation in the positions of the elliptic and hy-
perbolic points from those predicted by table 3.1, but the web will still retain the

same general appearance described above.

3.3 Quantum chaos

In quantum mechanics, our knowledge of the properties of a system is always

limited by Heisenberg’s Uncertainty Principle, which states that

AxAp >

N | St

(3.76)

The classical definition of chaos is in terms of the diverging separation of two
initially arbitrarily close points (see section 3.2.2), and since uncertainty prevents
us from defining two such points the definition of chaos must break down in the
quantum mechanical regime [41].

Indeed we find that two “nearby” wavefunctions cannot diverge exponentially
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[36]. If we specify two wavefunctions, ¥ and ¥’ whose initial form is:

U(t=0)=Y ety (3.77a)

U'(t=0)= Z Cplp, + 0C1Uy (3.77b)

n

where {u,} are the eigenstates of the system and {¢,} the respective expansion

coefficients, we find that at some subsequent time they are given by:
T(t) =) cptipe i/ (3.78a)

U'(t) = Z Cptipe Bt 4 5oy e Bt/ (3.78b)

n

where {E,} are the eigenvalues associated with {w,}. Thus the difference be-
tween the two clearly does not grow exponentially therefore it is impossible for a
wavefunction to evolve chaotically according to our classical definiton.

Yet according to the Correspondence Principle, which states that quantum
mechanics tends to classical mechanics as A — 0, the classical and quantum
descriptions must converge. So although the evolution of the wavefunction itself
may not fit the classical description of chaos, the mean positions of two wavefunc-
tions may diverge exponentially in the same way that the corresponding classical
paths might. The field of quantum chaos is concerned with the study of this con-
nection. So although the term quantum chaos may seem misleading, it is the title

given to the study of quantum systems whose classical analogue is chaotic [12].

3.3.1 The Wigner function

Much of the classical theory of chaos discussed in section 3.2 is concerned with the
stability of a particle occupying some given point (p, q) in phase space, with the
Poincaré section being employed to provide an insight into the possible dynamics
for a particular plane in phase space. Classically, one can define a distribution for
the probability f(p, q)dpdq that a particle has momentum in the small volume
dp near p and position in the small volume dq near q. This requires the ability to
define a point in phase space with precision, which in turn relies on the trajectories
being continuous. In particular, since a continuous chaotic trajectory may pass
arbitrarily close to some given point in phase space, it follows that the classical

phase space must be infinitely detailed in order to represent this. At the quantum
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scale, the level of detail is limited by the uncertainty principle, and it is hence
impossible to define a true quantum mechanical phase space.
However, in 1932, Wigner [42,43] derived an expression for f(p, q)dpdq based

upon the wavefunction of the particle, ¥(q) of an N-dimensional system at time

t:
W(p,q) = hiN/\IJ <q+ %) v <q _ %) X exp (—ipf'f) AV, (3.79)

where X represents a spatial displacement from the point q. The quantity W (p, q)

is known as the Wigner function and is a quantum mechanical analogue of the
classical phase space plot.

One of the initial objections raised in response to Wigner’s function is that
it can take negative values, and therefore appears to be at odds with our funda-
mental understanding of the idea of probabilities. Wigner’s response to this was
to demonstrate that (i) the integral of W (p, q) over all momentum space is equal
to the squared modulus of the wavefunction; (ii) the integral of W (p, q) over all
real space is equal to the squared modulus of the wavefunction in momentum
space (which is equal to the Fourier transform of the wavefunction); and (iii) the
integral of W (p, q) with any function of (p,q) over all space is equal to the ex-
pectation value (which is always positive) of the function of (p, q). Moreover, he
proved that there is no simple function satisfying all of the above which is always
positive. Other functions can satisfy the criteria, but require further terms in ¥
to be included. Wigner’s function was therefore accepted as the simplest to work
with. An alternative to the Wigner function is the Husimi function, a Gaussian-
smoothed form of the Wigner, but it has been shown in studies of chaotic quantum
systems that the Wigner function reproduces the Poincaré section with greater
sharpness [44].

Like the classical phase space, the full Wigner function is 2N dimensional, so
it is usual to study a two-dimensional projection of the function, which can be
compared with the classical Poincaré section. The correlation between Wigner
functions and Poincaré sections was verified in a study by Hutchinson and Wyatt
in 1980 [45]. The reader should recall that section 3.2.5 predicts the occurrence
of a stochastic web when plotting a stroboscopic Poincaré section for the systems
studied in later chapters. An analogous quantum mechanical distribution may be
plotted for a time-dependent system by averaging Wigner functions calculated at

times t = 2m, 7 /cu” where m, is an integer. Similar approaches have been imple-
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mented successfully by Gardiner [46] and Korsch and Wiescher [47]. The reader
should note that although the time-averaging idea is relatively straightforward in
principle, in practice it is daunting due to the enormous computational demands,
with a single time-averaged Wigner function often requiring hundreds of hours of

processor time to generate.



Chapter 4

Semiclassical and quantum
electron transport in a
superlattice with an applied bias

voltage and a tilted magnetic
field

4.1 Introduction

As discussed in section 3.2.4, chaotic systems may display nonlinear resonances
that lead to the formation of a connecting network of stochastic layers in phase
space. These networks are called stochastic webs and provide a mechanism that
enables a particle to diffuse through the system. Theoretically, there is the po-
tential for unbounded diffusion throughout phase space along a stochastic web.
However, in reality, the probability of this is very small. In practice one ex-
pects to see an increase in the delocalisation of the particle in phase space, which
corresponds to an increasing delocalisation in real space as shown in section 3.2.5.

In non-degenerate systems, the KAM theorem applies and the onset of chaos
in the system occurs gradually. However, in the case of degenerate systems, the
KAM theorem breaks down. Chaos switches on abruptly throughout the entire
phase space when the perturbation satisfies certain conditions. Previous studies
of chaotic electron transport have explored KAM dynamics in systems such as

quantum dots [48], resonant tunnelling diodes [49,50] and doped [51,52] or driven
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[53] superlattices. Non-KAM chaos has only recently been created experimentally
by Fromhold et al. [39], who showed that the formation of stochastic webs has
a profound effect on the current-voltage (I-V') characteristics of semiconductor
superlattices. Non-KAM systems are not yet well understood, so the motivation
for studying them is strong [54]. There is much interest in their dynamics due
to applications in the theory of plasma physics and tokamak fusion [35,55-57],
turbulent fluid dynamics [35,57], ion traps [55] and quasicrystals [35,57].

In this chapter, we consider systems of the same type as that studied by
Fromhold et al. [39]: namely, the dynamics of a single electron in a semiconductor
superlattice. The superlattice bias voltage creates an electric field F' antiparallel
to the axis of the superlattice (which is taken to be in the x direction, as illustrated
in figure 1.2). A magnetic field B is also applied to the system, and can be tilted
in the x-z plane by an angle 0 relative to the z axis. We consider dynamics
created by a range of F', B and 6 values. By numerically modelling the electron
response to the fields, predictions of the electronic drift velocity in the system
may be made. When the electric and magnetic fields meet the conditions for
resonance, the formation of a stochastic web in phase space facilitates enhanced
electron transport through the superlattice. We expect to see this effect reflected
in the variation of electronic drift velocity with electric field.

When the orientation of the magnetic field is 0° or 90°, a semiclassical analysis
of the motion of the electron predicts stable behaviour [6]. In both cases, the
motion along each axis has been shown to be separable [6]. For electric and
magnetic fields parallel to the superlattice axis, Bloch oscillations are induced in
the z direction by the electric field and cyclotron orbits in the orthogonal (y-z)
plane result from the magnetic field. When the magnetic field is perpendicular
to the electric field (i.e. is aligned along the z axis), motion is bounded in the
x direction but unbounded along z. However, tilting the magnetic field away
from these values leads to coupled motion. In this case, where 0° < 6 < 90°,
the motion remains strongly localised unless the Bloch and cyclotron frequencies
are commensurate. We show that when the strength of the electric field is such
that the Bloch and cyclotron frequencies are commensurate (the system is on
resonance), the extent of the predicted semiclassical trajectories shows a marked
increase. Consequently, the drift velocity also increases, giving rise to resonant
peaks in plots of drift velocity versus electric field. Stroboscopic Poincaré sections
confirm the presence of the stochastic web in phase space.

A full quantum mechanical analysis of the wavepacket dynamics is also pre-
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NU2293
Miniband (eV) || Minigap (eV)
AL 0019 |[GE, T 0202
A%, | 0101 G, 0170
A%, | 0215 | G%, | 0.250

Table 4.1: The properties of the miniband structure in NU2293. A%, is the

bandwidth of the nth miniband and G; is the width of the nth minigap.

NU2299
Miniband (eV) || Minigap (eV)
AL T 0012 | GL, | 0.066
AéL 0.049 G%L 0.078
AL, [ 0113 || G%, | 0.066

Table 4.2: The properties of the miniband structure in NU2299. A%, is the
bandwidth of the nth miniband and G'; is the width of the nth minigap.

sented here. The evolution of a single electron wavefunction is determined nu-
merically and, from this, the expectation values of position and velocity are cal-
culated. Thus, plots of the mean position of the wavefunction may be made
and compared to the semiclassical trajectories. The correspondence between the
Poincaré sections and Wigner functions calculated at stroboscopic times is also
investigated. In addition, drift velocity-field curves may be generated. Since the
quantum analysis explicitly includes the full superlattice potential, interminiband
tunnelling effects may be observed in this model. Furthermore, knowledge of the
variation of the drift velocity as a function of the field enables current - voltage
(I-V') characteristics of the samples to be predicted which may be scrutinised for
agreement with experimental results.

Two semiconductor superlattice samples are considered: NU2293 and NU2299.
Both are real samples that have been fabricated and used in experiments [4, 5].
A brief review of their characteristics is included here, but for a more detailed

discussion of their construction, see section 1.3. Sample NU2293 is a repeating
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structure of AlAs/GaAs/InAs/GaAs (see figure 1.4(a)). The overall period of
the superlattice is dg;, = 82.41 A, and the thicknesses of the individual semicon-
ductor layers are 10, 35, 2.41 and 35 A respectively. The potential in GaAs is
taken to be zero, and hence the potentials in the barriers and niches are given
by Uy = 1.064 eV and Uy = —0.698 eV. It is the presence of the InAs niche that
makes this design novel compared to the more usual bi-layer repeating samples.
The inclusion of the niche lowers the first miniband to facilitate electron injection
and causes the large minibandgap (G%; ~200 meV) observed between the first
and second minibands (see figure 4.1). As a result of this large minibandgap, it is
expected that interminiband tunnelling effects will be suppressed in this sample.

Sample NU2299 is a simple bi-layer structure consisting of alternating layers
of AlGaAs/GaAs (see figure 1.4(b)). The superlattice period is 125 A, where the
AlGaAs barriers are 25 A thick and the GaAs wells 100 A. Again, the potential
in GaAs is taken to be zero and the potential in the barriers is 0.247 eV. In this
sample, the lowest minibandgap is small (G%; ~60 meV, see figure 4.2) and so
there is significant interminiband tunnelling. This allows the electrons to move
more easily between minibands and so suppresses charge build up in the sample.
This is reflected in the quantum mechanical calculations of the drift velocity -
field curves reported in section 4.3. Tables 4.1 and 4.2 show the widths of the
three lowest minibands (A}, , A%, and A%;) and corresponding gaps (GL;, G%;
and G%,) for samples NU2293 and NU2299 respectively.

4.2 The semiclassical mechanics of the system

Since both superlattice structures consist of approximately 15 periods, incoherent
(diffusive) transport may be assumed [58]. This can be described by a semiclas-
sical model of miniband transport as shown by Easki and Tsu [1]. Note that this
model assumes that inhomogeneities have no effect on the miniband structure but
cause electrons to scatter with a characteristic scattering time 7. In addition, the
conduction electron density is also assumed to be constant. The reader should
refer to sections 1.2.1 and 1.3.2 for an in depth treatment of semiclassical band
transport and the Esaki-Tsu model.

A semiclassical model assumes knowledge of the band structure of a system.
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Figure 4.1: Miniband structure of NU2293 superimposed upon the superlattice
potential. The shaded areas represent minibands, whilst the areas between mini-

bands are minibandgaps.
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Figure 4.2: Miniband structure of NU2299 superimposed upon the superlattice
potential. The shaded areas represent minibands, whilst the areas between mini-

bands are minibandgaps.
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The velocity v of an electron in the band is

OFE 10E(k)
= —=_-—" 4.1
Vo0 h ok (4.1)
where F is the energy of the dispersion relation for the first miniband in this
case, and p = fik. The crystal momentum 7%k (see section 1.2.1) obeys Newton’s
second law, such that

hk = —e(F+v x B). (4.2)

where F and B are the externally applied electric and magnetic fields. Strictly
speaking, the semiclassical model is only valid in the low field regime.

As a result of equations (4.1) and (4.2) we can write down a semiclassical
Hamiltonian. The effective mass approximation (see section 1.3.1) means one
can simply replace m with m* in all equations. The Hamiltonian H, before

externally applied fields are taken into account is

2
Py +p3

(4.3)

The effective mass is taken to be that of an electron in GaAs, m* = 0.067m,
(where m, is the electron mass) [59], since in both samples the electron is most
likely to be found in a GaAs layer. In a semiclassical model, we describe the
dispersion relation of the lowest miniband by a Fourier series as previously stated

in equation (3.21), but restated here for convenience:

1 [e.e]
E(p:) = % (ao - Z ay, COS <n%)> (4.4)
n=1

where A}, is the width of the first miniband, n is an integer and the coefficients
a, are determined in Appendix A.

To include the effect of the magnetic field, we first choose a gauge A
A =(0,B(zsinf — zcosb),0), (4.5)
and then replace the canonical momentum p, with linear momentum ¢,, where
gy =py +eA, (z,2) =p, +eB(zsinf — zcosb). (4.6)

The potential energy of the electron in the electric field is —eFz. The full semi-



4.2. THE SEMICLASSICAL MECHANICS OF THE SYSTEM 72

classical Hamiltonian H is thus:

1 2
H=E(p,) + im*wz (zsinf — (z — z) cos 0)* + 2pz —eFx (4.7)
m*
where the cyclotron frequency w. = eB/m* and zy = p,/eB cos#.
It was shown in section 3.2.5 that, for a general system of the form given in
equation (4.7), the motion in the y direction is separable and, in this case, the
chosen gauge (4.5) corresponds to free electron motion along y. Thus, we consider

Hamilton’s equations for motion only in the x and z directions:

P g}i Ag LdSL Znan sin <npx7_§lSL> (4.8)
_ OH . 2 .
bp = = = —m'w,sin O(rsinf — (z — z) cos ) + eF (4.9)
x
. OH p,
=5 = (4.10)
D, = —%—Ij = —m*w?cosf ((z — z) cos — zsinh) . (4.11)

For the simple case when 6 = 0°, equations (4.9) and (4.11) become
Py = €eF (4.12)

P, = —m*wi(z — 2) (4.13)

respectively. Integrating equation (4.12) gives
ps (t) = eFt + p, (0), (4.14)
and, substituting this into equation (4.8) and integrating again, yields

x(t) =z (0) + === 2th

Z ay, (cos (ng) — cos (n(wpt + ¢))) (4.15)

n=1

where ¢ = p,(0)dsz/h and we have substituted for the Bloch frequency, wp =
eFdsy/h. Thus, the electron performs Bloch oscillations in the x direction. To

determine the nature of motion in the z direction, we differentiate equation (4.10)
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with respect to time and substitute equation (4.11) into the result, giving
= —w(z — 2) (4.16)

which has the general form of a simple harmonic oscillator. So when 6 = 0°,
motion in the x and z directions is separable, and oscillations are due to the
periodic miniband potential in the = direction, and to the Lorentz force in the
z direction. Note that the value of z, is proportional to p, and determines the
centre position for the oscillations but not the actual dynamics.

When 6 = 90°, equation (4.9) becomes

Pe = —mwix + eF (4.17)

and p, = 0. Here, the motion along z is simply obtained by integrating equation
(4.10):
2(t) = 2(0) + p—zt (4.18)

Since p, = 0, p, must be constant and so the motion in the z direction is un-
bounded. In the x direction, differentiating equation (4.12) gives

Pr = —m*wlt, (4.19)

c

and substituting equation (4.8) into the above results in

. m weAsrdsr npydsr
Py = 5% Z nay, sin < 7 (420)

This nonlinear equation is similar in form to that of the nonlinear pendulum, and
shows that motion in the z direction is bounded when 6 = 90°.

However, the case of interest is when 0° < # < 90°. We showed in section
3.2.5 how it is possible to reduce the dynamics in this case to a single equation,
whose form is that of a driven harmonic oscillator. Thus for an electron in our

given superlattice system we have

m*w?Ag dgL sin 6 cos @
E na,

e+ wlp. = - sin (n (Kp, —wat —9)  (421)

where w| = wcosb, K = dgy tan@/h and ¢ = dgy, (p,(0) + p.(0) tan ) /h. The
Bloch frequency, wg = eF'd/h, associated with the motion of the electron through
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the superlattice potential is the frequency of the effective driving terms resulting
from the plane wave form of the dispersion relation.

The full electron dynamics may be determined by solving equation (4.21) for
p., and simultaneously solving the following equations (also obtained in section
3.2.5):

px(t) = px(o) +eFt — (pz(t) - pz(O)) tan 0 (422&)
1 o

i = ag](ff) - _ASQLSSL ; nay sin (n(Kp, — wgt — ¢))  (4.22b)

;= f; : (4.22¢)

for py, x and z. To do this, we used a 4th/5th order implementation of the
Runge-Kutta method [6,60], as described in Appendix B. Note that inclusion of
terms up to n = 10 in the dispersion relation was found to be more than sufficient
to accurately model the band structure and that initial conditions were specified
such that ¢ = 0.

We consider electrons injected at the bottom of the first miniband, with p, =
¢y = p. = 0so that the electron is at rest, and at positionz = z =0 at ¢ = 0. The
magnetic fields studied are in the range 8-14 T, and are tilted through angles of
0°-75°. Electric fields range between 0-10 MVm~!. Although experimentalists do
not produce I-V characteristics for fields as high as 10 MVm™!, it is necessary for
theorists to model dynamics up to very high fields due to the numerical techniques
employed in determining an I-V plot from a drift velocity - field (v4-F) curve.
The theoretical data set must truncate at field values higher than those required
for comparison with experiment to ensure that the predicted I-V curve remains
accurate over the entire voltage.

It was discussed previously in section 3.2.5 that the nonlinear resonance con-
dition necessary for the formation of stochastic webs is

r=22 (4.23)

Wi
where 7 is an integer. The presence of a stochastic web in the phase space provides
a mechanism by which the delocalisation of the electron may be greatly increased.
Therefore we expect to see this reflected in the extent of the electron trajectories
when the frequencies wp and w) are commensurate. Substituting for wp and wj

in equation (4.23), we find that an increase in delocalisation is predicted for fields



4.2.1 Stroboscopic Poincaré sections 75

which satisfy

rhB cos 0
F=——. 4.24
m*dgL ( )

Note that this condition will only apply when 6 # 0° and B # 0 T.

4.2.1 Stroboscopic Poincaré sections

Stroboscopic Poincaré sections that demonstrate the existence of stochastic webs
in phase space (generated via the Runge-Kutta method referred to previously)
will be shown in this section for sample NU2293, with an applied magnetic field
of B =11 T. It is sufficient to present results for only one magnetic field as it
has been previously shown that the effect of the magnetic field magnitude is only
to set the scale of the motion [6]. The actual structure of the web is unchanged
by altering the magnetic field strength. A field of 11 T was selected since good
agreement between experimental and theoretical results has been demonstrated
in previous work [6]. Also, since the appearance of the webs for both superlattice
samples is very similar, we have chosen to present Poincaré sections only for
NU2293 here, since a selection of results using sample NU2299 are featured in a
later comparison of the quantum mechanical phase space with the semiclassical
one.

For the general case considered in section 3.2.5, the radius of the rings in the
stochastic web was predicted by determining the location of the hyperbolic points
in the (P,,p,) phase space of the system (where P, = p,/w)). Applying those
solutions to sample NU2293 for B = 11 T, we can calculate the expected scale of
the stochastic webs for each tilt angle (recalling that the ring radii were calculated
for an unperturbed driven oscillator system and will therefore only approximate
those found by solving the full equations of motion). The unperturbed solutions
are presented in table 4.3.

In the case of the superlattice system, we find that the quantity p./w is equal
to the linearised momentum g, defined in equation (4.6). This is shown as follows.
First, we substitute from equation (4.11) for p,

P, m*w?cosf

o = W—H (xsinf — (z — 29) cosb). (4.25)

Recalling that w, = eB/m* and w| = w.cosf, and separating the z, term out,
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Ring radii || r =1 | r=2 ‘ r=3
6 = 30°
1 0.85 | 1.14 | 1.41
1.55 | 1.87 | 2.16
f = 45°
1 0.49 | 0.66 | 0.82
0.90 | 1.08 | 1.25
6 = 60°
1 0.28 | 0.38 | 0.47
0.52 | 0.62 | 0.72

Table 4.3: Expected radii of the stochastic web rings predicted in the NU2293
(P2/w), p-) phase space. All radii are in units of 1072 kg ms™ 1.

we have .
Z—z = eBzycosf + eB (rsinf — zcosh), (4.26)
[

and since 2y = p,/eB cos b,

P py +eB (zsinf — zcosb), (4.27)
el

which is the original definition of ¢,. Hence, the Poincaré sections presented in

this section (and the Wigner functions in later sections) will be labelled in terms

of (gy,p.). Note that because in this case ¢, = p./w), equation (3.57a) gives

p* = q; + p?. Therefore, since

q + P

H = E(p;) + —eFux, (4.28)

if H = 0 and a Poincaré section is plotted when the condition E(p,) = 0 is

satisfied, i.e. when p, = 0, it follows that

q + P’

T eFx (4.29)

and thus we can say that p is proportional to \/z. That is, the delocalisation of the

electron in real space is directly proportional to its displacement in phase space.
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For a stroboscopic Poincaré section, this relationship holds when p?/2m > AL,
so that the F(p,) term in H is negligible.

Figure 4.3 shows stroboscopic Poincaré sections (in which points are plotted
at multiples of the period 27 /w)) for the case when r = 1 and (a) # = 30°, (b)
6 = 45° and (c) 8 = 60°. We predicted in chapter 3 that the phase space should
display 2r radial filaments intersecting the rings with a 7 rotational symmetry,
and clearly for # = 30° there is good agreement with the predicted structure
despite the effects of the perturbation. The rings are at the radii calculated in
table 4.3, and the stable islands bounded by the web are clearly visible. Also, if
attention is paid to the decreasing axis scales for § = 45° and 6 = 60°, it is also
clear that the radius of the rings is decreasing as 6 is increased. However, another
result of the increasing tilt angle is that the centre of the web becomes increasingly
chaotic, as the amplitude of the plane wave in equation (4.21) increases, and the
rings begin to deform from the predictions of table 4.3. The stable orbits also
become deformed, and many are swallowed up in the central chaotic sea. In
addition, the web filaments bend away from the straight or circular paths they
follow at low tilt angles.

Figures 4.4 and 4.5 show stochastic webs for r = 2 and r = 3 respectively,
for (a) 6 = 30°, (b) # = 45° and (c) # = 60°. Both display similar trends to
those highlighted in the » = 1 case. There are 2r radial filaments once more,
as expected, and there is also rotational symmetry of 7/2 in figure 4.4 and 7/3
in figure 4.5. The central chaotic sea develops as the tilt angle becomes large,
causing the plane wave in equation (4.21) to drive the harmonic oscillator harder,

and the web filaments become progressively more distorted.

4.2.2 Semiclassical electron trajectories

Presented in this section are the real-space semiclassical trajectories predicted
for both samples when on resonance. The formation of a stochastic web in phase
space under resonant conditions leads to an increase in the degree of delocalisation
of the electron. This delocalisation should be apparent in the motion of the
electron through real space.

Figure 4.6 compares trajectories for both on and off resonance conditions for
sample NU2293, for B =11 T and 6 = 45°. The upper figure compares the case
when 7 = 1 (black) to the case when r = (1 4+ /5)/4 ~ 0.809 (red). The lower
figure shows 7 = 2 (black) and r = 7/2 & 1.57 (red). All trajectories presented
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Figure 4.3: Stroboscopic Poincaré sections calculated when B =11 T, r = 1 and
(a) 8 =30°, (b) § =45° and (c) 8 = 60° for sample NU2293.
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Figure 4.4: Stroboscopic Poincaré sections calculated when B =11 T, r = 2 and
(a) 8 =30°, (b) § =45° and (c) 8 = 60° for sample NU2293.
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Figure 4.5: Stroboscopic Poincaré sections calculated when B =11 T, r = 3 and
(a) 8 =30°, (b) § =45° and (c) 8 = 60° for sample NU2293.
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in this section are plotted over a time of 1.6 ps. It is clear in both cases that the
path of the electron when r takes integer values is much more delocalised than
when r is non-integer. Similar plots are shown in figure 4.7 for sample NU2299,
with B = 14 T and 6 = 30°. As before, the upper figure shows r = 1 (black)
and r = (1 + v/5)/4 (red), and the lower figure is 7 = 2 (black) and r = /2
(red). Once more, the increase in delocalisation that takes place when the system
is on resonance is clear to see. For both samples however, note that the extent
of the resonant trajectories decreases as the order of the resonance increases.
This is despite the fact that the web radii increase with increasing . However,
it can be understood in terms of two factors. Firstly, the web filaments which
facilitate the increased delocalisation appear to become narrower as r increases
(as can be seen by comparing figures 4.3(a), 4.4(a) and 4.5(a)). This means that
the probability of diffusion along the filaments is reduced, and so the expected
degree of delocalisation would not be as great. Intuitively, however, it makes
sense to consider the motion in terms of the Bloch oscillations contributing to
the motion in the x direction. As the resonance is increased, the electric field F'
must also increase and so the Bloch amplitude, AL, /eF, will decrease. So whilst
the electron undergoes an increase in delocalisation due to the presence of the
stochastic web, this is counteracted slightly by the localising effect of the electric
field.

Figures 4.8 and 4.9 give an overview of the effects of the strength and tilt
angle of the magnetic field upon the electron trajectories for samples NU2293
and NU2299 respectively. Trajectories are shown for » = 1, with B = 8, 11 and
14 T going down the page, and # = 30°, 45° and 60° from left to right. It is
immediately apparent that as 6 increases, the trajectories become less regular
due to the formation of the chaotic sea in phase space. In addition, as B is
increased, trajectories for a given value of § usually become more confined in the
z direction and also in the x direction. Increasing B is equivalent to increasing the
harmonic potential barrier (by increasing the steepness of the gutter potential)
that the electron is faced with as it oscillates in the z direction. And also, by our
definition of the electric field required for resonance in equation (4.24), it is clear
that increasing B also increases F', leading to a localising effect due to Bloch-type

oscillations, counteracting the resonance as discussed previously.
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Figure 4.6: Comparison of on (black) and off (red) resonance semiclassical elec-
tron trajectories in the first miniband of sample NU2293, for B = 11 T and 6 = 45°.
The upper plot shows 7 = 1 and r = (1 + /5)/4, whilst the lower plot shows r = 2
and r = /2. The electron was initially at rest in all cases.
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z/dg,

X/dg

Figure 4.7: Comparison of on (black) and off (red) resonance semiclassical elec-
tron trajectories in the first miniband of sample NU2299, for B = 14 T and 6 = 30°.
The upper plot shows r =1 and r = (1 + \/5) /4, whilst the lower plot shows r = 2
and r = 7/2. Insets show the enlarged off resonance trajectories to allow the reader
to appreciate the detail of the motion. The electron was initially at rest in all cases.
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Figure 4.8: Comparison of on resonance (r = 1) semiclassical electron trajectories
in the first miniband of sample NU2293 for varying values of B and 6. In (a) to
(c) B=8T,(d) to (f) B=11 T and (g) to (i) B = 14 T. From left to right, ¢
takes values of 30°, 45° and 60°. The electron was initially at rest in all cases.
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Figure 4.9: Comparison of on resonance (r = 1) semiclassical electron trajectories
in the first miniband of sample NU2299 for varying values of B and 6. In (a) to
(c) B=8T,(d) to (f) B=11 T and (g) to (i) B = 14 T. From left to right, ¢
takes values of 30°, 45° and 60°. The electron was initially at rest in all cases.
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4.2.3 Semiclassical drift velocity field curves

A useful way to compare the delocalisation of the electron at different field
strengths is to consider the drift velocity. Having used the Runge-Kutta method
[6,60] to determine the real space trajectories of the electron for a variety of ap-
plied field strengths, the knowledge of p,(¢) may be used to determine v, (t) = &
via equation (4.22b). Then for any given field strength, one calculates the drift

velocity vy from

vy (F) =+ / o (Bt etrd (4.30)

T

where 7 is the scattering time [1]. For the purposes of this model, a time interval
of 47 sufficiently approximates an infinite time, since calculations of the scattering
probability P(t) = e %7 /7 indicate that the probability of an electron remaining
unscattered after that time is negligible.

The scattering time is given by the following formula [39,61]:

1
2
7':< Te ) T (4.31)
Te T Ti

where 7, and 7; are the elastic and inelastic scattering times respectively. In the
case of NU2293, 7. = 21 fs and 7; = 1.5 ps [39], therefore the scattering time
is taken to be 7 = 176 fs. In NU2299, 7, = 27.78 fs and 7, = 1.26 ps and
consequently 7 = 185 fs.

From section 1.3.2, which describes the Esaki-Tsu model [1], we recall that for
0 = 0°, the expression that the drift velocity of an electron in a band described

by n terms of a Fourier series is given by

AL dsp & nwpT
= SSL2SL o[ ——2 ). 4.32
T o &\ T (nwpn)? (432)

So, substituting for wp = edF'/h, we see that the theoretical drift velocity field

curve is defined by

A,lngSL > nThedSLF
vg (F) = T;nan ot (nreds P ) (4.33)

Remember that the Esaki-Tsu model is only valid when B = 0 or # = 0°, when
the magnetic field should not affect the dynamics in the x direction.
Figures 4.10 and 4.11 show drift velocity field plots for samples NU2293 and
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Figure 4.10: Comparison of the exact Esaki-Tsu drift velocity field curve (blue
circles) and the curve (black) obtained by numerical solution of equation (4.22b)
for sample NU2293. The plots are indistinguishable. Both are calculated using

the first 10 terms in the Fourier expansion of the dispersion relation of the first
miniband.

NU2299 respectively overlaid with the Esaki-Tsu relationship specified in equa-
tion (4.33). Clearly, since the curves are indistinguishable by eye, the agreement
between numerical calculations of the semiclassical regime at 6 = 0° and the
theoretical Esaki-Tsu curve are ideal.

When the orientation of the magnetic field is no longer parallel to the electric
field the Easki-Tsu model no longer applies, and we expect to see resonant peaks
appearing in the v4-F curves at electric field strengths that meet the condition
specified in equation (4.24). Figure 4.12 shows cascade plots of the drift velocity
in NU2293 as a function of electric field for § = 0—75°, for B=8T (a), 11 T (b)
and 14 T (c). Figure 4.13 shows equivalent plots for sample NU2299. Resonances
that can be clearly identified are marked on each plot. Note that as the strength
of the magnetic field is increased, resonances may also be observed for non-integer
rational values of . The r = 1/2 resonance is highlighted in some cases to draw
attention to this.

As the tilt angle increases, higher order resonances become apparent in the
drift velocity - indeed, for sample NU2299 at = 75° and B = 14 T - it is almost

impossible to separate out the peaks due to different resonances (figure 4.13(c)).
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Figure 4.11: Comparison of the exact Esaki-Tsu drift velocity field curve (blue
circles) and the curve (black) obtained by numerical solution of equation (4.22b)
for sample NU2299. The plots are indistinguishable. Both are calculated using

the first 10 terms in the Fourier expansion of the dispersion relation of the first
miniband.

Increasing the magnetic field strength enables us to observe the resonances more
clearly. This may seem counter-intuitive since it was seen in the previous section
that increasing B led to a slight decrease in the extent of the electron delocali-
sation. However, whilst higher electric fields have a localising effect on electrons,
they also increase the frequency at which the electrons oscillate. Thus, by increas-
ing both w,. and wp, the electron is able to complete more periods of the resonant
motion before it is scattered (as is apparent in figures 4.8 and 4.9), and hence the
resulting drift velocity is increased. In addition, because increasing B causes the
resonance condition to occur at higher F', the resonant peaks in the drift velocity
are superimposed upon lower background levels and therefore appear much more
prominent than peaks occurring near the high initial Esaki-Tsu-like peak. Also
note that for a given value of B, the observed resonances tend to be stronger in
NU2299 than NU2293. This is because of the longer scattering time in NU2299,
which again allows the electron to complete more periods of delocalised motion

before scattering.
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Figure 4.12: (a) Cascade plot of the drift velocity field relationship, numerically
calculated using a semiclassical model, for sample NU2293 when 6 = 0°-75° and

B = 8 T. Similar plots are shown for (b) B =11 T and (c) B = 14 T. The locations
of a number of predicted resonance peaks are highlighted.
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Figure 4.12: (b) Sample NU2293 when B = 11 T.
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Figure 4.12: (c) Sample NU2293 when B = 14 T.
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Figure 4.13: (a) Cascade plot of the drift velocity field relationship, numerically
calculated using a semiclassical model, for sample NU2299 when 6 = 0°-75° and
B = 8 T. Similar plots are shown for (b) B =11 T and (¢) B = 14 T. The locations
of a number of predicted resonance peaks are highlighted.
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Figure 4.13: (b) Sample NU2299 when B =11 T.
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Figure 4.13: (c) Sample NU2299 when B = 14 T.
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4.3 The quantum mechanics of the system

The two-dimensional quantum mechanical Hamiltonian of an electron in a one-
dimensional superlattice with an applied bias and tilted magnetic field is
h? 0? 0?

H = _—Zm* <@ + @) + VSL (l’) + VB (117, Z) + VF (l’) (434)
where Vsy is defined by the variation of the conduction band edge in the su-
perlattice structure in question. The potential energy due to the magnetic field
is

Vi (x,2) = %m*wz (zsinf — (z — z) cos §)? (4.35)

and the potential energy due to the electric field, is
Vi (z) = —eFx. (4.36)

The electron wavefunction, W(x, z), is governed by the time-dependent Schrodinger

equation:
L 0Y(z, 2)
h—""7
ot

In order to compare the quantum regime with the semiclassical analysis in the

= HY(z,z2) (4.37)

previous section, one must solve equation (4.37) numerically. The evolution of the
wavefunction at finite times is determined via the Crank-Nicolson method [60].
Appendix C describes this powerful technique in detail. The parameter range
modelled in this section is the same as that considered in the semiclassical case.

The choice of the initial wavefunction is discussed in section 4.3.1.

4.3.1 Determination of the initial wavefunction

It became clear during preliminary investigations that the choice of the initial
wavefunction, ¥y, is important, since the observed behaviour in the quantum
mechanical regime depends strongly upon the probability distribution of the ini-
tial state. This is because the initial form of the wavefunction determines which
of the system’s minibands are populated.

For example, considering the case where 6 = 0° for simplicity, the first ap-
proach to the modelling problem was to define a simple Gaussian probability

density function as the starting point for the simulation. We chose a normalised
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initial state:

7, (x,z)z[ L exp (_(‘”—%) _(z=z) )] (4.38)

2m0,0, 202 20?2

where (., z.) are the co-ordinates of the point in real space about which the Gaus-
sian is centred (taken to be (0,0)) and o, o, represent the standard deviation of
the Gaussian in the x and z directions. The standard deviation was defined in
terms of the full-width half-maximum (FWHM), f;, of the wavefunction by the

following relationship:

where 7 may represent either x or z. The FWHM was chosen to be a multiple
of the superlattice period in the x direction, such that f, = 6ds;, whilst in the

z direction f, = 2r, where 7. is the cyclotron radius associated with the applied

re = \/%- (4.40)

This choice of initial wavefunction was based upon the desire to ensure that the

magnetic field:

position of the electron was delocalised over a number of superlattice periods so
that the periodic potential induces band-like dynamics.

The dynamics resulting from an initial wavefunction of the form (4.38) leads
to the population of multiple minibands. We find that although the initial
wavepacket is a superposition of states mainly from the first miniband, a small
fraction of the admixture involves states in a higher miniband. Figures 4.14 and
4.15 illustrate this for superlattices NU2293 and NU2299 subjected to a low bias.
The plots show the change in the probability density profile |¥ (z, z = 0,t)|* along
the z direction as a function of time. Only the x direction is shown for clarity,
since motion in the z direction is not significant when 6 = 0°. It is clear that the
wavefunction splits into two unequal fractions which oscillate with the same fre-
quency but different amplitudes. Note that in the colourmap for figures 4.14 and
4.15, red indicates areas of high probability density, going through yellow, green
and blue to white for zero probability density. This colourmap will be applied
throughout this thesis and its scale is displayed in Appendix D should the reader
wish to refer to it for further information.

Referring back to section 1.2.2, we recall that the amplitude Ag and period
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T of Bloch oscillations in band 7 are given by the following equations:

Ap = s 4.41
B el ( )
h
= . 4.42
B engL ( )

Therefore, the time period of the oscillations is unaffected by which miniband
the wavefunction is populating, whilst the amplitudes of oscillation for different

minibands are related by the ratio:

Ap, _ A5y (4.43)

Ap, A%,
where a and b represent the index of the miniband in question. Thus the data
in table 4.1 predicts that for NU2293, oscillations in the second miniband will be
approximately 5 times larger in amplitude than oscillations in the first miniband,
whilst oscillations in the third miniband will be around 11 times larger than in
miniband one. Similarly, the data presented in table 4.2 predicts amplitudes of
approximately 4 and 9 times the amplitude of first miniband oscillations for the
second and third minibands in NU2299 respectively.

Bearing in mind these values, it is clear from figures 4.14 and 4.15 that the
majority of the wavefunction is indeed residing in the first miniband whilst a small
but significant component appears to be in the third miniband. This confirms
that taking a simple Gaussian as the form of the initial wavefunction populated
both the first and third minibands. Since both fractions of the wavepacket are
at the same point in k,-space, and both bands have the same shape, both Bloch
oscillate in the same manner. However the amplitude of the Bloch oscillations
is governed by the width of the miniband, so the greater width of the third
miniband leads to a small fraction of the wavepacket performing oscillations with
large amplitude in comparison to the main body. The wavepacket dynamics in
cases of this nature have been discussed in more detail by Hartmann et al. [62].

The reader may find it surprising that the wavefunction populates the first
and third minibands rather than the first and second, yet a few moments thought
should convince one that this is reasonable. Firstly, there is the simple evidence
that the breakaway fraction is oscillating in the same sense as the first miniband
fraction. The form of the dispersion relation depicted in figure 1.3 (in particular

the gradient, which determines the electron’s direction of motion) shows that any
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Figure 4.14: Surface plot showing the variation in the probability density function
as a function of time, in sample NU2293 when 6 = 0°. The initial state of the
electron is represented by a Gaussian wavefunction, for which the electron is at
rest. The vertical axis shows the changing cross-section of the probability density
(along z = 0); time is represented on the horizontal axis.
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Figure 4.15: Surface plot showing the variation in the probability density function
as a function of time, in sample NU2299 when 6 = 0°. The initial state of the
electron is represented by a Gaussian wavefunction, for which the electron is at
rest. The vertical axis shows the changing cross-section of the probability density
(along z = 0); time is represented on the horizontal axis.
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fragments populating the second miniband should Bloch oscillate in the opposite
sense to that of the first miniband, whilst fragments in the third miniband should
indeed follow the component in the first miniband. However, it is also intuitive
to realise that a physically reasonable wavepacket for an electron in this system
would be spatially modulated, with peaks in the regions of the superlattice wells,
and troughs in the barrier regions. In defining a Gaussian probability density
function across the system, we have ignored this tendency of the electron to
reside in low energy regions of the potential. We see from figure 4.2 that for
sample NU2299, the height of the potential barriers coincides with the energy of
the third miniband, therefore it is logical that in forcing the electron to reside in
such high energy regions we cause a fraction of the wavefunction to populate the
third miniband. In NU2293, the barrier height coincides with the energy of the
fourth miniband. But the barrier is a smaller fraction of the unit cell width than in
NU2299 and its tendency to increase the electron energy is partially compensated
by the InAs notch layer. Consequently, the effect of the barrier seems to be to
populate the third miniband, just as in NU2293.

In order to ensure that the quantum dynamics is truly analagous to the semi-
classical case, an alternative definition of the initial wavefunction had to be found
to avoid the issue of populating higher minibands. Populating only the first mini-
band would be directly comparable to the semiclassical model, which considers
just the first miniband, and would also make the two dimensional wavefunction
dynamics in a tilted magnetic field easier to interpret than if the wavefunction
contains an admixture of Bloch states from different minibands, which evolves in
a complex way. In addition, it would then be clear that if fractions were observed
to be moving in higher minibands, this must be a consequence of tunnelling,
making such phenomena easier to identify.

The new initial wavefunction was defined as a product of two terms: one, ¥y,
a function of x and the other, U¥, a function of z. The function ¥§ was written
in terms of Bloch functions, ®} (z), where k, specifies the wavenumber and n the
miniband index to which a given Bloch state corresponds. Since Bloch functions
are completely delocalised, they are not practical to work with directly, so ¥
was defined as a weighted sum over all states in the first miniband:

+m/dst

oY = dsi =1 ()¢ (k) dky. (4.44)
2 —m/dsL ‘
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Figure 4.16: Surface plot illustrating the probability density function at £ = 0
used in calculations of the quantum mechanical behaviour of an electron in sample
NU2293. In this plot, 8 = 30°, and as 6 varies so does the orientation of the initial
state.

In equation (4.44) ((k,) is the weighting function, of the form
C(k) = Ce™ 2 (4.45)

where A and C' are constants that determine the spread and normalise the func-
tion respectively. The function ¥Z is a Gaussian with o, as defined previously.
Here, however, we consider the case when 6 # 0°. In this situation, we wish the
wavefunction to be tilted with the magnetic field, so we write the Gaussian in
terms of the tilted axes coordinates which were defined earlier in equations (3.23)

and (3.24). The wavefunction is centred on z; = 0, and is written as

1 22
v = Uy -t . 4.46
0 (z,2) o X oo exp ( 202) (4.46)
Examples of the initial wavefunction probability densities used for studying each
sample are displayed as surface plots in figures 4.16 and 4.17. For # = 0°, this

new initial state Bloch oscillates in a single band.
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Figure 4.17: Surface plot illustrating the probability density function at £ = 0
used in calculations of the quantum mechanical behaviour of an electron in sample
NU2299. In this plot, 8 = 30°, and as 6 varies so does the orientation of the initial
state.

4.3.2 Quantum mechanical electron trajectories

To determine the quantum mechanical trajectory of the electron when subjected
to any given combination of fields, at discrete times we calculate the expectation

values of position in both the x and z directions:

[, ravdedz
(z) = 77— (4.47a)
[ 2 v Wdadz
* U2 Wdzd
J oo W ebdadz (4.47h)

(2) = [ v Udedz

Although in theory the denominator is not required in equations (4.47a) and
(4.47b) since the wavefunction is initially normalised to unity, it is included in
calculations to guard against inaccuracies that might be caused by numerical
errors at the boundary, where tiny fractions of the wavefunction may “leak” away
and be lost from the simulation. To minimise the possibility of such leakage, the
extent of each quantum mechanical simulation is carefully calculated from the
extent of the corresponding semiclassical trajectory, with a further significant

margin of error allowed as a precaution.
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Figure 4.18 illustrates the results of a full quantum mechanical simulation of
the electron dynamics in sample NU2293 for conditions B = 11 T, # = 30° and
r = (1++/5)/4. Figure 4.18(a) is an enlargement of a plot of mean wavefunction
position, (x) versus (z). It is clear that this off resonance trajectory is bounded,
and that the path is simply traversed backwards and forwards repeatedly. Figures
4.18(b) to (f) are all snapshots of the probability density function at various times
during the simulation, viewed as a two dimensional surface plot. These confirm
that the mean position of the wavefunction oscillates back and forth along the
trajectory, and also demonstrate that the wavefunction remains largely unchanged
by the motion. There are no obvious changes in the structure of the wavefunction,
although it does show a tendency to spread along the gutter potential created
by the magnetic field. This is only very slight though, as comparison of figures
4.18(b) and 4.18(e) illustrates, where the expected positions are very close. The
reader should note that although the probability density function is not shown in
its entirety, at no point does it come close to the edges of the simulation “box”.
The diffuse nature of the wavefunction (the need for which is addressed in the
previous section) simply makes it unfeasible to show the entire extent of the plot
whilst retaining reasonable resolution of the path it is following. Note also that
to avoid confusion by displaying too many details in each figure, the comparison
between mean quantum mechanical trajectories and the semiclassical paths will
be considered later in section 4.3.4.

Figure 4.19 shows the quantum mechanical trajectory (enlarged in 4.19(a))
and probability density function for sample NU2293 for the r = 1 resonance under
an applied field of B = 11 T at an angle of § = 30°. Again, it is impossible to
show the entire probability density whilst also conveying a sense of its movement
through real space because it is so diffuse. If the reader takes a moment to
compare figures 4.19(b) and 4.19(i), it should be apparent that the scale necessary
to display the full extent of both these probability densities on the same axes
would fail to show the detail of the quantum mechanical trajectory.

It is clear that the quantum mechanical trajectory is of the same form as
the r = 1 semiclassical trajectories highlighted in the left-hand (6 = 30°) col-
umn of figure 4.8, and that furthermore, it is much greater in extent than the
quantum mechanical path in the off resonance case shown in figure 4.18. The
probability density clearly follows the trajectory, oscillating in the z direction as
it progresses in the x direction, without undergoing any significant changes in

structure, other than a slight tendency of the wavefunction to become elongated
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Figure 4.18: Snapshots of the time-evolution of the electron probability distri-
bution in sample NU2293, for r = (1 + +v/5)/4, B = 11 T and 6 = 30°. In (a)
the mean trajectory of the electron wavefunction is enlarged. Surface plots of the
probability distribution at times (b) ¢ = 0 fs, (¢) t = 400 fs, (d) ¢t = 800 fs, (e)
t = 1200 fs and (f) ¢ = 1600 fs are shown. The mean trajectory is overlaid in black,
whilst the magenta cross marks the point on the trajectory corresponding to the
current frame.
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Figure 4.18: Continued.
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along the magnetic gutter potential.

The reader may be concerned that the mean quantum mechanical position
(marked by a magenta cross) is not always coincident with the peak in probabil-
ity density, for example in figure 4.19(g). The maximum probability density is
highlighted with a dotted arrow, and each of the leading peaks has been paired
up with the corresponding trailing peak (as shown by the solid arrows). In this
case, the spreading appears to be more pronounced in the negative x direction,
and the mean position is to the left of the maximum. However, the opposite is
true in figure 4.19(i): the mean position is to the right of the maximum, and the
intensity of the leading peaks is greater than that of corresponding trailing peaks.
This shifting of the maximum around the mean position is due simply to the na-
ture of the quantum transport through the superlattice barriers. Note that in
every frame in figure 4.19, the peaks are always located along the same positions
in the = direction - that is, the wavepacket always localises away from the super-
lattice barriers, in the niche and well regions of the superlattice potential. (Each
niche is centred upon ndgy, where n is an integer.) Therefore in order to progress
in the z direction, the probability shows a gradual transfer of intensity between
adjacent peaks, without the peaks ever actually being physically displaced to the
right. Thus there is a shift of the mean position along the superlattice, across
the barriers, and whilst the mean position is moving across a barrier (as is the
case in figure 4.19(g)), it can never be coincident with a peak in the probability
density function. When crossing the niches in the superlattice potential however,
the maximum and mean position are able to coincide (figure 4.19(h)).

Figure 4.20 shows the r = 2 resonance of sample NU2293 for B = 11 T and
0 = 45°. In this case, whilst the general features of the quantum mechanical
trajectory in figure 4.20(a) are similar to those seen in the semiclassical case
(inset) - the trajectory is much longer in extent that in the off resonance case,
and there is a comparable structure to the shape of the path - only the first “figure
of eight” loop in the trajectory is a good match. Study of the later frames of the
evolution of the probability density offer the key to this mismatch. It is clear -
and this is particularly visible in figures 4.20(e) and (f) - that the wavefunction
has split into two roughly equal parts oscillating in opposing directions (in the z
direction). These meet, forming an interference pattern as they pass through one
another (as seen in figures 4.20(d) and (g)), before emerging relatively intact (as
seen in figures 4.20(e), (f) and (i)).

This effect is caused by a combination of two factors. Firstly, as explained
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Figure 4.19: Snapshots of the time-evolution of the electron probability distri-
bution in sample NU2293, for r = 1, B = 11 T and # = 30°. In (a) the mean
trajectory of the electron wavefunction is enlarged. Surface plots of the probability
distribution at times (b) ¢ = 0 fs, (c¢) ¢ = 400 fs, (d) ¢ = 600 fs, (e) ¢t = 800 fs, (f)
t = 1000 fs, (g) t = 1200 fs, (h) ¢ = 1400 fs and (i) ¢ = 1600 fs are shown. The
mean trajectory is overlaid in black, whilst the magenta cross marks the electron’s
position on the trajectory at the time corresponding to the current frame.
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Figure 4.19: Continued.
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Figure 4.19: Continued.
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Figure 4.20: Snapshots of the time-evolution of the electron probability distri-
bution in sample NU2293, for r = 2, B = 11 T and # = 45°. In (a) the mean
trajectory of the electron wavefunction is enlarged. Surface plots of the probability
distribution at times (b) ¢ = 0 fs, (c¢) ¢ = 400 fs, (d) ¢ = 600 fs, (e) ¢t = 800 fs, (f)
t = 1000 fs, (g) t = 1200 fs, (h) ¢ = 1400 fs and (i) ¢ = 1600 fs are shown. The
mean trajectory is overlaid in black, whilst the magenta cross marks the electron’s
position on the trajectory at the time corresponding to the current frame.



4.3.2 Quantum mechanical electron trajectories

108

12

10

(d) t=600fs=3.41

0}

Fe) t"800fs 451:. .

Figure 4.20: Continued.
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Figure 4.20: Continued.
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below, it is due to the symmetry of the stochastic web for the case when r = 2.
Secondly, it is also partially due to the diffuse nature of a wavefunction, which
encompasses a spread of position and momentum values, in contrast to a semiclas-
sical trajectory corresponding to a single initial condition. If the reader considers
the Poincaré section corresponding to this system, shown in figure 4.21(a), it can
be seen that there are four filaments of the web extending from the centre of
phase space. In the semiclassical case, where the position and momentum may
be explicitly defined, the initial motion occurs along the positive x and z direc-
tions and the electron traverses a single radial filament outwards from the centre
of phase space leading to the path displayed in figure 4.22. The electric field
forces the electron motion to begin in the positive x direction, and rearranging

the semiclassical Hamiltonian we can write

() = % <E(pz) + (M> _ H) | (4.48)

2m*

Since both g, and p, are squared, any combination of these can generate a positive
displacement in the x direction, depending only on the values of E(p,) and H. If

we then also rearrange the magnetic gauge chosen earlier to give

(1) = ﬁ <—deg) +a(t) sin9> , (4.49)

we can see that z depends upon the sign of ¢,. When r = 1 (figure 4.21(b)),
the symmetry of the web means that there is only one way in which ¢, can vary
after an electron is launched at the web centre, (g,,p,) = (0,0), and that is to
decrease. When ¢, decreases (i.e. becomes negative), equation (4.49) dictates
that z must increase (since x increases initially due to F'). Thus if z is increasing,
the electron is moving with positive p,, and hence the only radial filament it can
travel along is vertically upwards from the centre, marked by the solid blue arrow
in figure 4.21(b). The electron loops around the inner cells of the web, along the
first ring-shaped filament and then returns to the centre of phase space along the
dotted arrow. The sense in which it traverses the » = 1 filament is always the
same, as indicated by the arrows. When r = 2, the semiclassical electron starting
from rest initially travels along the filament shown by the blue arrow in figure
4.21(a), so that g, becomes more positive, and p, becomes more negative. The
reason for this can be seen from figure 4.23, where 2, z, p, and g, are plotted

as a function of time. The black curves relate to the original semiclassical initial
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conditions, where both position and momentum are zero. In 4.23(c) and (d),
blue circles are marked on the plots of momentum (at times that are multiples
of 27 /wy) to indicate which values of p, and g, are plotted on the stroboscopic
Poincaré section, and it is clear that these do indeed correspond to the blue arrow
in figure 4.21(a) (i.e. ¢, > 0, p, <0).

In the quantum mechanical regime, the initial conditions cannot be exactly
specified, so the diffuse nature of the wavefunction means that a range of points
in phase space are occupied initially, as illustrated by the magenta ring in figure
4.21(a). When r = 2, the range of initial conditions encompassed in the quantum
mechanical case means that g, can increase or decrease as ¢ increases, correspond-
ing to motion in either the negative or positive z direction respectively, whilst still
moving in the positive x direction. When ¢, decreases, the result is the same as in
the semiclassical case, however when g, increases, z decreases, and consequently
p. is negative (indicated by the magenta arrow in figure 4.21(a)). True to the
nature of quantum mechanics, the wavefunction follows both possibilities simulta-
neously, with two fractions travelling out through phase space along the two radial
filaments highlighted by arrows in figure 4.21(a), and returning via the remain-
ing filaments. Another set of semiclassical plots are shown in red in figure 4.23,
which start very close to the centre of phase space ((g,,p.) = (0,0.08 x 1072%)),
and illustrate one of the possible alternative trajectories available in the quan-
tum mechanical regime. In figure 4.23(a), the electron is clearly oscillating in the
opposite sense to the case when the initial conditions are zero, deviating by as
much as 10dg;, at times of order 1400 fs (corresponding to figure 4.20(h)), yet
4.23(b) shows that the trajectories do not deviate by more than ~ 2dg;, in the
x direction. The magenta crosses in figures 4.23(c) and 4.23(d) confirm that this
alternative motion does indeed equate to following the magenta arrow in figure
4.21(a) through phase space.

The result of such dual motion is that the expectation value of the position
reflects the oscillatory nature of the motion of both fractions of the wavepacket,
but, since the two fractions are roughly equal, the full amplitudes of the opposing
oscillations cancel each other out in the mean position. So the amplitude of
the resultant path is restricted to the spread of the probability density function
when both fractions meet and interfere, as seen in figures 4.20(d) and 4.20(g).
Figure 4.22 presents the probability density at time ¢ = 800 fs (as shown in
figure 4.20(e)) with the corresponding semiclassical path overlaid, demonstrating

visually that there is clearly a good match of both the maximum z-amplitude
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Figure 4.21: Stroboscopic Poincaré sections calculated when B = 11 T for sample
NU2293. (a) corresponds to r = 2 and # = 45°. The magenta circle represents the
multiple initial conditions occupied by a quantum mechanical wavepacket. The blue
arrow is the filament traversed by the semiclassical electron, starting from rest, and
the magenta arrow is the alternative direction which is followed simultaneously in
the quantum mechanical case. (b) corresponds tor =1 and # = 30°. The blue cross
and solid arrow mark the starting point of the semiclassical electron trajectory and
its initial direction in phase space. The dotted arrow marks the return trajectory
of the electron.
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Figure 4.22: Snapshot of the time-evolution of the electron probability distribu-
tion in sample NU2293, for r =2, B =11 T and 6 = 45°, at time ¢ = 800 fs (as in
figure 4.20(e)) with the semiclassical path overlaid.

and spatial extent along the = direction between the two.

Figure 4.24 depicts the r = 1 resonance of sample NU2299 when B = 14 T
and 0 = 30°. Note that whilst fields of B = 11 T tend to be presented for sample
NU2293 since the best match between experimental and theoretical results has
previously been observed in this regime, fields of B = 14 T tend to be studied for
sample NU2299 for similar reasons. (As has been discussed previously, adjusting
the strength of the magnetic field should, in theory, serve only to alter the scale
of the motion.)

Comparison of the quantum mechanical trajectory in figure 4.24(a) with the
corresponding semiclassical orbit in figure 4.25 shows that the nature of the path
is broadly similar, although the extent of both quantum and semiclassical tra-
jectories differs. Figure 4.25 shows the probability density at time ¢t = 1334 fs,
illustrating that the motion of the probability density function still follows the
semiclassical path in a clearly recognisable way, despite the differing extent of the
paths. As stated previously, we will make a detailed comparison between these
paths in section 4.3.4.

Considering the sequence of snapshots in figure 4.24, we see that again, as
observed in NU2293, the maximum probability density oscillates about the mean
position (marked by the dotted arrow and magenta cross respectively in figure
4.24(g)). It can also be seen that for ¢ 2 1000 fs (figures 4.24(g), (h) and (i)) the
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Figure 4.23: Semiclassical plots calculated for different initial conditions when
B =11T, r = 2 and 6 = 45° for sample NU2293. Black curves correspond to
the original semiclassical case when the initial position and momentum are set to
zero. Red curves correspond to an alternative semiclassical trajectory whose initial
conditions in real space are encompassed by the quantum mechanical wavepacket,
and in phase space lie within the magenta circle in figure 4.21(a). In (a), (b), (c)
and (d), values of z, z, p, and ¢, respectively are plotted as a function of time.
In (c) and (d), values of p, and ¢, are highlighted at times which are plotted on
the stroboscopic Poincaré section. Blue circles relate to the blue arrow in figure
4.21(a), and similarly, magenta crosses relate to the magenta arrow.
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wavefunction develops some fragmentation in the z direction as time progresses.
This is probably due to the increased B field in the NU2299 studies, since in-
creasing B leads to an increase in the speed of motion in the z direction. This
is because the cyclotron radius is proportional to 1/ VB, whilst the time period
for cyclotron oscillations is proportional to 1/B, therefore the mean speed of the
electron is proportional to v/B. This combination of increasing the speed of the
motion whilst decreasing the distance travelled (in the z direction) means that the
leading edge (along z) of the diffuse wavefunction has already changed direction
before the trailing edge has reached the turning point, and thus the wavefunction
interferes with itself. If we compare figure 4.24(g) to figure 4.24(b) we see that
the overall spread of the wavepacket in the z direction has only increased by a
very small amount in figure 4.24(g) despite its seemingly fragmented nature.
Figure 4.26 shows the r = 2 resonance of sample NU2299 at B = 14 T,
6 = 45°. We see from figures 4.26(c) and (d) that the wavefunction splits into
two fractions that counter-oscillate in the z direction due to the doubling in the
number of radial filaments in phase space, as was the case for the r = 2 resonance
in NU2293. However, not only is an interference pattern produced when these two
fractions pass through one another in the central region of the trajectory (con-
sidering the z direction), but interference patterns also develop at the extremes
of the z direction as the rapid change in direction of the diffuse fractions leads to
self-interference (as discussed previously for NU2299 when r = 1 and 6 = 30°).
Both of these factors lead to the highly fragmented appearance of the probabil-
ity density in the z direction seen in figures 4.26(e) and (f). Consequently, the
amplitude of oscillation observed in the mean position is very low, and at early
times is roughly equal to the spread of the probability density function (figure
4.26(b)). Also, the amplitude (in the z direction) of the oscillating wavepacket
fractions coincides with the amplitude of the semiclassical path (figure 4.27(a)).
Apart from such effects, however, it is immediately obvious that at later times
2 1000 fs, such as in figure 4.26(f), the almost linear form of the trajectory fol-
lowed by the expectation value of the wavepacket’s position does not have the
same form as any of the resonant trajectories considered thus far. Whereas previ-
ously the mean position has been located near to the maximum in the probability
density, in this case the mean position (magenta crosses in figure 4.26) is located
much further along the = direction than the maximum probability density (ar-
rowed in figure 4.26(f)). The major peaks in the probability density remain in

the region one would expect for an » = 2 resonance in the first miniband, yet
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Figure 4.24: Snapshots of the time-evolution of the electron probability distri-
bution in sample NU2299, for r = 1, B = 14 T and # = 30°. In (a) the mean
trajectory of the electron wavefunction is enlarged. Surface plots of the probability
distribution at times (b) ¢ = 0 fs, (¢) ¢t = 267 fs, (d) ¢t = 533 fs, (e) t = 667 fs, ()
t =800 fs, (g) t = 1067 fs, (h) ¢t = 1334 fs and (i) ¢ = 1467 fs are shown. The
mean trajectory is overlaid in black, whilst the magenta cross marks the electron’s
position on the trajectory at the time corresponding to the current frame.



4.3.2 Quantum mechanical electron trajectories 117

6. b
(f) t=800fs=4.3c

Figure 4.24: Continued.
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Figure 4.24: Continued.
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Figure 4.25: Snapshot of the time-evolution of the electron probability distribu-
tion in sample NU2299, for r = 1, B =14 T and 6 = 30°, at time ¢ = 1334 fs (as
in figure 4.24(h)) with the semiclassical path, starting from rest, overlaid.

the wavefunction is smeared out enormously along the gutter in the positive z
direction. We find that this is due to the ability of the wavefunction to tunnel
into higher minibands (both second and third). In this case, due to the coinci-
dence of the third band in NU2299 with the top of the potential barriers, the
electron becomes effectively free. Tunnelling between minibands in this way will
be discussed in greater detail in section 4.3.4. This leads to the straighter portion
of the quantum mechanical trajectory (e.g. for z/dg; 2 4 in figure 4.26(f)) which
corresponds to the linear motion of a free electron under the action of F and
B). Figure 4.27(b) shows the probability density at ¢ = 1600 fs upon axes that
extend 3 times further in the positive x and z directions than in figure 4.26 in
order to illustrate the extent of this dramatic delocalisation along the direction
of the magnetic gutter potential. Some fragments of the wavepacket are mov-
ing with constant acceleration due to the electric field, without the hindering
effects of the superlattice potential. However, it can be seen by comparing figures
4.26(f), 4.27(a) and 4.27(b), that the peaks in the wavefunction (light blue in fig-
ure 4.26(f)) tend to be confined within the extent of the semiclassical trajectory
(x < 3dgy, in figure 4.27(a)).
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Figure 4.26: Snapshots of the time-evolution of the electron probability distri-
bution in sample NU2299, for r = 2, B = 14 T and § = 45°. In (a) the mean
trajectory of the electron wavefunction is enlarged. Surface plots of the probability
distribution at times (b) t = 0 fs, (c¢) t = 267 fs, (d) t = 533 fs, (e) ¢ = 800 fs and (f)
t = 1067 fs are shown. The mean trajectory is overlaid in black, whilst the magenta
cross marks the electron’s position on the trajectory at the time corresponding to
the current frame.
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Figure 4.26: Continued.
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Figure 4.27: Snapshots of the time-evolution of the electron probability distri-
bution in sample NU2299, for »r = 2, B = 14 T and 6 = 45°, at time ¢t = 1600 fs.
(a) The semiclassical path is overlaid. (b) The = and z axes extend 3 times further
than the axes in figure 4.26, which are indicated by the dashed box. The mean
quantum mechanical path is overlaid, and the magenta cross marks the expectation
value of the electron position at this time.
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4.3.3 Wigner functions of the system

As discussed in section 3.3.1, the quantum mechanical analogue of a Poincaré
section is the Wigner function. For the system in question in this chapter, the

Wigner function is given by

1 [ [ A A A A
- * T ZV _rx 2
Wz, z, sy 02) hZ/_OO/_OO\IJ <x+ 2,z+ 2) <:1: 52 2)

e~ Perelhe=ipAs /by d) (4.50)

Since the Wigner functions are intended to correspond to Poincaré sections in
(qy, P2), to calculate them we begin by specifying values for ¢, (¢) and p, (¢) which
define a unique point in the phase space plot at some given time ¢. The other
variables of the system can then be determined and the Wigner function at this
unique point calculated. We now specify how these variables are determined.
Firstly, p, (t) is calculated using the following equation (determined earlier

and restated here for convenience):

px(t) = pa:(O) +ef't— (pz(t) - pz(0)> tan 6 (4'51)

where all terms are known except p,(t). Secondly, z () can be found by rear-

ranging the semiclassical Hamiltonian to give:

2 (t) = % <E(px) + <M> _ H) (4.52)

2m*

where the value of H is determined by calculating the expectation value of the

total energy of the wavefunction at ¢t = 0, (E):

(E) = /_ Z /_ Z U* HUdxdz. (4.53)

Finally, z (¢) is given by

1 qy (t) .
t) = —— | ——== t 0 4.54
20 = 5 (-2 v ysino) (4.54)
which is again a simple rearrangement of equation (4.6).

Generating a Wigner distribution in this way leads to a snapshot of the prob-

ability distribution in phase space at time t. If such Wigner functions are gen-
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erated at times separated by 27 /wj (in the same way that points were added to
the Poincaré sections by sampling at regularly spaced times) the set of Wigner
functions (or their time average) should reveal some semblance of the web in the
quantum mechanical phase space. In the following figures, we plot the normalised
modulus, |V, since the sign of the function in this case is irrelevant [6].

Figure 4.28 shows the quantum mechanical phase space of NU2299 when
r =1, B =14 T and # = 30°, with the corresponding semiclassical Poincaré
section overlaid. The corresponding real space evolution of the wavefunction was
previously shown in figure 4.24. Figure 4.28(a) is the initial distribution of the
wavefunction in momentum space, and figures 4.28(b), (c¢) and (d) are sampled
at times t = 27 /wj|, 47 /w)| and 67 /w| respectively. The parameters are the same
as for figure 4.24 but the timescales are necessarily different. It is clear from
figure 4.28(a) that the bulk of the wavefunction initially occupies stable regions
of the phase space, and this is reflected in the later figures, which show that the
Wigner function of the system spreads out in phase space but remains bounded
by the first ring of the stochastic web. Note that the Wigner function does indeed
appear to travel along the vertical filament (figure 4.28(b)), as predicted when
r = 1 in the previous section, before looping around a cell of the web towards the
“return” section of the filament (figures 4.28(c) and (d)).

Similarly, figures 4.29 and 4.30 show the same system but for tilt angles of
0 = 45° and 6 = 60° respectively. The corresponding real space wavefunctions are
not presented since, due to the vast parameter space considered in this chapter,
we are limited to a selection of the most interesting results. Again, the Wigner
function remains bounded by the first ring of the web. Also notice how in figure
4.30, since the majority of the initial wavefunction occupies the chaotic sea in
phase space, the Wigner function tends to avoid the stable islands within that
sea.

Figures 4.31 and 4.32 relate to simulations where the initial wavefunction was
defined such that the initial Wigner functions were located away from the radial
filaments of the stochastic web. This was done with the hope of observing the
Wigner function traversing the ring and then diffusing along a radial filament of
the web. The r = 1 resonance of NU2299 at B = 14 T, 6§ = 30° was chosen for
this test since the phase space is less complex than for higher order resonances or
tilt angles. The approximate position and extent of the initial Wigner functions
are shown by a magenta ring in figures 4.31(a) and 4.32(a). Figures 4.31(a), (b),
(c) and (d) were sampled at times ¢ = 47 /w), 67/w, 87/w and 187 /w;. In
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Figure 4.28: Surface plots of the modulus of the Wigner function, calculated
at stroboscopic times during the evolution of the electron wavefunction in sample
NU2299 forr =1, B = 14 T and 6§ = 30°. Corresponding semiclassical stroboscopic

Poincaré sections are overlaid.
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Figure 4.29: Surface plots of the modulus of the Wigner function, calculated
at stroboscopic times during the evolution of the electron wavefunction in sample
NU2299 forr =1, B = 14 T and 6§ = 45°. Corresponding semiclassical stroboscopic

Poincaré sections are overlaid.
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Figure 4.30: Surface plots of the modulus of the Wigner function, calculated
at stroboscopic times during the evolution of the electron wavefunction in sample
NU2299 forr =1, B = 14 T and § = 60°. Corresponding semiclassical stroboscopic
Poincaré sections are overlaid.
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this case, a large fraction of the Wigner function can be seen to diffuse outwards
along the almost vertical radial web filament in 4.31(a) and (b), leaving behind
any fractions that initially occupied areas of the stable central phase space within
the first ring in 4.31(c). These fractions remain bounded indefinitely, as shown
in 4.31(d).

Figures 4.32(a)-(f) were sampled at times t = 27 /w), 6m/w), 87/w, t =
107 /wy, 167 /w) and 207 /w). In this case, the Wigner function can be seen
spreading around the first ring of the web in 4.32(a), and up the web filament in
4.32(b). However, rather than continue diffusing along the filament as in figure
4.31, the Wigner function is observed to continue orbiting both the first and
second rings of the stochastic web, looping around the D-shaped cells of the web,
as indicated by the “hotspots” of light blue and red. Although there are fractions
of the Wigner function that occupy stable orbits (shown by the darker blue areas
that are localised within the cells of the web), it is clear in 4.32(c), (e) and (f) that
there are regions of high density localised around the rings of the semiclassical
Poincaré section.

It was originally intended to calculate time-averaged Wigner functions. How-
ever, Gardiner [46] and Korsch [47] recommend that a minimum of approximately
100 periods be sampled in order to generate a time-averaged Wigner function.
This presents difficulties for the superlattice systems for two reasons. Firstly, due
to the discontinuities in the superlattice potential, it would take months of com-
puting time to model the system with sufficient accuracy. Only ten stroboscopic
periods were calculated for each set of results presented in this section, and since
the period is given by

2m 2mm*

- = 4.55
W) eBcosf ( )

this equates to periods of 198 fs, 242 fs and 342 fs for figures 4.28 to 4.30 respec-
tively. Given that the trajectories presented previously took place over times of
just 1600 fs, it is clear that predicting the evolution of the wavefunctions needed
for just 10 stroboscopic Wigner functions is a substantial challenge, whilst cal-
culation of 100 periods is simply not feasible with currently available computing
speeds. Indeed, only Wigner functions of sample NU2299 are presented here
for that reason: the times required to model the more complicated superlattice
potential of the NU2293 sample are unfeasibly long.

Furthermore, and more crucially, the very nature of the phase space we wish

to investigate, namely the stochastic web, is unbounded. Thus, it is implicit
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Figure 4.31: Surface plots of the modulus of the Wigner function, calculated
at stroboscopic times during the evolution of the electron wavefunction in sample
NU2299 forr =1, B = 14 T and 6§ = 30°. Corresponding semiclassical stroboscopic
Poincaré sections are overlaid. The initial Wigner function of the system was
localised within the area bounded by the magenta curve in (a), close to the first
ring of the semiclassical Poincaré section, and away from the web filaments.
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Figure 4.32: Surface plots of the modulus of the Wigner function, calculated
at stroboscopic times during the evolution of the electron wavefunction in sample
NU2299 forr =1, B = 14 T and 6§ = 30°. Corresponding semiclassical stroboscopic
Poincaré sections are overlaid. The initial Wigner function of the system was
localised within the area bounded by the magenta curve in (a), close to the first
ring of the semiclassical Poincaré section, and away from the web filaments.
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that the longer the time simulated, the further the electron would be expected to
diffuse along the web in that time, whereas an effective averaging technique relies
upon the motion being periodic and repetitive. In particular, because Wigner
functions are so time-consuming to calculate numerically, only a limited region
of phase space may be examined, and by late times the electron has diffused
beyond this region. Also, the nature of quantum mechanics means that it is
impossible to define some initial wavepacket that lies either only on the web or
entirely within the bounded cells - Heisenberg’s uncertainty principle forbids such
explicit knowledge of a system.

We have, however, shown that the evolution of the Wigner function in phase
space corresponds closely to the motion of the quantum mechanical wavepacket
calculated for when 6 = 30°, B = 14 T and r = 1 for NU2299. Note that
only the r = 1 regime has been considered, where interminiband tunnelling is
negligible, so that the single miniband Hamiltonian and Poincaré sections apply.
We have also demonstrated that these new and interesting features of the Wigner
function agree well with the Poincaré sections predicted at various tilt angles in

the semiclassical case.

4.3.4 Quantum calculations of the drift velocity

In the quantum regime, the drift velocity of the electron is calculated by differ-

entiating (x) with respect to time to determine (v,), and then using

vy = /O " la (1) P (1) dt. (4.56)

where P (t)dt is the probability that an electron is scattered in time d¢. If the
Esaki-Tsu model is applied, P (t) is given by

1 —t/T

P(t)=—e"", (4.57)

T
where the scattering times for each sample were determined in section 4.2.3.
Figure 4.33 shows the drift velocity field curves for sample NU2293, calculated
from the quantum mechanical model of the electron motion for B =8 T (a), 11
T (b) and 14 T (c) respectively. A cascade of plots for angles § = 0—75° is shown
for each magnetic field strength. The positions of resonances due to stochastic

web formation in phase space are highlighted. Visual comparison of these plots
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Figure 4.33: (a) Cascade plot of the drift velocity versus electric field relationship,
numerically calculated using a quantum mechanical model, for sample NU2293
when 6 = 0°-75° and B = 8 T. Similar plots are shown for (b) B = 11 T and (c)
B =14 T. The locations of a number of predicted resonance peaks are highlighted
with arrows and corresponding r values.
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Figure 4.33: (b) Sample NU2293 when B = 11 T.
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Figure 4.33: (c) Sample NU2293 when B = 14 T.

with the semiclassical curves presented earlier (figure 4.12) shows good general
agreement.

Higher order resonances tend to appear more prominently in calculations of
the quantum mechanical drift velocity compared with the semiclassical model (the
quantum mechanical and semiclassical drift velocity curves will be compared in
more detail later in this section). This may be because the exact initial conditions
defined for a semiclassical electron may not coincide precisely with a web filament,
so the resonance would not be observed strongly. However, a range of initial
conditions are implicit in the quantum mechanical model, some of which may
lie on a more favourable point for traversal of the filaments in phase space and
observation of a resonance in the electron trajectory.

Figure 4.34 shows similar cascade plots of drift velocity versus electric field for
sample NU2299. Once more, good agreement with the semiclassical model (figure
4.13) is seen at low values of electric field, and resonant peaks are clearly apparent.
However, for electric fields > 2 MVm™!, a number of additional peaks can be seen
in the quantum calculations that do not correspond with the semiclassical curves.
These peaks are particularly pronounced at # = 0°, when no resonant peaks occur
in a semiclassical picture, which produces the Esaki-Tsu v, (F') curve discussed
previously. These additional peaks arise due to tunnelling, and will be now be

explained in further detail.
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Figure 4.34: (a) Cascade plot of the drift velocity versus electric field relationship,
numerically calculated using a quantum mechanical model, for sample NU2299
when 6 = 0°-75° and B = 8 T. Similar plots are shown for (b) B = 11 T and (c)
B =14 T. The locations of a number of predicted resonance peaks are highlighted
with arrows and corresponding r values.
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Figure 4.34: (b) Sample NU2299 when B = 11 T.
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Figure 4.34: (c) Sample NU2299 when B = 14 T.

Discussion of the peaks due to tunnelling

When considering a biased superlattice, we imagine the superlattice potential to
be tilted by the applied electric field, as illustrated in figure 4.35(a). For high
values of electric field, the angle by which the superlattice potential is tilted
becomes so great that the miniband transport picture breaks down. In this case
we represent the superlattice potential as a series of quantum wells, whose energy
levels coincide roughly with the energies of the former minibands. As the bias
field increases and the superlattice potential is tilted further, a low energy level
(level A, say) in the qth well might line with a level of higher energy (level B) in
another well, the (¢ 4+ n)th well say. Similarly, this would result in alignment of
the same levels in wells (¢+1) and (¢+n+1), and so on. Alignment of the energy
levels in this way would lead to some finite possibility of tunnelling between the
two. The probability of such an event occurring would depend on the separation
of the two wells, i.e. the distance ndgsy,.

If the bias was further increased, eventually level A in well ¢ would line up
with level B in well (¢ +n — 1), with a separation of (n — 1)dg; between the two
levels, thus increasing the probability of tunnelling from level A to level B. This
tilting process could be continued until levels A and B in wells ¢ and g + 1 were
aligned (figure 4.35(b)), with the greatest probability of tunnelling between them.
A diagram illustrating this idea schematically is shown in figures 4.35(a) and (b).
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Figure 4.35: Effect of an applied electric field on the superlattice potential. (a)
Applied electric field leads to the possibility of tunnelling between levels A and B
in many non-adjacent wells (n = 2). (b) Increasing the strength of the applied field
leads to possibilities of tunnelling between levels A and B in many adjacent wells
(n = 1) in the superlattice potential. (c¢) In experiment, the applied electric field
is non-linear at high field strengths, therefore the possibility of tunnelling between
many wells simultaneously is eliminated.
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Tunnelling from levels 1 to 2 | Tunnelling from levels 1 to 3
n FAB (MVm™!) n FAB (MVm™Y)

1 F? =172 3 F;° = 6.80

2 F,” = 3.86 4 F}” =5.10

3 F}? =257 5 F)? =4.08

4 F}? =1.93 6 E}” = 3.40

Table 4.4: Electric field strengths at which tunnelling between energy levels in
wells separated by ndgy, is predicted.

A detailed description of such models of tunnelling in superlattice structures may
be found in [63,64].

In this description, whenever any two levels become aligned in a pair of wells,
due to the linear nature of the electric field potential, the same two levels be-
come aligned in many pairs of wells, leading to a theoretical possibility of many
tunnelling events taking place simultaneously. However, in real experiments at
high electric field strengths, the field becomes non-linear due to charge build-up
effects. Thus, whilst levels may become aligned, it is usually only one pair of
levels that line up (as shown in figure 4.35(c)) rather than a whole cascade of
levels.

However, if the electric field is spatially uniform, the condition for levels A
and B, in wells separated by a distance ndgy, to be aligned is that the electric

field satisfies:
Ep — E4

AB __
FH7 =
nedSL

(4.58)

where E4 and Ep are the energies of levels A and B. Table 4.4 lists field strengths
satisfying equation (4.58) for tunnelling between the first and second levels and
the first and third levels in sample NU2299. For each of these conditions, a peak
is observed in the drift velocity field curve at § = 0°, as shown by the arrows in
figure 4.36. The blue arrows highlight peaks where tunnelling between levels one
and two takes place, and the red arrows correspond to tunnelling between levels
one and three.

Peaks due to tunnelling are not present in quantum mechanical calculations
for sample NU2293 due to the substantially larger minbandgaps (approximately

three times larger than in NU2299) in the miniband structure of this superlattice
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Figure 4.36: Drift velocity field curve for sample NU2299 when B = 14 T
and 6 = 0°. Blue arrows indicate the fields at which table 4.4 predicts tunnelling
between the first and second energy levels in quantum wells separated by a distance
ndgsr,, whilst red arrows predict tunnelling between levels one and three.

sample. The amplitude of the peaks seen in NU2299 is so great because of the
tendency for levels in many wells to align simultaneously when F' is uniform.
Thus, when tunnelling events occur, they occur repeatedly creating an avalanche
of probability density sweeping across the superlattice barriers in the next energy
level. As the separation between aligned levels decreases (i.e. n decreases, and F’
increases) the probability of tunnelling events taking place increases as predicted,
and the peaks increase in amplitude with increasing F'. The only exception to
this is the n = 5 tunnelling peak at F' ~ 4 MVm~! (between levels one and three),
whose amplitude is reinforced due to the overlap with the n = 2 peak relating to
levels one and two. Note that the higher field strength associated with decreasing
n also increases the probability of tunnelling by effectively pushing the electrons
harder through the superlattice potential.

Rearranging equation (4.58) shows that the frequency with which the tun-

nelling peaks occur is inversely proportional to the electric field strength:

_ Ep—E,

n= oFdor (4.59)

Therefore, peaks due to tunnelling between two given levels are periodic in 1/F.
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Figure 4.37: Smoothed drift velocity field curve for sample NU2299 when B = 14
T and 6 = 0°. Smoothing has been performed over the period in 1/F of first-to-
second level tunnelling.

Hence, a plot of drift velocity as a function of 1/F can be smoothed over a
range equal to the periodicity of the peaks in order to suppress these inter-level
transition peaks, as occurs in a real device due to the strong spatial variation of F'.
Figure 4.37 shows the drift velocity field curve after smoothing over the period
of the first to second level peaks in 1/F, and figure 4.38 has been smoothed
again over the period of the first to third level peaks. The smoothing process
yields a plot much more like the smoothly rising background that is observed in
experimental current-voltage measurements.

It is worth noting that the small minibandgaps seen in sample NU2299 are
in fact desirable in experiments. The fact that they lead to increased tunnelling
is thought to reduce the level of charge build up in the structure, increasing the
amplitude of the resonant peaks due to stochastic web formation and thereby

making them easier to identify than in NU2293.
Comparison of quantum mechanical and semiclassical drift velocity
field curves

Figure 4.39 shows quantum mechanical drift velocity field curves (red) on the

same axes as the corresponding semiclassical calculations (black) for sample
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Figure 4.38: Smoothed drift velocity field curve for sample NU2299 when B = 14
T and 6 = 0°. Smoothing has been performed firstly over the period in 1/F of
first-to-second level tunnelling, and secondly over the period in 1/F of first-to-third
level tunnelling.

NU2299. Figure 4.39(a) also shows the Esaki-Tsu curve calculated using 10 terms
of the miniband dispersion relation (blue circles). For each plot, B = 14 T and
for (a) 6 =0°, (b) 8 =15° (c¢) # = 30° and (d) # = 45°. When 6 = 0° the agree-
ment between quantum, semiclassical and Esaki-Tsu models is ideal at low fields
< 2 MVm~! (the anomalous peaks in the quantum mechanical curve observed
at higher F' values originate from inter-level tunnelling, as explained previously).
When 6 = 15°, agreement between the semiclassical and quantum curves is still
good. However, as the tilt angle continues to increase, the calculated values
of drift velocity in the quantum mechanical model begin to fall well below the
semiclassical results.

The same trend is observed in figure 4.40 which compares the quantum me-
chanical drift velocity calculations (red) for sample NU2293 at B = 11 T to the
semiclassical results (black), for (a) # = 0°, (b) § = 15°, (¢) # = 30° and (d)
0 = 45°. Again, as the tilt angle is increased, the height discrepancy between the
two sets of results grows larger.

This increasing discrepancy at higher 6 values is due to the influence of the
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Figure 4.39: Comparison of drift velocity field curves, calculated both semiclas-
sically (black) and quantum mechanically (red) for sample NU2299 when B = 14
T for various tilt angles. In (a) the theoretical Esaki-Tsu curve (calculated us-
ing 10 terms of the Fourier expansion of the first miniband dispersion relation) is

represented by blue circles.
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Figure 4.40: Comparison of drift velocity field curves, calculated both semiclas-
sically (black) and quantum mechanically (red) for sample NU2293 when B = 11
T for various tilt angles. In (a) the theoretical Esaki-Tsu curve (calculated us-
ing 10 terms of the Fourier expansion of the first miniband dispersion relation) is

represented by blue circles.
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magnetic field. The magnetic potential is of the form
1 * 2 : 2
Vi (x,2) = MW (xsinf — (z — 2p) cos )~ (4.60)

i.e. parabolic, therefore when the wavepacket is displaced within this potential,
the mean restoring force is always greater than the restoring force at the mean
position of the wavepacket. For example, when displaced in the positive x direc-
tion, the wavepacket moves up the parabolic potential. The trailing edge of the
wavepacket is subjected to a lower magnetic potential, and the leading edge to a
higher potential. However due to the asymmetry of the curvature of the magnetic
potential at such a point, the net result is that the average force acting on the
electron to push it back along the negative x direction in the quantum mechani-
cal case is larger than the force which acts upon a semiclassical electron located
at the mean position of the wavepacket. This is true whether the wavepacket is
displaced in either the positive or negative x direction: 9V/dz is always larger at
the extremeties of the motion due to the magnetic field. This extra force reduces
the Bloch amplitude in the x direction, increasing the localisation of the electron
and hence decreasing the calculated drift velocity. Note that this localising effect
is also present in the z direction, where the cyclotron radius is decreased. This
effect is confirmed by comparison of the quantum mechanical position expecta-
tion values (red) and semiclassical (black) trajectories in figure 4.41. Trajectories
calculated for sample NU2293 with » = 1 and B = 11 T are shown in (a) and
(b), for = 15° and 6 = 30° respectively, and for sample NU2299 with » = 1 and
B =14 T in (c¢) and (d) for § = 15° and § = 30°. The reduction in the spatial
extent of the quantum mechanical trajectory is particularly apparent for 6 = 30°
(figures 4.41(b) and (d)). Note that the reversal of the lag in figure 4.41(c), such
that the quantum mechanical trajectory leads the semiclassical one for r = 1 and
6 = 15° in NU2299, will be addressed shortly.

Since the drift velocity is calculated only in the = direction, the reduction in
the amplitude of oscillation in the x direction is the important factor here. At
6 = 0°, the magnetic field has no effect on this x motion, but the greater the
tilt angle, the steeper the barrier that is presented in the x direction, and the
greater the difference in the restoring forces at the leading and trailing edges.
Therefore as 6 is increased, the localising effect is reinforced. This analysis is
further justified by considering the changes in the drift velocity field curves that

occur as B is varied (for a given tilt angle). Figure 4.42 shows drift velocity field
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Figure 4.41: Comparison of semiclassical (black) and quantum mechanical (red)
electron trajectories. Sample NU2293 is shown for r = 1 and B = 11 T when (a)
0 = 15° and (b) 6 = 30°. Sample NU2299 is shown for r = 1 and B = 14 T when
(¢) @ =15° and (d) 6 = 30°.



4.3.4 Quantum calculations of the drift velocity 146

curves for both quantum mechanical (red) and semiclassical (black) models for
NU2299 with § = 45° and (a) B=8 T, (b) B=11 T and (¢) B = 14 T. Figure
4.43 shows the same plots for sample NU2293. The average difference between
the semiclassical and quantum mechanical curves was calculated over fields of 0-
1.5 MVm~! and is quoted on each plot. The increase in the discrepancy between
the two curves as the strength of the magnetic field is increased confirms that
the magnetically-enhanced restoring force is the cause of the deviation. It is also
apparent that the rate at which the discrepancy increases with B is greater in
NU2299 than in NU2293 (figures 4.42 and 4.43). This is because the spread of the
initial state in real space is much greater for NU2299 than for NU2293 (figures
4.16 and 4.17), and hence the differential forces acting across the wavepacket are
larger for a given magnetic field strength.

Note that only values of FF = 0 — 1.5 MVm™! were considered in the above
analysis since the tunnelling effects in sample NU2299 start to affect the drift
velocity at fields of around F' = 2 MVm™!. Indeed, not only do the curves cross
over at around this point in figure 4.42, but the discrepancies seen in sample
NU2293 also become less at these fields (figure 4.43). This is because at high F
the electric force acting on the electron becomes much larger than the additional
magnetic force experienced at the leading edge of the wavepacket.

The crossover of the semiclassical and quantum mechanical drift velocity
curves for NU2299 in figure 4.42 due to inter-well tunnelling is the reason why the
quantum mechanical trajectory (red) at § = 15° (figure 4.41(c)) extends further
than the semiclassical case (black). We see from figure 4.42(a) that the tunnelling
effects begin to increase the calculated drift velocity at almost precisely the same
field strengths as the » = 1 resonance occurs for § = 15° (4.42(b)). Thus, a small
amount of the wavepacket is tunnelling into higher minibands under these condi-
tions, thereby increasing the effective Bloch amplitude of the wavepacket, leading
to a higher drift velocity. Whilst this is also true when 6 = 30°, the localising
effect of the magnetic force is substantially stronger due to the increase in 6, and
therefore the quantum mechanical trajectory lags behind the semiclassical in this
case.

We will now return to consider why the quantum mechanical drift veloc-
ity is always smaller than the semiclassical value at § = 0° in NU2293 (figure
4.40(a)). This difference can be explained by considering the spread of the elec-
tron wavepacket in k-space. Figure 4.44 illustrates a typical cosinusoidal disper-

sion relation and shows the spread Ak of a Gaussian wavepacket described by
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Figure 4.42: Comparison of drift velocity field curves, calculated both semiclassi-
cally (black) and quantum mechanically (red) for sample NU2299 when (a) B = 8
T, (b) B=11T and (c) B = 14 T for § = 45°. Average percentage errors between

the two curves are calculated over a field range of F =0 — 1.5 MVm ™.
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Figure 4.43: Comparison of drift velocity field curves, calculated both semiclassi-
cally (black) and quantum mechanically (red) for sample NU2293 when (a) B = 8
T, (b) B=11T and (c) B = 14 T for § = 45°. Average percentage errors between

the two curves are calculated over a field range of F =0 — 1.5 MVm ™.



4.3.4 Quantum calculations of the drift velocity 149

- n/dSL kx kp Ic/dSL

Figure 4.44: Typical cosinusoidal dispersion relation (black curve), with the black
dashed line highlighting the maximum gradient located at k,. Shown in red is an
example of a wavepacket with significant spread Ak in k-space, centred at k.

the function

—(k — kp)*
where k, is the k value for which the semiclassical electron velocity
10FE

is maximal. In the quantum mechanical case however, when the mean position

of the wavepacket is at k = k,, the average velocity v is given by

b= / 2 (k — k) v (k) dk, (4.63)

where we take into account the fact that each point in the wavepacket is located
at a different point along the dispersion relation leading to a range of velocities
across the wavepacket. We can expand the term v(k) in equation (4.63) as a

Taylor series about k,:

v(k) =v(kp) 4 (k—kp) @ i (]4;_]%)2 52v

T (464)

kp
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Substituting this into equation (4.63) gives

<
I

v (k) / 12 (k — ky) dik
ov

+ o kp/k(k—kp)fQ(k—kp)dk
d%v (k — k,)?

neglecting higher order terms in the expansion of v(k). Since the wavefunction
probability density is normalised to unity, the integral of f2 (k — k,) over all of
k-space must also be unity. We also know that 0v/0k evaluated at k,, the point

of maximum velocity, must be zero. Thus we have

B 0%v
V= (kp) +C @ . 5 (466)
where
k—k,)?
C = /k %ﬂ (k — k) dk. (4.67)

Due to the fact that k, represents a maximum in the velocity, we can say that

0%v

kp

Furthermore, it is clear that C' > 0, and so we can write
v=v(k,) —C' (4.69)

where C’ is positive. Hence we expect that for a wavepacket with significant
spread in k-space, the maximum mean velocity calculated quantum mechanically
will be less than the maximum velocity in the semiclassical case, v(k,). This ex-
plains why, even when 6 = 0° and the magnetic field has no effect, the quantum
mechanical drift velocity curve lies below the semiclassical one (figure 4.40(a)).
The initial wavefunction chosen in sample NU2293 is such that the probability
density is spread over only ~ 6dg; (figure 4.16), leading to a wavepacket which
is fairly broad in k-space, and so the effect described above is significant. How-
ever, the initial probability density in NU2299 is spread over ~ 12dg; (figure
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4.17) leading to a narrow wavepacket in k-space, and hence we observe a much

smaller discrepancy in the quantum mechanical and semiclassical drift velocities
calculated for NU2299 at # = 0° (figure 4.39(a)).

Dual scattering time model

The reader should note that the quantum mechanical model presented thus far
does not take into account the possibility of LO-phonon scattering of the electron.
This phenomenon can only occur if the electron has sufficient energy to generate
an LO-phonon. In GaAs, the critical kinetic energy above which LO-phonon
creation is possible, E..;, is ~ 36 meV. In regimes where LO-phonon scattering
becomes possible, the scattering time used in calculations of the drift velocity
should be much shorter, and P (t) is no longer given by equation (4.57). A new
scattering probability must be recalculated each time the expectation value of

the kinetic energy, (FEy),

00 ) h2 82 82
(By) = _/ / ¥ [Qm* <@+ @ﬂ Wdvdz (4.70)

crosses the 36 meV threshold. Figure 4.45 illustrates this, depicting how, as

the electron’s kinetic energy varies, it may pass through the threshold several
times. Below E,.; the scattering time 7 = 176 fs applies (see section 4.2.3).
However, above FE..; the characteristic scattering time 7,0 applies, which is a
newly calculated scattering time that takes into account 79, the scattering time

characterising LO phonon emission from electrons.

Firstly, we define a new inelastic scattering time 7VE" as
1 1 1
= —+ 4.71
TNEW — T 710 (4.71)
The new scattering time for use when (Ey) > FE,.; is now given by
1
o= —2%—— SN (4.72)
Te + TVEW !

In sample NU2299 7£9 = 0.1 ps, 7VPW = 93 fs and 7,0 = 44 fs. The new
expression for P (t) is derived as follows.

Consider a time interval ¢ — t + dt. During this interval, the number of
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Figure 4.45: Example of how the expectation value of the electron kinetic en-
ergy varies as a function of time during the evolution of a quantum mechanical
wavepacket. The kinetic energy of the electron is plotted in black, whilst the red
line at 36 meV is the critical energy above which LO-phonon scattering is possible
(provided 6 # 0°).
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electrons that scatter is given by d/NV, and we can write

dN dt
- 4.
g (4.73)

where N is the total number of unscattered electrons at time ¢ and 7, is the
scattering time applicable in the interval ¢, — t,,11, either 7 or 77. Initially at
to = 0, there are Ny electrons unscattered. After some time ¢;, when the number
of unscattered electrons is given by N, the kinetic energy of the electrons exceeds
E..;; and the decay rate is greatly increased since the scattering time has decreased
from 1) = 7 to 7y = T0. Conversely, at ¢ = t5 when the kinetic energy has fallen
past E..;, the rate at which N is decaying is now governed by 7, = 7 and the
decline becomes less steep.

So supposing that ¢ is between times ¢,, and ¢,,;, then

N aN bt
/ — = —, (4.74)
Nty N tn T
integrating which results in
(t—tn)
N(t) = N(t,)e” ™ . (4.75)

Thus the number of unscattered electrons at any time ¢ depends on the value of

N the last time the E,;; threshold was crossed, for example:

_ (t1—tg) t1

N1 = N0€ T :.Z\[()e_7 (476&)
(to—ty)

Ny = Nie 1o (4.76b)

Ny = Nye 5% (4.76¢)

and so on. Clearly these equations can be combined in the following form:

_(ta=t1)  (t3—t9)

N3 = Nje 7o e = (4.77a)

tp _(ta=t1)  (t3—t9)

= Noe 7e ™o e 7 . (4.77Db)

Generalising this result, we have:

N(t.)=No[Je = (4.78)
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where tg = 0 and 7, = 7 or 770 and is the scattering time between time #;,; and

tr. Combining equation (4.75) with equation (4.78) gives

(tp—tk—1)

N(t) = Noe™ =" He T (4.79)
Note that if 7,0 = 7, equation (4.79) becomes
N(t) = Noe ™+ (4.80)

and we recover the previous model for exponential decay at a constant rate.

The probability that an electron scatters between time ¢ and ¢ + dt is

(4.81)

. . . . . . dN
Therefore by first differentiating equation (4.79) with respect to time for %=

dN t—tn (p—tp—1)
E — —_6 ™ He Tk (4.82)

T

laN]

Ny such that we have

which can be rearranged for |

(t t 1)
Pyt = 14N ﬁ —”He e

e 4.83
= k (4.83)

Again, it is worth noting that the Esaki-Tsu scattering probability given in equa-
tion (4.57) is recovered if a constant scattering rate is considered. Also note that
(Eg) > Egi is not possible when § = 0° since AL; < 36 meV and there is no
way energy can be transferred between the z and x directions.

Figure 4.46 shows a cascade of drift velocity field curves calculated using the
dual scattering time model for sample NU2299 with B = 14 T. It is clear that the
peaks are very weak and the curves are generally rough, in contradiction with ex-
periment, therefore this model does not appear to accurately reflect the dynamics

of the system and does not improve the quantum mechanical calculations.



4.3.4 Quantum calculations of the drift velocity 155

B=14T

v, (arb. units)

0 1 2 3 4 5

F (MVm™)
Figure 4.46: Cascade plot of the drift velocity field relationship, numerically
calculated using a dual scattering time quantum mechanical model, for sample

NU2299 when B = 14 T and 6 = 15°-75°. The locations of a number of predicted
resonance peaks are highlighted for reference.
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4.4 Comparison of theory with experiment

Experiments performed on superlattice samples generate current voltage (I — V)
characteristics rather than drift velocity field curves, so it is useful to consider
the form of the I —V characteristics resulting from the quantum mechanical drift
velocity calculations presented in previous sections. The corresponding I — V
curve is determined by modelling the superlattice as N layers of width Az and
considering the local volume density of electrons in each layer, along with the
local electric field. The current continuity equation may then be solved in each
layer. The details of this calculation are beyond the scope of this thesis. However,
the I — V characteristics (provided by D. Hardwick, University of Nottingham)
for sample NU2293 are presented alongside experimental results (provided by D.
Fowler, University of Nottingham). Also presented are plots of the differential

conductance,
dl

G = T (4.84)
which allow resonances to be seen more clearly than in plots of I —V. Experimen-
tal and theoretical I —V and G —V curves are shown for magnetic field strengths
of B=28, 11 and 14 T in figures 4.47 to 4.52. Results are for angles # = 0 — 75°
at 15° intervals, as considered previously. Peaks in the theoretical curves (figures
4.48, 4.50 and 4.52) due to the r = 1 resonance can be observed in both the I —V
and GG — V plots for all magnetic field strengths and tilt angles greater than zero.
The arrow in each G — V' plot guides the reader to the location of the r = 1
resonance. Good agreement is seen between theoretical and experimental results
under all applied field conditions. A comparison of experimental and theoretical
I —V and G — V curves for NU2299 is not included, since work to smooth the
corresponding drift velocity curves to give better agreement with experiment is

still ongoing.
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Figure 4.47: Experimentally measured plots of I —V and G —V data for NU2293
when B = 8 T and 6 varies between 0°-90° in steps of 5°. The arrow highlights
the r = 1 resonance. Reproduced with permission of D. Fowler.
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Figure 4.48: Numerically calculated plots of I — V and G — V data for NU2293
when B = 8 T and 6 varies between 0°-75° in steps of 15°. The arrow highlights
the r = 1 resonance. Curves were calculated by D. Hardwick with data generated

by the quantum mechanical model.
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Figure 4.49: Experimentally measured plots of I —V and G —V data for NU2293
when B = 11 T and 6 varies between 0°-90° in steps of 5°. The arrow highlights
the r = 1 resonance. Reproduced with permission of D. Fowler.
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Figure 4.50: Numerically calculated plots of I — V and G — V data for NU2293
when B = 11 T and 6 varies between 0°-75° in steps of 15°. The arrow highlights
the r = 1 resonance. Curves were calculated by D. Hardwick with data generated

by the quantum mechanical model.
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Figure 4.51: Experimentally measured plots of I —V and G —V data for NU2293
when B = 14 T and 6 varies between 0°-90° in steps of 5°. The arrow highlights
the r = 1 resonance. Reproduced with permission of D. Fowler.
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Figure 4.52: Numerically calculated plots of I — V and G — V data for NU2293
when B = 14 T and 6 varies between 0°-75° in steps of 15°. The arrow highlights
the » = 1 resonance. Curves were calculated by D. Hardwick with data generated

by the quantum mechanical model.



Chapter 5

Dynamics of an ultracold sodium
atom in an optical lattice and a

tilted magnetic gutter

5.1 Introduction

In chapter 4, non-KAM chaos was considered in the context of an electron in a
superlattice subjected to applied electric and magnetic fields. In this chapter, we
realise similar chaotic dynamics using an optical lattice rather than a superlattice.
Specifically, we study a magnetically confined atom as it falls through an optical
lattice under the influence of gravity.

The advantages of this system over the previous one are manifold. Optical
lattices are well suited to experimental studies of the correspondence between
classical and quantum mechanics and are therefore ideal for exploring quantum
chaos [12,65]. Firstly, they are free of defects and impurities, and secondly, since
no lattice vibrations are present either, there is almost no scattering in the system.
In addition, the lattice can be switched off at will - not only does this offer an
extra degree of control over the experimental system, it allows direct measurement
of the atomic momenta. Also, because the optical lattice period is much greater
than the typical superlattice period, the resultant motion takes place over much
longer timescales and hence the dynamics may be observed and measured with
greater ease. This is further enhanced by the consideration of atomic rather than
electronic dynamics: due to their greater size and mass, atoms move far more

slowly than electrons (on a timescale of milliseconds compared to picoseconds).
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Neither do single atoms suffer from effects such as charge build up that come into
play in experimental studies of superlattice band transport.

The following research considers a neutral sodium (**Na) atom in a one-
dimensional optical lattice, where the = axis lies along the optical lattice. The
atom is initially trapped in a two-dimensional harmonic magnetic potential which
can be tilted with respect to the lattice (in the z-z plane), as shown in figure
5.1(a). Again, we define co-ordinates z;, z; where z; is along the axis of the

gutter and z; is perpendicular to the gutter axis such that
2 =z cosf + zsin b (5.1)

2y = —xsinf + zcos b (5.2)

where 6 is the angle through which the gutter is tilted relative to the z-axis. The
trapping frequencies are w,, w, in the x; and z; directions respectively. Once
the atom is in the ground state of the magnetic trap, which may be achieved
using laser and evaporative cooling, the trap is switched off along one direction
by setting w, to zero (resulting in a two-dimensional gutter shaped potential -
see figure 5.1(b)) and we simultaneously accelerate the atom through the lattice
by allowing it to fall under the influence of gravity, with the z-axis vertical as in
experimental studies of quantum transport in optical lattices [66].

We expect to observe non-KAM chaos when nonlinear resonances of the sys-
tem are excited. The atom will perform Bloch oscillations in the = direction with
frequency wp - this motion is induced by the atom falling through the periodic
potential. When the characteristic frequency which defines the shape of the har-
monic gutter is on resonance with the frequency of the Bloch oscillations, we
expect to see stochastic webs form in phase space. The condition for resonance
is given by

— C(.)B

r= (5.3)
Wi

where in this case w| = w,cosf, wp = mqgdor/h and r is again an integer
labelling the order of the resonance. In the expression for wg, ¢ = 9.81 ms™2
is the acceleration due to gravity and m, = 3.82 x 10726 kg is the mass of the
sodium atom, whilst do;, = A/2 = 294.5 nm is the period of the optical lattice
where ) is the wavelength of the laser beam.

Employing an optical lattice rather than a superlattice allows more control

over the lattice parameters. Since we can specify the period and depth of the
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Figure 5.1: Schematic diagram showing the orientation of the potential energy
fields. The optical lattice is along the x axis, as is the pull of gravity. The ellipses
in (a) show the contours of potential energy in the 2 — z plane for a sodium atom
confined by a harmonic trap. The axes of the trap are in the z; and z; directions.
The z; axis of the trap makes an angle § with the axis of the optical lattice.
The case when the confining potential in the z; direction has been switched off is
shown in (b). The equipotentials now represent a gutter potential parallel to the
x; direction and inclined at an angle 8 to the x direction.
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lattice, we can tailor the band structure. However it is important to ensure
that the laser frequencies are detuned from atomic resonances. The parameters
defining the optical lattice potential in this study are taken from experiment [67].
Figure 5.2(a) shows the form of the optical lattice potential, Vo (x). The decision
to study a sodium atom was made because the trapping frequencies required for
resonance (as determined by equation (5.3)) are experimentally accessible, and
sodium has been manipulated in similar potentials in experiments [67,68]. In
addition, the necessary trapping frequencies are low enough that the effect of the
gutter potential upon the band structure is negligible.

Both the semiclassical and the quantum mechanical regimes of the system
will be explored via numerical simulations of the atom dynamics. The gutter
frequency w, will be varied in order to satisfy different resonance conditions and
semiclassical and quantum trajectories studied for evidence of increased delocal-
isation of the atom when the resonance condition is satisfied. We will also look

for the appearance of stochastic webs in the semiclassical phase space.

5.2 The semiclassical mechanics of the system

As in chapter 4, the semiclassical equations of motion governing the system are
taken from the general derivation in section 3.2.5, where it was shown that motion
in the y direction is separable. Knowing that motion in the y direction is simple
harmonic, we shall consider only motion in the z-z plane for the remainder of the
chapter. The two-dimensional semiclassical Hamiltonian for an atom in a band

subjected to externally varying fields is

2

Hy = E(p,) + 27;; Vi (2, 2) (5.4)

where E(p,) is the dispersion relation of the optical lattice and V., is the potential
due to the applied fields. The dispersion relation of the first band is represented

by a Fourier series:

B(p,) = 20 ( =3 aneos (np‘,i)) (5.5

n=1
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Figure 5.2: (a) Plot showing the potential energy profile of the optical lattice. The
corresponding energy band structure (first and second bands only) is highlighted by
the shaded areas. (b) Dispersion relation of the first energy band where p, = fik,.
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where the coefficients a,, are determined in Appendix A. Figure 5.2(b) shows the
form of E(p,). Initially the atom is held in a potential

1
Veat (,2) = Vipap (2, 2) = §ma (wixf + wfzf) ) (5.6)

The trapping frequency in the z; direction is defined by the resonance condition,
and varies according to the order of resonance one wishes to excite. Substituting

for wp and w) in equation (5.3) and rearranging for w, gives

o mangL

“ hrcosf’

(5.7)

The trapping frequency in the x; direction is chosen to be 50 rad s—!, however
this frequency only plays a part in the initial trapping of the atom. To examine
the non-KAM dynamics of the system, w, is set to zero and the atom is allowed

to fall through the lattice. The external potential is then given by

1
Vewt (2, 2) = imawzzf — My g. (5.8)

As demonstrated in section 3.2.5, a system of this nature may be reduced
to a single second-order differential equation in p, by determining Hamilton’s
equations of motion for the system and combining them. It can be shown that

this single governing equation has the form of a driven simple harmonic oscillator:

p.+ Wﬁpz = AZ nay, sin (n (Kp, — wpt — ¢)) (5.9)
n=1

where for this system

—mgwidor Aoy sin f cos 6

- o (5.10)
K = dOL—;;‘“e (5.11)
6 = %O (pu(0) + p.(0) tan). (512)

As before, to determine the atom dynamics, one must first solve equation (5.9)
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for p,, and subsequently solve the following equations (derived in section 3.2.5):

px(t) - px(o) + megt — (pz(t) — Dz (0)) tan (513&)
. a%(fx) (5.13b)
i o= TZZL : (5.13¢)

for p,, © and z respectively. As in chapter 4, this system of equations is solved
using the Runge-Kutta method detailed in Appendix B. The initial state of the
atom was specified as z(0) = 2(0) = p,(0) = p,(0) = ¢(0) = 0. Resonances of
r = 1,2,3 were studied, and also an off resonance value of r = (14++/5)/4 ~ 0.809.
For each value of r, tilt angles of 0°, 15°, 30°, 45°, 60° and 75° were explored,

with w, determined in each case from equation (5.7).

5.2.1 Semiclassical atom trajectories

Figure 5.3 shows the comparison between semiclassical atomic trajectories for
on and off resonance conditions of the system. In this case, 8 = 45°, and the
black trajectory represents the r = 1 resonance (with w, = 27 x 236 rad s™').
The red trajectory is non-resonant, with 7 = (1 ++/5)/4 and consequently w, =
27 x 291 rad s~!. The increase in delocalisation upon resonance is self-evident,
with the trajectory extending approximately three times further along the axis
of the optical lattice than in the off resonance case.

Figure 5.4 shows r = 1 resonant trajectories for angles (a) 15°, (b) 30°, (c)
45°, (d) 60° and (e) 75°. The corresponding gutter frequencies are w, = 27 x 172,
27 x 192, 27 x 236, 27 x 333 and 27 x 643 rad s~! respectively. For angles 15°, 30°
and 45° the motion is similar, with the paths displaying the familiar characteristic
looping pattern observed in the superlattice system studied in chapter 4. As 6 is
increased towards 45°, the loops become less pronounced and the delocalisation
increases to a maximum, as predicted in section 3.2.5. As 6 is further increased
to 60°, the trajectory becomes less orderly and the level of delocalisation begins
to decrease (although remaining significant). For § = 75°, the trajectory becomes
increasingly chaotic whilst extending a great distance in the z direction, signalling
the approach to # = 90° whereupon the motion is expected to become unbounded
in the z direction as derived for the analogous superlattice system previously.

Figure 5.5 shows resonant trajectories for (a) r = 2 and (b) r = 3 for § = 15°.

The gutter frequencies are w, = 27 x 86 and 27 x 57 rad s~! respectively. Figure
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Figure 5.3: Comparison of on (black) and off (red) resonance semiclassical sodium
atom trajectories. The gutter potential is tilted at an angle § = 45°, while r = 1
in the on resonance case and r = (1 + +/5)/4 in the off resonance case. The
trapping frequencies are given by w, = 27 x 236 rad s~ and w, = 27 x 291 rad
s~ ! respectively.

5.6 shows (a) r = 2 (w, = 27 x 118) and (b) r = 3 (w, = 27 x 79) trajectories for
0 = 45°. The extent of all of these trajectories is significantly less than the r =1
case for the same tilt angles. Figure 5.7 shows (a) 7 = 2 (w, = 27 x 322) and (b)
r =3 (w, = 27 x 214) trajectories for # = 75°. Whilst the r = 3 trajectory shows
a reduction in scale from the corresponding r = 1 resonance (figure 5.4(e)), the
r = 2 trajectory appears to be little different.

These changes in the extent of the atomic paths as r varies can be explained
in the following way. In chapter 4, when modelling the electron motion semiclas-
sically, the force driving the electron through the lattice potential was varied in
order to examine a variety of resonances for a given magnetic field strength. It
was shown that increasing the magnitude of B improved the clarity of resonant
peaks in the drift velocity field relationship, because an increase in B leads to
an increase in the cyclotron frequency and hence the electron is able to complete
more cyclotron orbits before scattering.

In this system, the gutter potential (characterised by w,) is analogous to B.
The atomic resonance is varied by altering w,, whilst the force that drives the
atom through the optical lattice, mg, is constant. Our definition of the resonance
condition in equation (5.7) states that w, is inversely proportional to r, thus

to excite higher order resonances the steepness of the gutter potential must be



5.2.1 Semiclassical atom trajectories

168

60
160
40 140
120
100
L 20 .
o o 80
N N
60
0
40
20}
—20
0
0 20 40 60 0 50 100 150
x/dOL X/dOL
(a) 0 =15° w, = 2r x 172 rad s~ ! (b) 6 =30°, w, =27 x 192 rad s~!
250
200
200
150
150
- -
N 3 100
100
50 50
0 0
0 50 100 150 0 20 40 60 80
x/dOL x/dOL

(c) § =45° w, = 27 x 236 rad s~ *

(d) § =60°, w, =27 x 333 rad s~ *
500
400

3 300

z/d

200

100

0 50 100
x/dy

(e) § =75°, w, = 2m x 643 rad s~!

Figure 5.4: Selection of on resonance (r = 1) semiclassical sodium atom trajec-
tories. The atom is initially at rest.
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Ring [0 =15° | 0 =30° | 0 = 45° | § = 60°
1 0.51 0.24 0.14 0.08
2 0.94 0.44 0.25 0.15
3 1.36 0.63 0.36 0.21

Table 5.1: Predicted radii of the first three rings of the » = 1 stochastic web in
phase space, for a selection of angles. Radii are quoted in units of 1072° kg ms™".

reduced - equivalent to decreasing B in the superlattice system. Since wp is
unchanged, the atom completes more Bloch oscillations per oscillation along z and
therefore tends to localise on the scale of the Bloch orbit. To observe chaos, strong
coupling of similar wg and wj frequencies is required, whereas here wp > w). At
higher r values, the Bloch-like motion is better defined and less strongly perturbed
by the coupling between the x and z directions. Furthermore, consideration of
equation (5.9) shows that the amplitude of the plane waves perturbing the system
is proportional to w,, thus we would expect a reduction in w, to excite resonances
less strongly and so decrease the distance travelled by the atom.

For high tilt angles, there is strong coupling between the x and z directions
even for larger values of r, and so chaos is established. Consequently, the orbits
when 6 = 75° (figures 5.7(a) and (b)) exhibit a higher degree of delocalisation. It
seems likely that this factor will manifest itself by the formation of a chaotic sea
in the centre of the phase space at high tilt angles, as was seen in the case of the
electron in the superlattice. We confirm this by considering Poincaré sections of

the system in the next section.

5.2.2 Stroboscopic Poincaré sections

The prediction of stochastic webs in phase space in section 3.2.5 is applicable to
this system. The atomic motion predicted via the Runge-Kutte method is once
more sampled at times separated by At = i—ﬁ to generate stroboscopic Poincaré
sections of the (P,,p,) phase space, where P, = p,/w. The radii of the web rings
predicted for the r = 1 resonance for § = 15° — 60° are listed in table 5.1.
Figure 5.8 shows stroboscopic Poincaré sections for the » = 1 resonance for
the angles included in table 5.1. As expected, stochastic webs do indeed form in

the phase space, with 2r filaments and rotational symmetry of 7. The positions of
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the rings show good agreement with the analytical theory, and periodic orbits are
clearly bounded by the cells of the web structure. As the tilt angle becomes large,
a chaotic sea forms in the centre of the phase space and the filaments become
distorted, as does the shape of the periodic orbits.

Figure 5.9 shows similar Poincaré sections for (a) r = 2 and (b) r = 3 res-
onances, when # = 15°. Once more, 2r filaments divide the phase space into a
web structure, bounding regions of periodic orbits, and the rotational symme-
try is 7w/r. In figure 5.10, stroboscopic Poincaré sections for (a) r = 2 and (b)
r = 3 resonances, when # = 60° are shown. Whilst the general features of the
web structure are retained, the filaments are again highly distorted now that the
tilt angle is large, and the central chaotic sea remains significant, confirming our
earlier predictions in connection with the extent of the atomic trajectories for

resonances r > 1 at large tilt angles.

5.3 The quantum mechanics of the system

In the quantum mechanical regime, the potential felt by the atom due to the
optical lattice is included explicitly in the model. The potential energy of the

sodium atom in the optical lattice is described by

Vor = Vpsin®? <ﬂ> (5.14)

dor
where Vj, the amplitude of the lattice potential, is 562.52 peV (refer back to
figure 5.2(a) for a diagram of the optical lattice potential). Given Vpy, we can
write the two-dimensional quantum mechanical Hamiltonian of a sodium atom

in this system as

h? 0? 0?
<@ + @) +Vor (l’) + Vort (l‘, Z) , (515)

2my,

where V. (x.2) is specified by equations (5.6) and (5.8) in section 5.2. To deter-
mine the evolution of the wavefunction of the atom, ¥(x, z), the time-dependent
Schrodinger equation: Pu(z. )
, T, 2

Zhi&t
must once more be discretised and solved numerically via the Crank-Nicolson
method [60] (refer to Appendix C for further details of this technique).

= HY(z,2), (5.16)
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Simulations of the quantum dynamics were produced for the same parameters
w,, B as were considered semiclassically in section 5.2. Section 5.3.1 describes how
the initial wavefunction was generated such that it represented a stationary atom
in the ground state of the system centred at x = 2z = 0 before the trap was
switched off in the z; direction. The wavefunction was then allowed to evolve

whilst falling through the lattice under the influence of gravity.

5.3.1 Determining the ground state

It was important to ensure that the de Broglie wavelength of the atom should be
of the order of several optical lattice periods to ensure that quantum mechanical
band dynamics would be observed, and not simply dynamics analogous to the
motion of a single classical particle in a single well. All simulations begin with
the wavefunction of the atom in the ground state of the system when subjected
to the combined potential due to the optical lattice and the harmonic trap. An
imaginary time algorithm was used to determine the ground state numerically
[69]. This technique is identical in form to the method of determining the real
time evolution via the Crank-Nicolson method [60] - however we instead consider
the evolution of some arbitrary initial wavefunction in 4maginary time rather
than real time. This causes the wavefunction to converge upon the ground state
of the system [12]. Adapting the Crank-Nicolson method to run in imaginary
time is a trivial matter of substituting —i4; in place of each A, which appears
in the finite difference approximations described in Appendix C.

The success of this method is easily understood. Consider making some ini-
tial guess at the ground state wavefunction of the system, Wg,..s. This guess
may be written as a linear combination of the eigenfunctions ¥, of the atomic

wavefunction in the external potential:

Uguess = O e 1 (5.17)

where FE, is the energy of the nth eigenstate, and ¢, is a measure of the weight
given by the nth eigenstate to Wg,.s. If imaginary time is now considered, a

substitution of ¢ — it must be made, and equation (5.17) becomes

Ent

Uguess = Y cnlne” 1. (5.18)
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It is clear that as the simulation progresses in imaginary time, increasing ¢ will
cause each of the terms in the summation in equation (5.18) to decay exponen-
tially. Since the ground state has the lowest energy - that is, Ey < FE,~¢ - the
contribution of this state will decay more slowly than that due to all other eigen-
functions. Thus eventually after some sufficiently long time, only the ground
state will remain. Therefore, as long as a reasonable initial guess is provided, the
imaginary time simulation will converge to the ground state of the system.

It is essential to note, however, that since the ground state is also decaying
with time, it is necessary to renormalise the wavefunction to unity after every

iteration of the Crank-Nicolson method, according to

R///|\Il|2dxdydz=1 (5.19)
zJyJx

where R is the normalisation constant. Since only two dimensions are considered
here, namely x and z, the wavefunction is independent of y and so integration
with respect to y produces a constant, L,. This is known as the characteristic
spread of the atomic wavefunction in the y-direction [12]. Hence equation (5.19)
simplifies to

R// U dedz = RI,, = Li (5.20)

zJa y

For the purposes of normalisation it is reasonable to set L, equal to L,, the spread

in the z-direction, which is given by

L.=L,= 2\// U+ 22Wdrdz. (5.21)

Hence the normalisation constant is

(5.22)

and the renormalised wavefunction Wy is given by ¥z = vRU. Obviously, the
initial wavefunction will be different for each combination of system parameters r,
0 and w, studied. However, an example of the form of the ground state probability

density is shown in figure 5.11, for conditions r = 1, § = 15° and w, = 27 x 172

1

rad s7'. Recall also that the additional trapping frequency, w,, employed in

determining the initial wavefuntion is w, = 27 x 50 rad s .
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Figure 5.11: Illustration of the probability density function of the ground state
of the sodium atom. A cross section of the probability density taken along z = 0
is shown, for the case when r =1, § = 15° and w, = 27 x 172 rad s~ '.

5.3.2 Quantum mechanical atom trajectories

The quantum mechanical trajectories are determined by calculating the expec-
tation values, (x) and (z), of the wavefunction at discrete times, as was done in
chapter 4 for the electron wavefunction (see equations (4.47a) and (4.47b)).

Figure 5.12 shows quantum mechanical trajectories (red) plotted alongside
semiclassical paths (black) for r =1 and (a) # = 0°, (b) § = 15°, (¢) 8 = 30°, (d)
0 = 45°, (e) 8 = 60° and (f) § = 75°. The red curve in figure 5.12(a) plots (z)
versus ¢ since there is no motion in the z direction, whereas for § # 0° (figures
5.12(b)-(f)), (z) versus (x) is plotted in the red curve.

It is clear that when 6 = 0°, there is perfect agreement between the quantum
mechanical and semiclassical models. Bloch oscillations are observed in both
models, with equal amplitudes and periods, and with no significant deviation
between the two paths for the entire duration of the simulation. This fits with
our previous observation that for an initial wavefunction which is highly diffuse
in real space, it is narrow in k-space and hence the mean quantum mechanical
motion should agree well with the semiclassical case at # = 0°. However, as 6 is
increased and the gutter potential begins to influence the motion, the agreement

between the two sets of trajectories becomes increasingly poor. There is satisfac-
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tory correspondence between quantum mechanics and semiclassics when # = 15°
(figure 5.12(b)), and also at short times when 6 > 30° (figures 5.12(c) to (f)).
However, at long times when 6 > 45° (figures 5.12(d) to (f)) the paths deviate
from one another considerably.

Figure 5.13 shows quantum mechanical (red) and semiclassical (black) paths
for r = (1 ++/5)/4 when (a) 6 = 15° and (b) § = 45°. These show the same
characteristics described in the previous comparisons - satisfactory agreement for
small angles, with the deviation becoming significant as the tilt angle is increased.
The fact that similar observations are made for both on and off resonance condi-
tions implies that the deviation does not arise solely as a result of the resonance,
so it is necessary to consider the behaviour of the atom wavefunction in order to

gain more insight in to the nature of the discrepancies.

5.3.3 Time evolution of the atom wavefunction

We begin by considering the form of the atom wavefunction when agreement
between quantum mechanical and semiclassical models is good. Figure 5.14 shows
snapshots of the probability density function for the atom at times 0 ms and 30
ms. There is no observable difference between the two plots.

Figure 5.15 shows snapshots of the probability density at different times when
r = (14+v/5)/4 and § = 15°. The quantum mechanical mean trajectory is overlaid.
Note that the time duration of the trajectory shown here is greater than was
shown in figure 5.13(a). The decision was made to show a shorter trajectory
in the earlier figure in order to provide the reader with a less confusing visual
comparison between the two trajectories in figure 5.13(a). It is clear from figure
5.15 that there is little difference between the probability distribution at times
(a) 0 ms and (c¢) 30 ms, except that it is perhaps a little more diffuse at the
later time. In figure 5.15(b), the probability density has the appearance of being
slightly stretched out in the x direction as it makes a sharp change in direction.

Figure 5.16 shows the probability density when r = 1 and # = 15° with the
quantum mechanical trajectory overlaid. In this case, whilst the general shape
and structure of the probability density function remains the same throughout,
the final form is noticeably more diffuse than the initial state. However, the
wavefunction clearly remains intact as it follows the mean path.

Figure 5.17 shows the changing probability density for » = 1 when 6 = 45°.

In this case however, both the mean quantum mechanical trajectory (solid line)
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Figure 5.12: Comparison between resonant r = 1 semiclassical (black) and mean
quantum mechanical (red) atomic trajectories for tilt angles between 6 = 0°-6 = 75°
in steps of § = 15°. (a) w, = 27 x 167 rad s™! (b) w, = 27 x 172 rad s™! (c)
w, = 21 x 192 rad s~!
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Figure 5.15: Snapshots of the time-evolution of the atomic probability distribu-
tion, for 7 = (1 ++/5)/4, = 15° and w, = 27 x 213 rad s~!. Surface plots of the
probability distribution at times (a) ¢t = 0 ms, (b) ¢ = 15 ms and (c) ¢ = 30 ms are
shown. The mean trajectory is overlaid in black, whilst the magenta cross marks
the point on the trajectory corresponding to the current frame.
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Figure 5.16: Snapshots of the time-evolution of the atomic probability distribu-
tion, for r = 1, = 15° and w, = 27 x 172 rad s~!. Surface plots of the probability
distribution at times (a) ¢ = 0 ms, (b) ¢ = 15 ms and (c) ¢ = 30 ms are shown. The
mean trajectory is overlaid in black, whilst the magenta cross marks the point on
the trajectory corresponding to the current frame.
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and the corresponding semiclassical trajectory (dotted line) are overlaid upon the
motion. In figures 5.17(a) and (b), the agreement between the two trajectories is
good and the probability density function shows little sign of change. However
in figure 5.17(c), after the first turning point, the probability density is clearly
much more diffuse. By figure 5.17(d) the mean position of the wavefunction has
separated from the semiclassical path, and the probability density becomes yet
more diffuse upon executing another loop in figure 5.17(e). In figures 5.17(f), (g)
and (h), whilst some part of the wavefunction appears to lie on the semiclassical
path, a large fraction has been reflected back along the direction of the gutter
potential whilst still executing oscillations in the 2z direction.

Figure 5.18 depicts the variations in probability density for » = 1 when
6 = 60°. Once more, whilst 5.18(a) and (b) show good agreement between
the quantum mechanical (solid) and semiclassical (dotted) paths, 5.18(c) marks
a sudden elongation in the probability density function at the first sharp turning
point, after which part of the wavefunction appears to follow the semiclassical
trajectory in some sense in figures 5.18(d), (e) and (f). The majority, however,
appears to be deflected backwards to oscillate along the length of the gutter
potential.

Clearly, the significant changes that occur in the wavepacket as  is increased
show that it is not behaving as a single point particle, hence the deviation of
the quantum mechanical paths from the semiclassical case shown in section 5.3.2
is to be expected. Changes in the internal structure affect the centre-of-mass
motion, which then deviates from the single particle case. This is because forces
are acting to change the wavepacket, which alters the energy associated with its
internal structure, as well as its centre-of-mass motion. It is proposed that the
origin of these deforming forces is the gutter potential, just as the magnetic field
potential was responsible for the difference between quantum mechanical and
semiclassical electron trajectories in the previous chapter.

When 6 > 0°, the gutter presents a potential energy barrier to the atom. This
potential increases nonlinearly in both the z and z directions, thus the force which
it exerts upon the atom increases nonlinearly with distance travelled. As the tilt
angle of the gutter is increased, it rises increasingly steeply in the x direction.
Furthermore, to satisfy the resonance condition, w, must increase as # increases,
making the curvature of the gutter potential even greater at high tilt angles. Thus,
if a wavefunction is diffuse in real space, the force exerted by the gutter (which

is responsible for zz coupling) varies significantly across the atomic wavepacket.
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Figure 5.17: Snapshots of the time-evolution of the atomic probability distribu-
tion, for r = 1, § = 45° and w, = 27 x 236 rad s~!. Surface plots of the probability
distribution at times (a) ¢ = 0 ms, (b) ¢ =3 ms, (¢) ¢ = 6 ms, (d) ¢ = 9 ms, (e)
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trajectory is overlaid in black, whilst the magenta cross marks the point on the
trajectory corresponding to the current frame.
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Figure 5.17: Continued.
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Hence the wavepacket responds to an average force that is not equal to the local
force at the point of highest probability density (due to the spatial nonlinearity
of the gutter potential). For correspondence with semiclassical dynamics the
assumption that force varies slowly over the wavepacket must be valid, and this
is clearly not the case here. At turning points in the trajectory, the leading
edge of the wavepacket experiences very high differential forces due to the gutter
potential. These forces strongly distort the wavepacket, triggering the deviation
of the quantum mechanical and semiclassical paths, as is particularly apparent
in figures 5.17 and 5.18. Note that the atomic wavepacket (figure 5.11) is very
much more diffuse than was the case for the electron previously studied (figure
4.17). This difference in extent arose as a result of the different approaches taken
to selecting the initial wavefunction (discussed in sections 4.3.1 and 5.3.1). As
a result, the differential forces acting across the wavepacket due to the changing
gutter potential are very much larger in the atomic case, which explains the fact
that even at high tilt angles the quantum mechanical electron analysis still tended
to show a reasonable level of consistency with the semiclassical model.

It also helps to consider the relative magnitudes of the gravitational and con-
fining potential energies for various angles. Firstly, note that the change in grav-
itational potential energy per lattice period is always the same, regardless of

atomic position or tilt angle:
—magdor, ~ 0.5 peV. (5.23)

The effect of this is to try and push the atom through the optical lattice, moving it
in the direction of the gutter. However, calculating the change in gutter potential
energy (due to movement between points b and a separated by a distance doy, in
the direction of the lattice):

S (20) - 22(a), (524

we find that equation (5.24) yields approximately 1.2 peV, 1.8 peV and 2.2 peV
for § = 30°, 45° and 60° respectively in the region where each trajectory begins
to deviate significantly. So when we begin to observe large separations in the
two paths, the effect of the gutter potential is approximately four times greater
than that of the force pushing the atom through the system. Combined with this
factor is the issue of the barriers presented by the optical lattice. As the gutter
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is tilted, even though the applied gravitational force remains in the x direction,
the overall direction of motion is along the direction of the gutter. Therefore the
effective thickness of the barriers presented by the optical lattice potential along
the direction of motion increases as 6 increases. Furthermore, when the atom
travels a long way up the banks of the gutter, the high potential energy (~ 100
peV when the atom deviates for § = 30°) will begin to strongly perturb or even
break the band structure in that region.

The net effect is that when an atom moving along a narrow tilted gutter po-
tential undergoes a rapid change in direction, there is some quantum mechanical
probability that the atom will be reflected back along the gutter. When the gut-
ter is tilted at a large angle, the intial wavefunction is more diffuse since it can
spread a greater distance along the gutter, leading to a reduction in the ampli-
tude of the cross-sectional probability density in the x direction. In addition, the
atom tends to have higher velocities when 6 is large and so the wavefunction is re-
quired to respond more quickly to sudden changes. Under these conditions there
appears to be an increased chance that a substantial part of the wavefunction
is reflected. Hence a large fraction is dominated by the influence of the gutter
potential, whilst a small part continues to spread along the semiclassical path.
Since the mean trajectory is an average of both of these effects, it separates from

the semiclassical path at the point when the wavefunction distorts.



Chapter 6

Bose-Einstein condensates in an
optical lattice and a tilted

magnetic gutter

6.1 Introduction

In the previous chapter, non-KAM chaotic dynamics of a single ultracold sodium
atom were investigated. Here, we consider a related system involving a Bose-
Einstein condensate (BEC): a dilute cloud typically containing many thousands of
ultracold atoms, of which approximately 99% are in the gound state of the system
following cooling to nanokelvin temperatures. When there are no changes in the
internal structure of a condensate, its quantum mechanical motion mimics the
semiclassical dynamics of the single atom case. However, if the internal structure
of the BEC changes, the quantum behaviour deviates from this semiclassical path.
Hence such deviations provide a useful test to see whether changes in the internal
structure of a condensate are significant. Previous studies have applied this idea
to the case of a condensate performing Bloch oscillations in the lowest band of
an optical lattice [70]. It was found that when manipulating the condensate’s
phase and density via Bloch oscillations, solitons and vortices were produced,
which led to breakdown of the Bloch oscillations. Here, we will consider the
motion of a condensate in a non-KAM chaotic regime and compare this to the
results obtained in chapter 5 in order to study whether the onset of chaos creates
topological excitations in the BEC, which change the internal structure of the

atom cloud.
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When analysing the dynamics of a BEC, we must take into account the leading
role that the interatomic interactions play in the energetics of the system. The
strength of the interactions is characterised by the s-wave scattering length, a (see
section 2.4). Tt is possible, by applying a magnetic field, to tune the magnitude
and sign of the effective atom-atom interaction via Feshbach resonances [7]. Near

a Feshbach resonance, the scattering length is given by

a=a <1 - BAfBBO> (6.1)

where @ is the scattering length away from the resonance and Arp parametrises

the width of the resonance at B = Bj. Predictions of the Feshbach resonances
in sodium were made in 1995 [71], and these were observed experimentally in
a sodium condensate in 1998 [72]. By comparing the case of a non-interacting
atom firstly to a BEC in a weakly interacting regime, and then secondly to the
strongly interacting regime, the theorist can more easily identify the role played
by interactions in the system. We will consider the non-KAM chaotic quantum
dynamics for different strengths of the interaction parameter.

We shall model a ?*Na condensate comprising N4 = 10* atoms which is pre-
pared in a one-dimensional optical lattice and a harmonic trapping potential.
Experimentally, this type of trap has been created using lasers rather than mag-
netically [7] - a necessary factor since an optical trapping potential is not affected
by the application of magnetic fields to excite Feshbach resonances [72]. One can
therefore apply an additional magnetic field to vary a by means of the Feshbach
resonance. Other than this, the system is identical to that specified in chapter
5. Once the condensate has settled into the ground state of the system, the trap
is again switched off in the z; direction to create a gutter potential. Numerical
simulations of the wavefunction in two dimensions are then performed with the
interatomic interactions set initially to a low strength interaction and later, to
the full strength of interactions between sodium atoms in a dilute cloud. The
gutter frequency w, is adjusted to produce both on and off resonance conditions
for various tilt angles, and once more the quantum mechanical trajectories of
the wavefunctions are calculated as the atom falls through the optical lattice, for
comparison to single-atom semiclassical results.

Although one- and two-dimensional systems may at first seem to have no
relevance to real systems, Choi reminds us that it is reasonable to model BEC

dynamics in the direction of the standing wave in a 1D approximation provid-
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ing the proposed experimental processes along this direction have much shorter
temporal periods than any effects which may occur in the perpendicular direc-
tions [73]. The reader should also note that work on condensates is often done
using nearly two dimensional systems, such as a cigar-shaped or pancake-shaped
BEC, in which the third dimension is very small compared with the other two
due to very high trap frequencies. Hence, theoretical two dimensional studies
are frequently of interest, whilst also being much faster to calculate than the

three-dimensional case.

6.2 The quantum mechanics of the system

The quantum mechanical Hamiltonian of the system is as in previous chapters:

w0 0?
<@ + ﬁ) + ‘/ert (517, Z) + VOL (117) (62)

B 2m,

where the optical lattice is again defined as in the experiment by Wilkinson [67],
such that

Vor () = Vj sin? <%> : (6.3)

and where V,,; is as previously specified by equations (5.6) and (5.8) in section
5.2 for the trapping and the dynamical stages of the calculations respectively.
However, when modelling a BEC the Schrodinger equation is no longer sufficient
- the Gross-Pitaevskii equation (see section 2.4.2) must be employed to incorpo-
rate the effects of the interatomic forces. The effective interaction between two
particles at low energies is given by

v, = i’ (6.4)

Mg

where for an alkali atom a is typically of order one hundred times the Bohr radius,
ag =~ 0.0529 nm. Treating the system using a mean-field approximation results

in a nonlinear Schrodinger equation

ov
ih—— = HW + Uy ViR (6.5)
where the Hamiltonian has been defined in equation (6.2).

The Gross-Pitaevskii equation assumes firstly that the temperature of the
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condensate is absolute zero (which is a good approximation for condensates well
below the transition temperature, T,). For the parameters studied here, T, will

be in the range [7]

1
G\ [Ny 7
T. ~ 45 (—) 24 100 - 250 1K, :

1007 ( 8 > " (6.6)

where the expression for T, is approximated from the rigorous derivation of T,

in [7], and where @ is the geometric mean of the trapping frequencies:

o=

(6.7)

0 = (Wywyw,)

The second assumption is that the mean inter-particle spacing is much greater
than a. For the condensates considered here, the densities are of order 10" ¢cm™3
and so the mean inter-particle spacing is ~200 nm. Therefore, since the typical
value of a is ~ 100ag ~ 5 nm, use of the Gross-Pitaevskii equation is clearly
justified. This equation is solved numerically via the Crank-Nicolson method [60],
which is described as applied to the Gross-Pitaevskii equation in Appendix C.

It is particularly important to be sure that the condensate wavefunction is in
the ground state of the system before attempting to predict its time-dependent
evolution, since an initially excited wavefunction may well lead to confusion when
trying to ascertain the effect of chaos on the system. An imaginary time algorithm
is again employed to determine the ground state of the system numerically [69],
as described for the single atom case in section 5.3.1. However, in the case of
the condensate, the wavefunction is renormalised to the total number of atoms.
Simulations are performed with a taken to be either 0.45 nm or 4.5 nm (the latter
being the typical interaction parameter for »*Na [7]), with the aim of clarifying
the role of interactions in the system.

Figures 6.1 and 6.2 show examples of the initial condensate density. In figure
6.1, # = 15° and a = 0.45 nm, and in figure 6.2 § = 60° and a = 4.5 nm. A cross
section of the density in the z direction (for z = 0) is plotted in (a), whilst (b)
is a surface plot of the density. Both surface plots use the same scale to allow
direct appreciation of the effects of varying 6 and a.

When 6 is small, the area occupied by the initial state is small and the peak
density is high (see figure 6.1(b)). Increasing € increases the size of the BEC
because the wavefunction is able to spread out further along the gutter (figure

6.2(b)). This also causes a decrease in the peak condensate density. When a
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Figure 6.1: Ground state of the condensate for the case when 6 = 15° and the
interaction parameter @ = 0.45 nm. (a) Cross section of the density along z = 0.
(b) Surface plot of the condensate density.
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Figure 6.2: Ground state of the condensate for the case when 8 = 60° and the
interaction parameter ¢ = 4.5 nm. (a) Cross section of the density along z = 0.

(b) Surface plot of the condensate density.
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is small there is less repulsive force between the atoms of the condensate, thus
smaller atom clouds of higher densities are possible. When a is large, the increased
repulsion causes the atoms to spread out further, tending to increase the size of

the atom cloud and lower the peak density.

6.3 Quantum mechanical trajectories

The trajectory of the wavepacket is determined in each instance by calculating
(z) and (z) as a function of time as in previous chapters (see equations (4.47a)
and (4.47b)). Plots of < x > versus < z > can then be compared to the re-
sults obtained in the semiclassical analysis of a single sodium atom in section
5.2. Taking into account the results obtained in chapter 5 for the single atom
wavefunction, it seemed prudent to focus particularly on the case when 6 = 15°

since the quantum and semiclassical paths give better agreement at small 6.

6.3.1 Results for a = 0.45 nm

Figure 6.3(a) shows the mean path of the weakly interacting condensate (red)
when 6 = 0°. Superimposed on the plot is the semiclassical single atom trajec-
tory (black). Only motion in the z direction as a function of time is presented,
since the z direction is of little interest when # = 0°. The condensate performs
damped Bloch oscillations of the same frequency and initial amplitude as in the
semiclassical model. This is as expected from the work of Scott [70], who numer-
ically modelled damped Bloch oscillations in trapped Bose-Einstein condensates
using an optical lattice potential.

Figure 6.3(b) shows the condensate and semiclassical single atom trajectories
for r = (1 4++/5)/4, § = 15° and w, = 27 x 213 rad s~'. As in figure 6.3(a),
the form of the trajectories shows good agreement, although the scale of the
condensate path becomes gradually smaller than the semiclassical curve. The

same is true of figure 6.3(c), where r = 1, = 15° and w, = 2w x 172 rad s~ 1.

6.3.2 Results for a =4.5 nm

In figure 6.3(d), r = 1,0 = 15° and w, = 2w x 172 rad s~! (just as for figure 6.3(c)).
But, the increased interaction strength causes the semiclassical and quantum

mechanical paths to deviate much sooner and by a much greater amount than was
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Figure 6.3: Comparison of semiclassical (black) single atom trajectories with
mean quantum mechanical trajectories (red) calculated from the time evolution of
the condensate wavefunction. (a) a = 0.45 nm, § = 0°, w, = 27 x 167 rad s~! (b)
r=(1++5)/4,a=0.45nm, § = 15°, w, =27 x 213 rad s~! (c) r = 1, a = 0.45
nm,  =15°, w, =27 x 172rad s~ (d) r =1, a = 4.5 nm, 6 = 15°, w, = 27 x 172
rad s~
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Figure 6.4: Comparison of semiclassical (black) single atom trajectory with mean
quantum mechanical trajectory (red) calculated from the time evolution of the
condensate wavefunction, for the case when » = 1, ¢ = 4.5 nm, 0 = 60°, w, =
271 x 333 rad s~ L.

the case in figure 6.3(c). The mean motion of the strongly interacting condensate
initially resembles the semiclassical model, however it quickly deviates from this.

Figure 6.4 shows a comparison of quantum and semiclassical trajectories for
the case when r = 1, § = 60° and w, = 27 x 333 rad s~!. Under these circum-
stances, the paths are coincident at short times until the first turning point is
reached. But thereafter, the correspondence is rapidly lost. Indeed, the mean
position of the condensate appears to become localised in a fairly small region

compared with the highly extended single-atom paths that occur when 6 = 60°.

6.4 Consideration of the condensate wavefunc-
tion

This section explores the nature of the condensate wavefunction as it evolves
along the mean trajectories presented in the previous section. Snapshots of the
density are shown at various times for a selection of system parameters, overlaid
with plots of the quantum mechanical mean position and (in some cases) the

corresponding semiclassical path.
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6.4.1 Results for a =0.45 nm

In figures 6.5 and 6.6, # = 15°. The system is off resonance in figure 6.5 (r =
(1 ++5)/4, w, = 2m x 213 rad s~!), and on resonance in figure 6.6 (r = 1,
w, = 21 x 172 rad s7!). In both cases the evolution of the condensate density
displays similar properties. At ¢ = 3 ms (figure 6.5(b) and figure 6.6(b)) the initial
structure of the BEC remains intact. However, from ¢ = 6 ms to ¢t = 9 ms (figures
6.5(c)-(d) and 6.6(c)-(d)) the shape begins to change, indicating that the leading
section of the condensate may break away. By ¢ = 12 ms (figures 6.5(e) and
6.6(e)), the structure has clearly undergone substantial fragmentation, yet despite
becoming increasingly dispersed as time proceeds (figures 6.5(f)-(h) and 6.6(f)-
(h)), the mean position of the condensate continues to follow a damped version of
the semiclassical path. Note that the semiclassical path has been omitted in figure
6.5 to avoid confusion due to the complex nature of the trajectory. However, the
reader may refer back to figure 6.3(b) to view the semiclassical path.

In figure 6.7, the phase of the condensate wavefunction, defined as

_ 1 Im {v}
¢ =tan” B

,0<¢<2m, (6.8)

is considered at ¢ = 3 ms for » = 1 (corresponding to the probability density
shown in figure 6.6(b)). Figure 6.7(a) is a surface plot of the phase (neglecting
points where the density is less than 2% of the maximum). White represents a
phase of 0, whilst black is 2. A cross section of the phase taken along the dashed
line is shown in (b). The form of the condensate density along this line is also
included in (c) for reference.

Scott [70] found that for a condensate performing simple Bloch oscillations, a
standing wave is formed at the point of Bragg reflection, where the minima in the
modulated probability density fall to zero at the maxima in Vp(z) and, across
each zero, the phase changes abruptly by 7. He showed that such standing waves
were able to generate stationary solitons, depending upon the condensate density
and the Bloch period. In figure 6.7(b), a number of discontinuities close to m
can be seen in the phase (only one of these actually has magnitude 7). Figure
6.7(c) also shows that the corresponding density minima have fallen sharply in
comparison to the modulation observed in the initial state in figure 6.1, and are
close to zero.

The reason we do not see a perfect standing wave as Scott did is because of
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Figure 6.5: Snapshots of the time-evolution of the condensate density, for r =
(1++5)/4, a = 0.45 nm, § = 15° and w, = 27 x 213 rad s~!'. Surface plots of
the probability distribution at times (a) ¢ = 0 ms, (b) t = 3 ms, (¢) t = 6 ms, (d)
t=9ms, (e) t =12 ms, (f) t = 15 ms, (g) t = 18 ms and (h) ¢ = 21 ms are shown.
The mean quantum mechanical trajectory is overlaid in black, whilst the magenta

cross marks the point on the trajectory corresponding to the current frame.
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Figure 6.6: Snapshots of the time-evolution of the condensate density, for r = 1,
a = 0.45 nm, § = 15° and w, = 27 x 172 rad s~!. Surface plots of the probability
distribution at times (a) £ = 0 ms, (b) ¢ =3 ms, (¢) ¢ = 6 ms, (d) £ = 9 ms, (e)
t =12 ms, (f) t = 15 ms, (g) ¢ = 18 ms and (h) ¢ = 21 ms are shown. Both
the mean quantum mechanical trajectory (solid line) and semiclassical single atom
trajectory (dotted line) are overlaid, whilst the magenta cross marks the point on
the quantum mechanical trajectory corresponding to the current frame.
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Figure 6.7: The phase of the condensate wavefunction (modulo 27) at ¢ = 3 ms
for r =1, @ = 0.45 nm, § = 15° and w, = 27 x 172 rad s~!. (a) Surface plot
of the phase. Black corresponds to a phase of 2w, white to zero phase. Phase is
only shown for points where the probability density is at least 2% of the maximum
value. (b) Cross section of the phase, taken along the dashed line in (a). (c¢) Cross
section of the probability density function along the dashed line in (a).
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the asymmetry of motion in this case. Scott’s condensate underwent motion in
the = direction only, in a symmetrical trap, whilst the condensate here is moving
in a circular fashion through the z-z plane in an asymmetric potential. This
prevents the appearance of a perfect interference pattern at the turning point.
The fact that the wavepacket is not entirely stationary at the turning points
here is the reason that the chain of discontinuities observed in the phase (figure
6.7(b)) do not have magnitude of exactly 7. In experiments, laser illumination
has been used to produce 7 phase shifts which subsequently evolved into dark
solitons [30, 74, 75]. Thus it is reasonable to propose that the chain of phase
changes ~ 7 seen here also generate unstable solitons, that are responsible for
the fragmentation of the condensate at times ¢ = 12 ms shown in figures 6.6(g)
and (h).

However, the condensate motion begins to deviate from the semiclassical sin-
gle atom path at significantly earlier times than this. Recall the discussion of
the reduction in the mean quantum mechanical atomic velocity in the previous
chapter, where the spread in real space of the wavepacket combined with the
nonlinear curvature of the gutter potential led to large differential forces acting
across the wavepacket. The same effect applies in this case, but since the in-
teratomic interactions cause the wavepacket to spread out further in real space,
greater deviations of the quantum mechanical trajectory from the semiclassical
are seen at shorter times. This effect is reinforced, since the variation in force
across the wavepacket leads to a variation in k across the wavepacket. Hence, the
spread of the wavepacket in k-space will change, and any increase in the spread

results in a decrease in the mean velocity, as shown previously.

6.4.2 Results for a =4.5 nm

Figure 6.8 illustrates the density in the strongly interacting case when r = 1,
6 = 15° and w, = 27 x 172 rad s7'. The mean path of the condensate (solid line)
and semiclassical single atom trajectory (dashed line) are overlaid once more. In
figure 6.8(a)-(c) the density remains uniform and there is little change to the
condensate structure. However in 6.8(d)-(f), we see the condensate begin to
deform shortly after the first significant change in direction. Soliton and vortex
formation follows almost immediately, with regions of zero density appearing and
deforming the shape of the condensate (e.g. the vortex marked by the arrow in

figure 6.8(e)). This change in internal structure causes the quantum mechanical
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path to deviate from the semiclassical one (figure 6.8(d)-(f)). Large numbers of
similar patches of zero density subsequently appear (figure 6.8(g)-(i)), causing the
condensate to explode, with the fragments continuing to oscillate along the gutter
potential, and the correspondence between quantum mechanical and semiclassical
paths is lost.

The reader should note that the time elapsing between frames is shorter than
in previous figures since the breakdown of the condensate occurs more quickly due
to the stronger interatomic interactions when a = 4.5 nm. Also, frames at later
times are omitted entirely as there are no notable developments in the probability
density function subsequent to the explosion of the condensate.

In figure 6.9, r = 1, § = 60° and w, = 27 x 333 rad s~!. In this case, the
condensate explodes even more rapidly (by ¢ = 9 ms in figure 6.9(g)) and catas-
trophically than was the case when 6 = 15°. It is clear that for ¢ > 9 ms (figure
6.9(g) and (h)), the fragments of the wavefunction are simply diffusing along the
gutter potential in both directions, with the result that the mean position remains
approximately stationary in the x direction, whilst oscillating in the gutter in the
z direction.

In the strongly interacting condensate, the spread of the wavepacket in real
space is even larger. Thus, the differential forces acting due to the gutter po-
tential are greater still (particularly at large tilt angles), and lead to enormous
deformation of the wavepacket at much shorter times than in the weakly inter-
acting case. It has been shown that strong spatial disruption of an atom cloud
results in a huge spread in k-space due to the fact that atoms are moving in all
directions [70]. Consequently (k —k,)? increases substantially, reducing the mean
velocity - a fact which is intuitive if we consider the fact that under such con-
ditions the atoms are moving less coherently. Furthermore, explosive expansion
of the atom cloud contributes an extra force acting along the direction of the
lattice, which reduces the Bloch amplitude. These factors combine to produce
the very low amplitudes of oscillation in the z direction observed at long times
in the strongly interacting case.

Previous studies have focused on the effect that the initial density of the con-
densate has on the rate of soliton production [12]. High peak densities reduce
the healing length £ of the condensate, and so the expected width of solitons,
w =~ 2¢ decreases. As the soliton width approaches the spatial period of the op-
tical lattice, soliton production becomes easier since the density nodes imprinted

at Bragg reflection already closely resemble a chain of dark solitons. However,
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Figure 6.8: Snapshots of the time-evolution of the condensate density, for r = 1,
a=4.5nm, § = 15° and w, = 27 x 172 rad s~!. Surface plots of the probability

distribution at times (a) ¢ = 0 ms, (b) t =2 ms, (¢) t =3 ms, (d) t =5ms, (e) t =6
ms, (f) t =8 ms, (g) ¢t =9 ms, (h) £ =11 ms and (i) ¢ = 12 ms are shown. Both
the mean quantum mechanical trajectory (solid line) and semiclassical single atom
trajectory (dotted line) are overlaid, whilst the magenta cross marks the point on
the quantum mechanical trajectory corresponding to the current frame. The arrow

in (e) marks the location of a vortex.
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Figure 6.9: Snapshots of the time-evolution of the condensate density, for r = 1,
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trajectory (dotted line) are overlaid, whilst the magenta cross marks the point on

the quantum mechanical trajectory corresponding to the current frame.
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recalling that the healing length is defined by

1
£= N (6.9)

we see that varying the strength of the effective interaction parameter also affects

soliton formation. And indeed, whilst increasing both the tilt angle and the
interaction parameter had the effect of reducing n by a factor of 4 in figures 6.1(a)
and 6.2(a), the interaction parameter has itself increased by a factor of 10. This
has the result that the healing length is approximately halved, to ~ 2do, in figures
6.9 to 6.9 when the condensate explodes catastrophically. Thus we conclude that
in order to further investigate this dynamic regime in Bose-Einstein condensates,
it is recommended that the Feshbach resonance be employed in order to reduce
the effective strength of the interatomic interactions and hence reduce the rate of

soliton production.



Chapter 7

Conclusion

7.1 Summary and overview

This thesis has probed dynamics arising from periodic potentials. The results
have illustrated that both superlattices and optical lattices are viable systems for
the study of non-KAM chaos. In a non-KAM system chaos switches on abruptly
throughout the entire phase space when the temporal frequency of a perturbation
reaches certain critical values. Chaos switches on globally rather than locally
making the system attractive as a switching mechanism [39]. The high degree of
control possible over the properties of optical lattices renders them particularly
attractive as a tool for studying this rare type of chaos.

Chapter 4 studied non-KAM chaos in biased superlattices subjected to a tilted
magnetic field. The electron dynamics in such systems were described both semi-
classically and quantum mechanically, and the results of such models were related
by an analysis of the motion in real and phase space. Non-KAM chaos was ob-
served when the Bloch and cyclotron frequencies were commensurate, leading to
the formation of stochastic webs in phase space. Electronic transport properties
were also calculated, and good agreement between theoretical and experimen-
tal -V curves was demonstrated. It is notable that the stochastic web-induced
current resonances observed in the superlattices are two orders of magnitude
stronger than those originating from quantum chaos in previous semiconductor
devices and, for the first time, even present at room temperature. The strength
of the applied magnetic field was shown to influence the correspondence between
semiclassical and quantum mechanical theories of transport. In addition, the de-

sign of the superlattice structure was also shown to have an important effect on
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the transport properties, altering the likelihood of interminiband tunnelling.
Chapter 5 examined the possibility of creating non-KAM chaos in an alter-
native system: that of a single sodium atom confined in a tilted gutter potential
and falling through an optical lattice. However, allowing the atom to fall under
the influence of gravity greatly limited the number of resonances which could be
observed. Under conditions where the gutter was tilted by a small angle with
respect to the optical lattice, correspondence between semiclassical and quantum
mechanical theory was good. However, large tilt angles require tightly confining
gutter potentials in order to satisfy the resonance condition. These narrow gut-
ters reduce the level of correspondence between the semiclassical and full quantum
mechanical models, and we observed fragmentation of the atomic wavefunction.
Chapter 6 extended the work on the single sodium atom to consider the case
of a Bose-Einstein condensate containing 10* sodium atoms. Knowing that the
Feshbach resonance has been used to vary the effective interaction parameter in
experiments on sodium condensates [72], the interaction parameter was adjusted
to produce both weakly and strongly interacting condensates. We found that the
mean trajectories of weakly interacting condensates resembles single-atom trajec-
tories at small tilt angles despite fragmentation of the condensate wavefunction.
Strongly interacting condensates became highly fragmented and their paths de-
viated rapidly and significantly from single-atom behaviour, even at small tilt

angles.

7.2 Suggestions for further study

There are several avenues of investigation that remain unexplored at the con-
clusion of this thesis due to time constraints. One particular area of interest in
chapter 4 is the quantum mechanical calculation of drift velocity field curves for
superlattice sample NU2299. Smoothing of the peaks due to tunnelling was only
carried out for the case when the tilt angle of the magnetic field was zero. However
it would be useful to predict the electric fields at which tunnelling effects may be
occurring at larger tilt angles and, following further smoothing, to produce I-V
and G-V characteristics which may better approximate to real experimental re-
sults. Yet more realistic would be to model the charge build up in a superlattice
sample and hence incorporate a more realistic non-linear electric field into the
quantum mechanical model - this would hopefully minimize the unrealistic levels

of tunnelling observed previously.
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In the case of the single atom system, there is motivation for calculation of
atomic drift velocity curves, as have been measured in recent experiments [76]. It
may be possible to excite resonant stochastic web formation by accelerating the
atom past the optical lattice by detuning the lasers, rather than allowing it to fall
under gravity [11]. In this way, the acceleration of the atom could take a wide
range of values. Firstly, this would enable calculation of an atomic drift velocity
curve analogous to the drift velocity field relationships calculated for electrons in
chapter 4. Secondly, it would also allow the use of low trapping frequencies which
might avoid the breakdown of the wavefunction at high tilt angles.

In addition, it would be interesting to investigate the effect of including a
weak confining potential in the x direction, as was applied when determining the
ground state of the system. If this potential were allowed to remain in place,
instead of being switched off at ¢ = 0, it may prevent spreading of the atomic
wavefunction, yet would also have some effect on the formation of stochastic
webs. It is likely that some semblance of the web would still appear in the
central region of phase space where the system is only weakly perturbed by the
additional trapping potential. However, it is expected that the web would break
down away from its centre as the perturbing effect of the trap becomes stronger
and destroys the resonance. How strong could this extra confinement be made
before the stochastic dynamics entirely break down?

In chapter 6 it would be useful to consider the effect of the confining potential
in the = direction applied when calculating the ground state of the Bose-Einstein
condensate. The choice of this potential may, by altering the initial peak density,
influence the rate of soliton production in the condensate and hence affect the
likelihood that the wavefunction explodes [12]. Investigating this factor would
also enable us be more confident in proposing whether excitations in the con-
densate form as a result of the stochastic dynamics or simply result from the
initial peak density. Again, utilising an accelerating lattice in place of gravity
would allow the selection of more favourable conditions, namely, lower trapping

frequencies in the z direction.



Appendix A

Derivation of the Fourier
coefficients for the dispersion
relation of the lowest energy

band of a 1D periodic potential

The relation between energy E and wavevector k, for a miniband with inversion

symmetry about the centre of the Brillouin zone (k, = 0) may be written

E(k,) = Bl <a0 - Zan cos (nkdeL)) (A.1)

n=1

where the coefficients a,, are determined as follows.

Firstly, multiply equation (A.1) by a factor
cos (n'kydsr) (A.2)

where n' is a positive integer. Secondly, integrate the result over the first Brillouin

zone:

+m/dst
/ E(ky) cos (n'kydsy)dk,

m/dsL

A +n/dst, 0
= — ag — Z a, cos (nkydsy) | cos (n'kydsp)dk,.  (A.3)

2 —ﬂ/dsL n=1

Consider the right hand side of this equation for two separate cases: when n' =0
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and when n' > 0. In the first case, n’ = 0, the right hand side of equation (A.3)
is
ﬁao. (A.4)
dsr,
In the case when n' > 0, the right hand side terms in equation (A.3) vanish unless

n' = n, so we have

A +7/dsL
——an// cos? (n'kydgy) dk,. (A.5)
2 —m/dsL
Since )
cos? (n'kpdsr) = 3 (1+ cos (2n'k,dsy)) , (A.6)

we see that the right hand side of equation (A.3) is now given by

Ay . (A?)

Therefore, if we ignore the prime, we can write the nth coefficient of E(k,) as

dgy [T/t 1 ifn=0
oy = o 25E B(k,) cos (nkydsp)dk,.  a—=14 - T (A.8)
AT S _r/dg, -2 ifn>0



Appendix B

The 4th /5t order adaptive
Runge-Kutta method

The fourth order Runge-Kutta method is a fast, simple and highly accurate nu-
merical technique. There follows a description of its implementation to solve a

second-order ordinary differential equation of the form
X + a(x, t)x = b(x,1) (B.1)

where x is some vector of simultaneous variables and a(x, t) and b(x,t) are arbi-
trary functions. An adaptive step size is also employed in order to increase the
accuracy of the final result to fifth order. For a more detailed description of this
procedure refer to [60].

We begin by rewriting equation (B.1) as a coupled set of first-order differential

equations:

).(1 = X9 (B2)

Xp = f(xu1,1) (B.3)

where f(x1,t) = b(x1,t) — a(x1,t)x;. A single element z of the vector x; will
be considered here for clarity: the same method should be applied to each of the

simultaneous variables represented by the vector. So we now seek a solution to

dx
- = [ (B.4)

where some explicit form of f(z,t) is known, along with some initial condition
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(%0, o). This information will be used to determine subsequent values x,, of z at
discrete times t,,, where n =1,2,3, ...
The Taylor expansion of z(t) about (x,, t,) is used to write down an expression

for z,,1 at some time t,,; = t, + A; in terms of x,:

dx

1 ., d*x
AQ
dt

5 t W <y (B-5)

Tn4+1 = Tn + At

In ,tn Tn atn

where A, is the discrete time step. This can be used to write x,,; correct to
fourth order in A, in the form [60]

1
Tptl = Ty + 6 (k1 + 2ko + 2k3 + ky) + O(A?) ; (B.6)

where
Tn, tn)

e (
tf (2n +k1/2t +Ay/2)
tf(xn+k3atn+At) )

and O(A?) represents the terms of higher than fourth order which have been
neglected. This method is based upon the idea of taking trial points across the
time interval to improve the accuracy of the final result.

An adaptive step size approach is used to increase both the speed and accuracy
of the simulation. This involves calculating two estimates of x,,,: the first
estimate, x4, is calculated using a single time step A; over the interval ¢, —
tn + Ay, and the second, x; employs a time step A;/2 to take two steps over the
interval, that is ¢, — t, + A;/2 — t, + A;. The accuracy of the final result is
improved as follows.

If z(t+ A;) is the exact solution of x at time ¢+ A, then the two fourth order

approximations x; and x; may be used to write:

z(t+Ay) =z + AJa + O(AY) (B.7)

z(t+ Ay) = x4+ 2 <%>5 a+ O(AY) (B.8)

where o ~ &.d°z/dt®. Subtracting equation (B.7) from equation (B.8) we can
write

Tqg— Ty = —Aja = (B.9)

16
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where 7 is the truncation error to sixth order. Thus an improved estimate that

makes use of equation (B.9) may be written:

Tns1 = Ta+ % +O(AY), (B.10)

where the accuracy is now to fifth order.
The reader might imagine that effectively tripling the number of calculations
required per time step would increase the computational time so much that the
gain in accuracy is outweighed. However, knowledge of the truncation error for
a given choice of time step may be used to refine the interval size in the next
iteration. If a maximum limit, ~,, is specified for the truncation, then the time
step A,, necessary to limit the error to =, must satisfy
5

Ap

Ay

Tn

s (B.11)

since the truncation is proportional to A?. For nonlinear systems, where x may
take large values yet vary rapidly on a small scale, it is appropriate to base the

choice of v, upon the local error such that
o =TAf(2,1) (B.12)

where T' ~ 1 x 1072 is a tolerance [6]. The step size may then be adjusted so
that the largest of the errors relating to the simultaneous variables lies within
the tolerance limit - although it is essential to place a lower limit on the value
of A; so that it cannot tend to zero. Varying the step size in this way enables
the theorist to devote more computational time to rapidly varying sections of a
trajectory, whilst spending less time on linear regions. Tests of the simple fourth
order method versus the adaptive fifth order version (upon a similar system)
showed that the adaptive code is approximately twenty times faster for the same

overall accuracy [6].



Appendix C

The Crank-Nicolson Method

Chapters 4, 5 and 6 all make use of the Crank-Nicolson method [60] to predict
numerical solutions of quantum dynamics. While chapters 4 and 5 solve only
the Schrodinger equation, chapter 6 solves the Gross-Pitaevskii equation which
is an extension of the Schrodinger equation that applies to interacting particles
(see section 2.4.2). The method described here is applied to the Gross-Pitaevskii
equation, since it is then a simple matter to set the strength of inter-particle
interactions to zero in order to determine solutions for the Schrodinger equation.
Due to the nonlinear form of the Gross-Pitaevskii equation, only the simplest
cases may be solved analytically. Consequently, numerical techniques must usu-
ally be employed. If all the potential energy terms are combined together, the
time-dependent Gross-Pitaevskii equation for a 3D system is
. ha\p (r, ) h?

th—p— = —%VQ\IJ (r,t) +V (r,t) U (r,1) (C.1)

where

V (r,1) = Viae (v) + Up | (r, 1) 2. (C.2)

where V., (r) describes the externally applied potential and Uy is a real constant.
For the BEC considered in chapter 6, Uy is a function of the s-wave scattering
length and therefore characterises the strength of the mean field due to interac-
tions. In chapter 6, equation (C.1) was integrated using finite difference methods
in two dimensions. This technique superimposes an equally spaced spatial grid of
points upon the system and approximates the wavefunction derivatives according
to the grid, so that the wavefunction may be estimated at each of these discrete

spatial points at finite time steps.
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The first stage in the method is to rewrite equation (C.1) in terms of the x
and z coordinates only (since it was shown in section 3.2.5 that the motion in the
y direction is separable and trivial):

ov [ o A
th—=——< =+ == ¢+ V(r,2) L. C.3
ot 2m { or? 022 } (z,2) (C3)
The finite difference approximation for the first order temporal derivative at the

nth time step is written as

n+l n
ov Y — Y (C.4)
ot Ay ’
where A, is the time interval, and the integers j and [ specify the coordinates
of a particular point on the grid. For the second order spatial derivatives, one
must first consider approximate Taylor expansions (omitting the superscript that

specifies the time step):

U AZPU
Wjrra ™ g+ Do s (C.5)
ov A2 9?0
U a0, — Ao Zel - C.6
j=11 7l 81‘ i + 2 8.1;2 i ( )

where A, is the grid spacing in the x direction. Summing equations (C.5) and
(C.6) results in

W] Wi — 2V + Wy (.7)
0x? |, A2 ’ '
Js
and similarly, we can also write
O* N \Ilj,l-I—l — 2\113"1 + \Ijj,l—l (C 8)
0722 il A? '

where A, is the spacing in the z direction. Substituting equations (C.4), (C.7)
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and (C.8) into equation (C.3) gives

\I’?Tl — v _ ﬂ (q’?+1,l — 207, + ‘I’?—l,l)

At N 2m A%
4 Wi — 295, + W
2m A2
,l: n n
- VI (C.9)

This is known as an explicit scheme, since there is only one unknown quantity,
\I!}ljl, for which the equation is easily solvable. However there is an equally valid
implicit scheme in which the right hand side of equation (C.9) is evaluated at

time #"*! rather than #* as previously:

n+1 n . n+1 n+1 n+1
Vil =5, dh (‘I’j+1,z_2‘1’j,l +‘I’j—1,l>

At N 2m A%
4 ﬂ \I’??:Lll B 2\1’;‘71 + \I’??L—ll
2m A?
_ %V}Trl\p?jl. (C.10)

In this case, there are many unknowns and therefore the equations are coupled
and are difficult to solve. The Crank-Nicolson method takes advantage of both
the accuracy of the explicit scheme and the stability of the implicit scheme [60]
by averaging equations (C.9) and (C.10) to give an expression for the temporal
derivative which is centred at time t"*1/2;

v -1

= —X

Ay 2

SmA2 {(W, = 2057 + 00)) + (Wi, — 295, + 95 ) }

+ 2mA2 {(‘I,;L?:I-ll B 2\11?,71 + ‘I'j,;r—ll) + ( i+ 2\I'j,l + \I’j,l—l)}
— (Ve VA (C.11)

In principal, equation (C.11) could be rearranged so that terms in ¥" and ¥"*!
are on opposite sides, and the equation solved directly by matrix methods. How-
ever, the vast amounts of computer time and memory that such an operation

would require prevent this. Instead a technique known as the operator splitting
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method is exploited [60].

The operator splitting method, or alternating direction implicit (ADI) method
as it is sometimes known, splits each time step into two shorter steps of time A;/2
and treats a different spatial dimension implicitly in each step. That is, during
the first step, \Iinfl/z

terms in z at t". The second step then evaluates ¥

is evaluated, with terms in z calculated at time t"*+'/2 and
n+1
sl
terms at t"1t1/2 and z-dependent terms at ¢"*!. Thus, in our two-step process we

calculating x-dependent

must first solve:

‘I,n+1/2 — g ﬁ

P T Y e
—h? n+1/2 n+1/2 n+1/2
5 (\Ifﬁ” — 20 g g H)
B2

Vet (\I!n+1/2+\lf )

2
<‘\Ijn+1/2 \I,n+1/2+‘\11 l| o )} (C.12)
followed by:

n+1/2 n A

v Wt 5 h
—h n+1/2 n+1/2 n+1/2
{QmAgz (wpif? =203 i)

—h?

(Wl — 200+ o)

2mA2,
Veat <\Ifn+1 —|—‘Ifn+1/2>

<‘\I,n—|—1| q,n+1 ’\IJ"H/Q

L 2) } (C.13)

where A,, = A, = A,. Although the sum of equations (C.12) and (C.13) is not
exactly equal to equation (C.11), it is a very close approximation to it.
Both equation (C.12) and equation (C.13) may be written as matrix problems

whose coefficient matrices relate only to terms in either U™, Wnt1/2 or yntl,
AUt/ — By” (C.14)

Af\IﬂH—l _ Bf\IﬂH—l/Q (015)
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A, B, A’ and B’ are tridiagonal matrices and ¥ is written as a column matrix.
Having tridiagonal matrix equations is a major advantage as it enormously re-
duces the amount of computing resources required to solve the problem. Each
part of the problem may be further divided into simple triangular matrix prob-

lems, which are trivial to solve. Consider the equation
MV =C (C.16)

where M is tridiagonal and ¥ and C are column matrices. By performing LU

decomposition [60] on M we obtain
MU = (LxU)¥ =L x (Ux¥) =C (C.17)

where M has been replaced by the product of a lower triangular matrix L and

an upper triangular matrix U. Thus, defining Y = U x ¥, we may solve
LxY=C (C.18)

for Y, and subsequently,
Y=UxVU (C.19)

for W, by a technique known as forward and backward substitution [60]. Note
however that in order to evaluate A and A’ the nonlinearity means that knowl-
edge of U"t1/2 or U"*! respectively is needed, i.e. the very quantity which we
wish to determine. To overcome this, a two-step iteration process is employed
at each stage, where we obtain an initial estimate, \T/, of the new wavefunction,
making use of its current value to approximate the nonlinear potential. The esti-
mate is then improved by repeating the calculation using the initial estimate in

the nonlinearity. This is summarised as follows:

A (T §H2 =B (3" 9" = C (C.20)
A <{fjn+1/2) g2 = B (0" ¥ = C (C.21)
A (UY2) gt = B (U2 w2 = D (C.22)

A,<(I;n+1> gl — B’(\I/"+1/2) g2 —p (C.23)



Appendix D

Choice of colourscale for

two-dimensional surface plots

The majority of surface plots presented in this thesis are coloured according to
the scale illustrated in figure D.1. The only exception to this is in the case of the
Wigner functions plotted in section 4.3.3 - the scale applied in these plots varies
very slightly from that in other figures, as will be explained shortly.

When plotting surfaces of probability density, the maximum density D,,q, of
the function at time ¢ = 0 is set to unity on the colourbar. However, during the
time evolution of the wavefunction, it is possible for peaks of higher density to
occur, therefore the colourscale applied must take this into account if there is
to be meaningful comparison of each frame in a sequence. Preliminary studies
indicated that a colourscale maximum of 1.2D,,,, is more than adequate to take
account of such variations.

When plotting the Wigner functions, it was found that the peak of the lo-
calised Wigner plot at ¢ = 0 always displayed the highest value W,,,,. Later
Wigner functions, being more diffuse in phase space, were consistently lower val-

ued than W,,,, at all points. In addition, since computing constraints only allow

0 02 04 06 08 10 1.2

Figure D.1: Colourscale applied to all surface plots presented in this thesis, with
the exception of the Wigner functions plotted in chapter 4. The numerical values
indicate density as a proportion of D;,,., the maximum of the probability function
at time ¢ = 0.
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consideration of a small region of phase space, portions of the Wigner function
may lie outside the area of study in later frames. Therefore, it is the distribu-
tion of the Wigner function rather than its actual value that is relevant, as we
cannot truly compare the evolution of the function frame by frame. Due to these
limitations, each Wigner function is coloured independently. The same colour
variation as in figure D.1 is applied, however the maximum of the colourscale is

always scaled to the maximum of the Wigner function in a given plot.
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