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Abstract 

There has been great interest in recent years in the development of wavelet methods 

for estimating an unknown function observed in the presence of noise, following the 

pioneering work of Donoho and Johnstone (1994, 1995) and Donoho et al. (1995). 

In this thesis, a novel empirical Bayes block (EBB) shrinkage procedure is proposed 

and the performance of this approach with both independent identically distributed 

(IID) noise and correlated noise is thoroughly explored. 

The first part of this thesis develops a Bayesian methodology involving the non­

central X2 distribution to simultaneously shrink wavelet coefficients in a block, based 

on the block sum of squares. A useful (and to the best of our knowledge, new) 

identity satisfied by the non-central X2 density is f:xploited. This identity leads 

to tractable posterior calculations for suitable families of prior distributions. Also, 

the families of prior distribution we work with are sufficiently flexible to represent 

various forms of prior knowledge. Furthermore, an efficient method for finding the 

hyperparameters is implemented and simulations show that this method has a high 

degree of computational advantage. 

The second part relaxes the assumption of IID noise considered in the first part 

of this thesis. A semi-parametric model including a parametric component and a 

nonparametric component is presented to deal with correlated noise situations. In 

the parametric component, attention is paid to the covariance structure of the noise. 

Two distinct parametric methods (maximum likelihood estimation and time series 

model identification techniques) for estimating the parameters in the covariance 

matrix are investigated. Both methods have been successfully implemented and are 

believed to be new additions to smoothing methods. 
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Chapter 1 

Introduction 

The past two decades have witnessed the development of wavelet allal~'sis, C1 powerful 

tool which emerged from mathematics and related fields and was adopted by a great 

variety of researches. The term "wavelet" originates from the work of .0.Iorlet et al. 

(1982), in the context of the analysis of sei~mic reflection data. Since then wavelet~ 

have led to exciting applications in many areas, such as signal processing, for example 

Mallat (1989), and image processing, for example Shapior (1993). The impetus for 

the application of wavelets in statistics stems from the early 1990s through the work 

of Donoho and Johnstone, with contributions also from Kerkyacharian and Picard. 

Wavelets provide a framework which possesses some key advantages. Firstl~', 

wavelets can be viewed as orthonormal basis functions that are localised in both time 

and frequency, with time-widths adapted to their frequency. This means that the~' 

are able to model a signal with high frequency components, such as discontinuities. in 

contrast to more traditional statistical methods for estimating an unknown function. 

A second advantage comes from the fast orthogonal discrete wavelet transform, 

which makes the application of wavelets available. A third advantage is that wC1yelets 

often provide sparse and, therefore, economical representations of functions. These 

key properties make wavelets an excellent tool for statistical denoising. 

With the introduction of nonlinear wavelet methods in statistics by Donoho and 

Johnstone (199J, 1995, 1998) and Donoho et al. (1995), the theory and application 

1 



Chapter 1 :Introduction 2 

of wavelet approaches to nonparametric regression has developed rapidly. n,Iany 

papers have been written on this topic. The key points in the mathematical theory 

of wavelets and their applications in statistics will be reviewed in Chapter 2. 

The application of wavelets in the context of nonparametric regression has been 

already discussed in the literature. Some authors have drawn the conclusion (Hall 

et al., 1997, 1998, 1999, Cai, 1999, Cai and Silverman, 2001) that thresholding 

based on blocking the wavelet coefficients has the potential to be more accurate 

than thresolding obtained term by term since the former method combines the in­

formation in neighbouring coefficients. However, block thresholding in the Bayesian 

framework has not received much consideration. This is one of the principal top­

ics that will be considered in this thesis (Chapter 3 and Chapter 4). An empirical 

Bayes block (EBB) shrinkage method is proposed. This itself brings forward several 

questions of its own. The two main questions are how to choose the families of prior 

distributions and how to shrink or threshold the noisy coefficients. In the existing 

literature, the parameters in the prior were either chosen by a combination of prior 

information and data-based estimation or an empirical Bayes (or marginal maximum 

likelihood) approach which is a completely data-based method. Generally, these es­

timation methods take longer computation time and make the Bayesian methods 

less competitive. An effective way to estimate the parameters is still needed; specific 

proposals are made in the thesis. A special issue arising in the block shrinkage and 

thresholding approach is how to choose the block size, which will be thoroughly 

investigated. 

In many applications, the possibility of correlated noise arises. This raises new 

issues which do not arise with models assuming IID noise. The literature on the 

correlated data situation has mainly concentrated on assuming covariance struc­

tures of wavelet coefficients. A natural question to ask is whether these covariance 

structures of wavelet coefficients can capture features of correlated noise in the time 

domain. This is the other main area that will be investigated in this thesis (Chapter 

5). Under the assumption that the covariance structure of correlated noise is known, 
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there is a clear need for an estimation procedure to find parameters in the assumed 

covariance structure. Furthermore, in order to obtain an effecti\"e estimation proce­

dure, it is also necessary to explore appropriate ways to make use of the rmy data 

values or the wavelet coefficients of these values. 

The entire study was carried out in the Matlab programmmg environment. 

The algorithms which use the discrete wavelet transform were performed using the 

WaveLab802 software that is freely available from 

http://www-stat.stanford.edu/software/software.html. 



Chapter 2 

Review of Wavelets and 

N onpararnetric Regression 

2.1 Introduction 

In this chapter, an overview of background material relevant to subsequent chapters 

is given. In the first two sections, some of the necessary mathematical background 

for wavelets will be summarised. In § 2.2, we will review the definitions of wavelets 

and multiresolution analysis (MRA). MRA provides a sequence of simple functions 

to approximate a general unknown function. In § 2.3. some wavelet transforms, the 

key mathematical tools in the use of wavelets, will be investigated. Some commonly 

used methods for univariate function estimation in nonparametric regression will be 

presented in § 2.4. The final section will consider the use of wavelets in statistics, 

with a focus on application of wavelets to nonparametric function estimation. A 

brief review of Bayesian analysis is provided in the appendix following this chapter. 

2.2 "Wavelets and Multiresolution Analysis 

Some ternlinology and background for wavelets. which is required to understand 

the wavelet methodology and applications considered later, is provided here. ~Ion' 
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detailed mathematical descriptions and wavelets can be found in l\Ie~'er (1992) and 

Daubechies (1992). 

2.2.1 Wavelets 

Wavelets comprise the family of translations and dilations of a single function, de­

noted 'ljJ. The function 'ljJ, which is called a mother wavelet \vas defined bv l'.Iever 
, 'L 

( 1992, page 66) as follows: 

Definition 2.1 Let m be a non-negative integer. A function 'ljJ(x) of a real variable 

is called a mother wavelet of class m if the following properties hold: 

1. ifm = 0, 'ljJ(x) E LOO(R); ifm > 1,~)(I) and all its derlLlatives up to orderm 

belong to LOO(R); 

2. 'ljJ(x) and all its derivatives up to order m decrease rapidly as x ----+ ±oo; 

3. J~:: xk'ljJ(x)dx = 0 for 0 < k < m; 

4. the collection of functions 2j /2'ljJ (2j ~. - k), j 1 k E Z. is an orthonormal basis of 

In the above, R is the set of real numbers, Z is the set of integers, L2(R) is the 

set of square integrable real-valued functions on Rand LOO(R) is the set of bounded 

integrable functions on R 

The functions 'ljJjk(X) = 2j/2'ljJ(2 jx - k) are wavelets. Condition (1) determines 

the regularity of the mother wavelet. The localization property mentioned in Con­

dition (2) extends also to the frequency domain. With regard to this property. 

many wavelets used in practice are compactly supported. Condition (3) specifies 

the oscillatory character, known as the vanishing moments property. 

There are many mother wavelets, e.g. the well-known Haar wavelet, discovered 

by the mathematician Haar in 1910, Symmlet wavelet, Daubechies wavelet and 
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0.04 r----~--___,_--_____. 0.1 r-----r-----..-----, 

0.02 
Haar Daubechies 

o 

-0.02 

-0.04 '--------'--__ --'-__ ---.J 

o 500 1000 1500 
-0.04'------'--------'-------1 

o 500 1000 1500 

0.08 0.08 

0.06 Symmlet Coiflet 

0.04 

0.02 0.02 

0 0 

-0.02 -0.02 
0 500 1000 1500 0 500 1000 1500 

Figure 2.1: Several common wavelets 

Coiflet wavelet, all discussed by Daubechies (1992). Although they have different 

expressions and characteristics, all of them satisfy the above definition. Figure 2.1 

shows several different wavelets we will use in the following chapters. These pictures 

are created using MakeWavelet in WaveLab802. 

2.2.2 Mallat's Multiresolution Analysis 

Multiresolution analysis (MRA) is a tool for the constructive description of different 

wavelet bases (Mallat, 1989). 

Definition 2.2 A multiresolution analysis of L2(R) consists of a sequence of closed 

subspaces Vi C L2(R), j E Z. with the following properties: 
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2. f(·) E Yj ¢? f(2·) E Yj+I; 

3. f(·) E Va ¢? fe - k) EVa, Vk E Z; 

4· njEz Yj = {O}; 

{Yj}) j E Z) is dense in L2(R); 

6. a scaling function ¢ E Va with a nonvanishing integral exists such that the 

collection {¢(x - k) Ik E Z} constitutes an orthonormal basis for Va. 

From Condition (1), Yj C Yj+Il the orthogonal complement il j of lj can be found 

such that Yj+1 = Yj EB ill}. where the symbol EB stands for direct sum. Similcnh', 

Yj = Yj-I EB W j - I and so on, from which it follows that 1\ }-I is also orthogonal to 

Wj and all the spaces 1\"j (unlike the spaces Yj) are mutually orthogonal. 

Conditions (2) and (3) imply that \/j E Z, {¢jk : k E Z} constitutes an orthonor-

mal basis for Yj, where 

Let Pj be the orthogonal projection operator onto Yj. Condition (cJ) implies that, 

when j ---+ -00, we lose all the details of f, and {Pjf} converging to {O} in an L2 

space can be expressed as 

where convergence of Pjf to 0 in an L2 space means .lim JR IPj f(x)1 2dx = O. On 
J--+-OO 

the other hand, Condition (5) ensures that the signal approximation converges to 

the original signal in the same sense: 

Then the approximation Pjf of a function f at resolution level j is given by 

00 

Pjf(x) = L Cjk¢jk(X), 
k=-oo 
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where 

ejk = 1: <pjk(x)f(x)dx. 

The MRA and rP defined in Condition (6) are called r-regular. if rP E C r , where 

C r is the set of functions which have derivatives up to order r, and rP and e\'en' 

derivative up to order r can be chosen in such a way that for ever~' integer m > 0 

there exists a constant Cm satisfying 

I ~(j) ( ) I < Cm f . - 0 
'f' X _ (1 + Ixl)m or J - ,1"", r. 

2.3 Wavelet Transform 

2.3.1 Wavelet Expansion 

From Definition 2.2, VJ C VJ+l, and so there exists the orthogonal complement 11 'j 

such that VJ+l = VJ EEl Wj with lVj-.l 'j. Therefore for some jo E Z, there is a series 
j-l 

of mutually orthogonal subspace llj, j E Z, such that VJ = V}O EEl EB H'k for] > ]0· 
k=jo 

In conjunction with Conditions (4) and (5) of Definition 2.2. this implies that 

EB H'j = L 2 (R). (2.1) 
jEZ 

In other words, L2(R) can be decomposed into mutually orthogonal subspaces, A 

function'ljJ can be found (see, for example, Daubechies, 1992 and i\Iallat, 1989) such 

that the collection {'ljJ(x - k)lk E Z} constitutes an orthonormal basis for 1\'0 and 

its integer translations and dilations {'ljJjk : 'ljJjk(t) = 2j/2'ljJ(2Jt - k), ]. k E Z} form 

an orthonormal basis for L2(R). 

N ow we consider the generation of an orthonormal wavelet basis for functions 

f E L2(R). For some]o E Z, {rPjok,'ljJjk: j.k E Z,j > jo} forms an orthonormal 

basis for L2(R). Using this basis, the wavelet representation of a function f is 

00 

f(x) = L CjokrPjodx) + L L djk 7)Jjk(X), (2.:2) 
kEZ j=jo kEZ 
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where the wavelet coefficients are 

djk = 1: 1/Jjk(x)f(x)dx (:2.3) 

and the scaling function coefficients are 

Cjok = 1: ¢jok(x)f(x)dx. (:2. --!) 

The first term on the right hand side of (2.2) is the approximation Pjof of f at 

resolution level )0· Using VJ+I = VJ E9 W j , and since {'l/Jjk : k E Z} is a basis for Hj, 

LkEZ djk'l/Jjk(X) is the difference between Pjf and the finer resolution approximation 

Pj+If. So for each value of ), the second term in (2.2) adds another level of detail 

into the representation. 

Because of the vanishing moments property (Condition (3) of Definition :2.1), if 

f is smooth, the wavelet representation is verv economical because there will be few 

wavelet coefficients djl" which are noticeably different from o. Also, because wavelets 

are localised in time and scale, a discontinuity, or other high frequency feature, in 

f will only result in large wavelet coefficients for values of k corresponding to the 

location of the feature. Therefore, many functions can be adequately represented 

by a small number of wavelet coefficients. This property explains the application of 

wavelets to data compression and is also important in statistical applications. 

2.3.2 The Discrete Wavelet Transform 

In statistical settings we are typically concerned with discrete samples, rather than 

continuous functions, since functions are, in practice, observed at a finite number of 

discrete time points. Therefore a discrete wavelet transform (DWT) is required. 

First consider some properties of ¢. Since ¢ E Vo C VI, there exist an II n such 

that 

(2.5) 
n 

where 

hn =< ¢, ¢In >= J ¢(x)¢ln(x)dx. 
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Therefore, for all j, k E Z, 

n 

and since the cPjk'S are orthonormal, 

Similarly, 'IjJ E Wo C VI, there exist gn such that 

(2.6) 
n 

where 

For all j, k E Z, 

n 

Mallat (1989) showed that one possible choice is gn = (-l)nh l _ n . 

The recursive relationship between the scaling function and wavelet coefficients 

at successive levels can be obtained from (2.~) and (2.5) 

Cj-I,k J f(x){ L "", 2k<Pjn(X) }dx 
n 

L hn - 2k { J f(x)<Pjn(x)dx} 
n 

(2.7) 

and from (2.3) and (2.6) 

(2.8) 
n 

This recursive relationship is another important property of wavelet transform held 

between scaling function coefficients and wavelet coefficients at successive le\Oels. 

This property is related to the "pyramid" algorithm, a fast algorithm to calculate 

the coefficients provided by Nlallat (1989). 
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Consider a vector of function values f = (f(t 1), """' f(tn))T at equall)' spaced 

points t i , and let n be an integer power of 2. say 2J+1. A function can be constructed 

at level J + 1 as follows: 

........ 

fJ+1(X) = LCJ+1,kcPJ+1,k(X), 

where CJ+1,k = f(tk)' The function h+1(X) is an element of VJ+1 and can be 

projected onto spaces VJ and WJ, giving 

(PvJh+d(x) + (PWJh+1)(X) 

L CJ,lcPJ.l(X) + L dJ,l'l/JJ,I(X). 
I 

The corresponding scaling coefficients in level J are 

........ 

CJ,l < fJ+1, cPJ,1 > 

v'2 < 1J+1, L hk- 21 cPJ+l.k > 
k 

v'2 L hk- 2I CJ+l.k 
k 

Similarly, the wavelet coefficients are 

dJ,1 = v'2 L gk-2IdJ+1,k. 
k 

(2.9) 

(2.10) 

(2.9) and (2.10) are the same as the formulae (2.7) and (2.8) except the constant 

21/ 2 . Applying this procedure recursively, we can find the coefficients Cjo.k and 

djk,jo < j < J. 

Mallat (1989) also derived a reconstruction algorithm as follows. Note that at 

each level of the reconstruction, finer scale coefficients are obtained from coarser 

ones as illustrated by 

L Cj-1,kcPj-1,k(X) + L dj- 1,k'l/Jj-1,k(X) 
k k 

( p\ j h + 1) ( .r ) 

L Cj,kcPj,k(X), 
k 
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where 

Cj,k < ¢j,k, PVj fJ+l > 

L Cj-l,l < ¢j,k, ¢j-l,l > + L dj - 1,l < ¢j,k, Ij~j-l,l > . 
l l 

This gives Mallat's "pyramid" algorithm. 

2.3.3 Matrix Expression of DWT 

To facilitate the presentation of the DWT later on, we will give the matrix expression 

of DWT here. For a detailed reference, see Percival and \Valden (2000). 

Let m represent the number of vanishing moments of the wavelet, )0 the coarsest 

resolution level and n = 2J+1 is the observations of the function. \\'c can use an 

orthogonal matrix W associated with the orthonormal wavelet basis to represent 

the DWT. This matrix yields a vector w of the wavelet coefficients of y via 

w=Wy. 

We have the inverse formula 

y=WTw. (2.11) 

Here vector w has n = 2J+1 elements, indexed by two integers} and It: the \vavelet 

coefficients dj,k, ) = )0, ... , J, k = 0, ... ,2j - 1 and the scaling function coefficients 

C · It - 0 2j o - 1 Jo,k, . - , ... , . 

Let us now decompose the elements of the vector w into J - }o + 2 subvectors, 

where J is called the finest resolution level. The first J - )0 + 1 subvectors are 

denoted by dj , ) = J, ... ,)0, and the jth such subvector contains all of the \\"ayelet 

coefficients at resolution level j. Note that dj is a column vector with 2) elements. 

The final subvector is denoted as Cjo and contains just the scaling coefficients at 

level )0. Also, we can define the Wj and Vjo matrices by partitioning the rows of W 

according to the partition of w. 
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WJ 

y (2.12) 

To interpret the components of W, let W jk denote the (j, k)th row of Wj and 

Vjok denote the (jo, k)th row of Vjo' Write Wjk(i) and VJok(i) for the components 

of W jk and Vjok' respectively. The inversion (2.11) becomes 

Yi = L djk Wjk(i) + L Cjok VJok(i). 
jk jok 

For j and k bounded away from extreme cases by the conditions m « j « J and 

o « k « 2j
, we have the approximation of the components Wj,k and Vjo,k of the 

matrix W as follows: 

t = i/n - k2- jo . 

For more discussion, see Dohono and Johnson (1995). 

In matrix notation, each row in Vjo is orthogonal to every row in Wj and also 

satisfies Vjo VTo = 12jox2jo and WjWJ = 12j x2j· 

2.3.4 Translation Invariant DWT 

In this section we describe a modified version of the discrete wavelet transform called 

the translation invariant DWT (TIDWT). The TIDWT have been discussed in the 

wavelet literature under different names (see Percival and Walden, 2000, Chapter 

5), for example, "shift invariant DWT" (Beylkin, 1992), "stationary DvVT" (Nason 

and Silverman, 1995) and "maximal overlap DWT" (Percival and \Valden. 2000). 

but the transforms are essentially the same. Here we will use the name ··translation 

invariant DWT" (Coifman and Donoho, 1995). 
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Firstly, we introduce the circularly shifted operator T. For a signal (Xt : 0 < 

t < n), we let T denote the circulant shift, (Tx)t = x( ) d The operator T is HI mo n' 

unitary, and hence invertible T-l = (T)-I. 

In terms of the operator T, the idea of TIDWT is just this: gIven a signal 

x = (Xt : 0 < t < n), apply the usual DWT twice, once to x and once to Tx. 

Then we merge the two sets of DWT coefficients together to obtain the whole set 

of the wavelet coefficients. When reconstructing the signal x, we split the whole 

set of coefficients into two sets in the same way as we merge them together and 

apply the usual inverse DWT to these two sets separately. Hence we obtain the two 

reconstructed signals, denoted as x and Tx. Once we unshift Tx to be x' = T-l (Tx) 

and average x and x', we get the reconstructed signal. 

In contrast to the DWT that restricts the sample size to be an integer power of 2. 

say 2J +1, the fast algorithm developed for TIDWT is designed for an}' sample size ~V 

(see Percival and Walden, 2000). Also, TIDWT can suppress some visual artifacts 

produced by DWT, for example, Gibbs phenomena (see Coifman and Donoho, 1995). 

Of course, a conlPutational price is paid for using the TID\VT. 

2.3.5 Wavelet Analysis vs. Fourier Analysis 

There are some similarities and some differences between Fourier analysis and wavelet 

analysis. The fast Fourier transform (FFT) and the discrete wavelet transform 

(DWT) are both linear operations and the mathematical properties of the matrices 

involved in the transforms are similar as well. In addition, the basis functions of 

both transforms are localized in frequency. 

The most important difference between these two kinds of transforms is that 

individual wavelet functions are also localized in space while the Fourier sine and 

cosine functions are not. This localization feature in both frequency scale (via 

dilations) and space (via translations) makes wavelets very special in many cases. 

For example, one major advantage of wavelet methods is their very high adaptabilit}· 

and their abilit}· to capture discontinuities and singularities. :-\ related advantage of 
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Figure 2.2: (a): Fourier transform (left); (b): wavelet transform (right). (Graps, 

1997) 

wavelets is sparseness which occurs when functions and operators are transformed 

into the wavelet domain. This sparseness results in a number of useful applications, 

such as removing noise from data, and will be discussed later in the thesis. 

This time-frequency resolution difference between the Fourier transform and 

wavelet transform can be demonstrated by looking at the basis function coverage of 

the time-frequency plane. Figure 2.2(a) shows a windowed Fourier transform, where 

the windows are fixed for the whole frequency domain. In contrast Figure 2.2(b) 

shows one wavelet function, the Daubechies wavelet, with a variable time-frequency 

window which is governed by the dilation parameter and the translation parameter. 

Figure 2.2 originated in Graps (1997). For high frequencies (possibly representing 

discontinuities), some basis functions with narrow support are chosen, whereas basis 

functions with wide support are chosen for detailed analysis. 

Another difference is that wavelet transforms do not have a single set of basis 

functions like the Fourier transform, which has just the sine and cosine functions. 

Different wavelet bases may be tailored to different applications. 
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2.4 Nonparametric Regression 

Nonparametric regression has been a fundamental tool in data analysis over the 

past two decades and is still an expanding area of ongoing research. The goal is to 

recover an unknown function, say j, based on sampled data that are contaminated 

with random noise. 

Suppose we observe responses YI,"" Yn at nonrandom design points .TI, .... . tn. 

which follow the model 

(2.13) 

where j is the unknown function to be estimated, and the Ei are random errors, 

often assumed to be independent and identically distributed (IID) as .N(O, a 2 ). In 

the nonparametric framework, only very general assumptions about f are made such 

as that it belongs to a certain class of smooth functions. 

Nonparametric regression techniques provide a very" effective and simple WH.\· 

of finding structure in data sets without the imposition of a parametric regression 

model. Some of the popular estimators are those based on kernel functions, smooth­

ing splines and orthogonal series. Each of these approaches has its own particular 

strengths and weaknesses. However, there is a common drawback to these nonpara­

nletric regression techniques: they are likely to break down unless strong smoothness 

assumptions are satisfied everywhere. 

2.4.1 Kernel Estimations 

Kernel regression is probably the simplest and best understood method of non­

parametric regression. Traditional approaches have involved the Nadaraya-\\"atson 

(NW) estimator (Nadaraya, 1964 and Watson, 196-1) and local polynomial kernel 

estimators (Stone, 1977, Fan and Gijbels. 1996). 
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NW estimator 

The NW estimator, based on the observation sample pairs (Xl. Yd, ... , (xn, Yn). is 

n 

L: Kh(x - Xi)Yi 
h(x) = _i=_~ ____ _ 

L: Kh(x - Xi) 
(2.14) 

i=l 

where Kh(X) = h-IK(x/h) is the kernel function with scale factor h. The kernel 

function K is usually chosen to be a continuous, bounded and symmetric function 

satisfying 1: K(x) = 1. 

and h is the smoothing parameter (or window width, or bandwidth). 

If we define a sequence as 

where 
n 

mh(X) = L Kh(x - Xi), 
i=l 

then 
n 

ih(X) = L ~VhiYi' 
i=l 

The NW estimator can be viewed as a weighted kernel estimator, with the kernel 

weights Whi determined by K (.) and h. 

A variety of kernel functions are possible in general, but both practical and 

theoretical considerations limit the choice. Commonly used kernel functions include 

the Gaussian kernel K(t) = (27f)-1/2 exp( -t2 /2), the "symmetric Beta family" 

1 
K ( t) - (1 - t2 r r = 0, 1, . . . , 

- Beta(1/2, r + 1) +, 

where the subscript + denotes the positive part and a special case of which is due 

to Bartlett (1963): 

K(u) = 0.75(1 - u2 )I(lul < 1). 
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Local Polynomial Fitting 

Suppose that the regression function f is smooth enough to be approximated by 

using Taylor's expansion 

P f(j)(x) P 

f(z) ~ L ., (z - x)j - L ,Bj(z - x)j, 
j=O J. j=O 

(2.15) 

where z is in a neighborhood of x. From a statistical modeling point of view. (2.15) 

models f (z) locally by a simple polynomial model. This suggests using a locally 

weighted polynomial regression 

n P 

L {Yi - L ,Bj(Xi - X)j}2 Kh(Xi - x), (2.16) 
i=l j=O 

where }\"(.) denotes a kernel function and h is a bandwidth. 

The simplest polynomial to fit in such a neighborhood is a constant, which 

corresponds to p = O. There is a similarity between local polynomial fitting and 

kernel smoothing. For fixed x, the kernel estimator ih (x) with positive "'eights 

Whi(X) is the solution to the following minimization problem 
n Tl 

In this sense, the NW kernel smoother can be understood as a local constant poly-

nomial fit. 

2.4.2 Smoothing Spline Estimations 

An important and widely used alternative approach is to estimate the regression 

curve f(x) using a smoothing spline. Suppose that Xl, .. .. Xn are points in [a, b) 

satisfying a < Xl < ... < Xn < b and we have observations YI, ... ,Yn' If we wanted 

the "smoothest possible" curve, in the sense of minimum curvature, to interpolate 

the given points, then a natural choice would be to use the curve that had the 

minimum value of J fl/2 among all smooth curves interpolating the data. Using this 
..-... 

measure, find fa that minimizes the weighted sum 
n 

L(Y' - !(xi)f + a jU"(X)j2d., 
i=l 

(2.17) 
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The nonnegative real number ex > 0, called a smoothing parameter, governs the 

trade-off between smoothness and goodness-of-fit. The estimator in is called the 

smoothing spline estimator. 

It turns out that among all curves in the class of twice differentiable functions 

interpolating the points (Xi, Yi), the one minimizing (2.17) is the so-called cubic 

spline: see Green and Silverman (1994), Silverman (1985), Reinsch (1967) and Good 

and Gaskins (1971). 

2.4.3 Orthogonal Series Estimations 

Let ePj, j = 1, ... ,n, be a sequence of given basis functions which are orthonormal 

with respect to the counting measure on the design points :r1, .... ITl) that is 

Then the regression function can be represented as 

where aj = L~=l JCr;;)ePj(xk). 

n 

JCri) = L ajePj(xi), 
j=l 

if j =1= k 

if j = k 

(2.18) 

Generally, one could select an appropriate subset {ePj} jEI, with I c {I, ... , n}, of 

the basis functions and J can be estimated with the coefficients estimated as follows 

n 

aj = LYkePj(Xk), j E I. 
k=l 

Any available information on J would have an impact on choosing an appro­

priate basis. There are many possible choices of basis functions. Tarter and Lock 

(1993) consider the use of Fourier Series in Chapter 3 of their book. Other choices 

of basis functions include the Hermite functions (Schwartz. 1967) and Haar series 

(Engel, 1990). A desirable property of a basis would be that J may be represented 

economically by a few basis functions. 
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2.4.4 Wavelet Estimation 

An appropriate choice of basis for the expansion is therefore a key point in relation 

to the efficiency of orthogonal series estimations we mentioned abm'e. \\'avelets 

provide an orthogonal basis with many attractive properties. It is therefore natural 

to consider applying the expansion approach using a wavelet series. See the re\'iew 

papers by Antoniadis et al. (2001) and Abramovich et ai. (2000) for a detailed 

summary. 

The wavelet expansion of a function f is given in (2.2) with the coefficients 

defined in (2.3) and (2.4). Since wavelet estimators are a form of orthogonal series 

estimator, the obvious estimators of these coefficients are 

and 

2.5 Wavelet Shrinkage and Thresholding 

The key advantages of wavelet estimators can be fully exploited only \vhen con­

sidering non-linear wavelet estimators. The non-linearity comes from shrinking or 

thresholding the empirical coefficients d jk , while the scaling function coefficients Cjok 

are kept untouched. The coefficients djk, ) = )0, ... ,J, k = 0, .... 2) - 1 and Cjok' 

k = 0, ... ,2jo -1, come from DWT of the noisy data. Wavelet shrinkage and thresh­

olding approaches were first introduced by Donoho and Johnstone (1994). The aim 

in this type of situation is to recover a signal in the presence of the noise, as indicated 

in (2.13), with nonrandom design point Xi taken to be Xi = i/n. 

2.5.1 Wavelet Shrinkage and Thresholding Procedure 

The method of wavelet shrinkage and thresholding consists of three main steps, 

which can be summarised as follows: 
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Step 1 Obtain the empirical wavelet coefficients by applying the DWT to the data: 

Step 2 Modify these coefficients according to some procedure (typically by shrink­

age or thresholding procedure); 

Step 3 Apply the inverse DWT to the modified coefficients to obtain an estimate 

of f. 

Once a wavelet basis has been chosen, Steps 1 and 3 are straightforward to im­

plement, and very fast and efficient algorithms are available for performing the nec­

essary calculations. Step 2, in which the aim is to "de-noise" the empirical wavelet 

coefficients, has been approached in a number of ways, including the following. 

• The classic thresholding scheme, including the "hard~' and "soft" threshold­

ing methods, discussed in detail by Donoho and Johnstone (199cJ:, 1995) and 

Donoho et al. (1995), and cross-validation scheme, see Nason (1996, 1999) 

and also Hall and Penev (2001). 

• Frequentist "block" thresholding scheme. See Hall et al. (1997, 1998, 1999), 

Cai (1999, 2002) and Cai and Silverman (2001). 

• Shrinkage or thresholding of wavelet coefficients based on Bayes or empirical 

Bayes (EB) methods. For work on Bayes or EB shrinkage of individual wavelet 

coefficients, see Chipman et al. (1997), Clyde et al. (1998), Abramovich et al. 

(1998) and Clyde and George (2000). 

• Bayesian block shrinkage scheme. See De Canditiis and Vidakovic (2004) and 

Abramovich et al. (2002). 

A useful summary of the above methods is given by Antoniadis et al. (2001). 

2.5.2 Classical Thresholding Schemes 

Since the wavelet representation of many kinds of function is very economicaL it is 

reasonable to assume that there are a few large value wavelet coefficients concen-
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trated near the areas of major spatial activity, e.g discontinuities, but the majority 

of wavelet coefficients are small. Also, owing to the fact that the wavelet transform 

is orthogonal, if the ti are assumed to be independent Gaussian noise, then the 

wavelet coefficients will also be contaminated with independent Gaussian noise. So 

in this case, the empirical wavelet coefficients can be written as 

(2.19) 

and djk is distributed as 

(2.20) 

Based on these assumptions, Donoho and Johnstone (1994, 1995) suggested two 

types of thresholding methods: hard and soft thresholding. Hard thresholding sets 

all the wavelet coefficients to be 0 if their absolute values are below a certain thresh-

old A > 0: 

(hard thresholding) (2.21 ) 

Soft thresholding shrinks the wavelet coefficients that are larger than the threshold 

by A: 

(soft thresholding) (2.22) 

Hard and soft thresholdings are illustrated in Figure 2.3. 

After studying the performance of these thresholding methods, Donoho and 

Johnstone (1994, 1995) concluded that the resulting function estimate is asymp­

totically minimax for a wide variety of loss functions and functions f belonging to 

a wide range of smoothness classes. More importantly, they show that the wavelet 

estimator is nearly optimal for a wide variety of objectives. 

Choices of Threshold 

Clearly, an appropriate choice of a threshold value A is fundamental to the effective­

ness of the procedure described in the previous section. Too large a threshold might 
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Figure 2.3: Hard thresholding (left) and soft thresholding (right) 

cut off important parts of the true function underlying the data, whereas too small 

a threshold may excessively retain noise in the reconstruction. 

Universal Threshold 

Donoho and Johnstone (1994) proposed the universal threshold: 

Aun = O"V210g(n). 

When 0" is unknown, 0" may be replaced by a robust estimate (j, such as the median 

absolute deviation (MAD) of the wavelet coefficients at the finest level J = log( N)-l 

divided by 0.6745 and can be expressed as 

(j = M AD{ dJk, k = 1, ... , 2J} /0.6745. (2.23) 

Despite the simplicity of such a threshold, Donoho and Johnstone (1994) showed 

that if {fdi=l is a white noise sequence with variance 1, 

n -+ 00. 

This means that, with high probability, all the pure noise coefficients will be thresh-

oided to zero. 
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Although it has good asymptotic properties, the universal threshold depends on 

the data only through (J" (or its estimate). In fact, for large samples, it may be shown 

that '\un will remove with high probability all the noise in the reconstruction, but 

part of the real underlying function might also be lost. As a result, the uniycrsal 

threshold tends to oversmooth in practice. 

SureShrink Threshold 

Donoho and Johnstone (1995) introduced a procedure, SureShrink, which was based 

on minimizing the Stein unbiased risk estimate (Sure). Let x '" Np(J-L, 1) be mul-

tivariate normal observations with mean vector J.-l and covariance matrix 1 with 1 

along the diagonal and 0 elsewhere. A fixed estimator ji(x) of J-L can be written as: 

j1(x) = x + g(x), 

where g = (gi)f=l is a function from RP to RP. Stein (1981) showed that if g(x) is 

weakly differentiable, then 

EJl Ilji(x - J-L) II = p + EJl {llg(x) II~ + 2\7 . g(x)} 

where 

Notice that the soft threshold can be written as 

j1(x) = x - sgn(x) min(lxl, ,\). 

Using Stein's result, the quantity 

p 

SURE('\,x) = p - 2· #{i: IXil < '\} + I)lxil/\ ,\)2, 
i=l 

IXil/\'\ = min(lxil, ,\), is an unbiased estimate of the risk EJlllji(x - J-L)II· 

This procedure is very simple to implement and attains superior adaptive prop­

erties than the Universal threshold method. It has been shown that SureShrink 
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is smoothness-adaptive: if the unknown function contains jumps. the reconstruc­

tion does also; if the unknown function has a smooth piece, the construction is as 

smooth as the mother wavelet allows. In addition, this shrinkage can be tuned to 

be asymptotically minimax over a wide range of smoothness classes. 

Threshold Selected by Cross-validation 

Cross-validation (CV) is widely used as an automatic procedure to choose a smooth­

ing parameter in many areas of statistics, e.g Silverman (1986) and Green and Silver­

man (1994). Nason (1996) proposed two modified cross-validation (CV) methods for 

choosing the threshold A, which minimises the mean integrated square error (lVIISE) 
-"'-

between the wavelet shrinkage estimator 1>., (x) and the true function fCc), 

M()..) = E J {];"(x) ~ f(X)}2dx. (2.24) 

Twofolded cross-validation, which works by leaving out half the data points, can 

be used to select a threshold for a wavelet shrinkage estimator based on n = 2J+1 

points. Firstly, take all the evenly indexed data points {Y2j}, j = 1, ... , n/2, to form 

a wavelet shrinkage estimator if using a particular threshold while the remaining 

points are used to estimate the MISE at that threshold. Then, in order to compare 

the if with the left out noisy data, an interpolated version of f~j can be formed 

where jfJ / 1 = iF1 is assumed. The same procedure is repeated for the odd indices 
A,n 2+ A, 

{Y2j-d to give the interpolant f~j and the full estimate for AI(A) is 

n/2 

--- """" -E 2 -0 )2} M(A) = ~ {(f A,j - Y2j-d + (f A,j - Y2j . 
j=l 

Nason (1996) also discussed a modified leave-one-out CV, which can be used for 

any number of data points. After moving one point Yi, 1 < i < n, the remaining 

points were split into two groups: 
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and 

Two new groups can be obtained by reflecting GLand G R to dyadic length from 

right and left side respectively and wavelet estimators h,).. and h,).. can be derived. 

The removed point is predicted by averaging the rightmost point of h,).. and the 

leftmost point of iR,).. to give fh,-i. The estimated MISE to be minimised over A is 

n-2 

M(A) = L(Yi - Y)..,_i)2 
i=2 

However, it is worth noting that cross-validation methods do not work well \yith 

serially correlated data. 

2.5.3 Frequentist Block Thresholding Schemes 

The methods mentioned above involve term by term thresholding, which "kill" or 

"retain" coefficients on the basis of their individual magnitudes, and information on 

neighbouring coefficients has no influence on the treatment of particular coefficients. 

Motivated by the need for spatial adaptivity, Hall et al. (1998,1999) first suggested 

grouping wavelet coefficients into blocks, modelling them blockwise and exploiting 

the information that coefficients convey about the size of their nearby neighbour. 

Cai (1999) and Cai and Silverman (2001) studied local block thresholding rules 

and provided a new BlockShrink procedure. In this procedure, after wavelet trans­

formation, the empirical wavelet coefficients are grouped at each resolution level 

j into blocks of length L = llog n J, where l· J denotes the integer part. All the 

coefficients of a block (j b) are retained if the energy in this block 

L d% > canst. x La2
, 

kE(jb) 

(2.25) 

in which case it is deemed that this block contains significant information about the 

function; otherwise the block is deemed insignificant and all the coefficients are set 

to zero. The aim of BlockShrink procedure is to increase estimation accuracy by 
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utilizing information about neighbouring wavelet coefficients. It is shown that the 

estimators produced by this procedure are asymptotically optimal both for global 

and local estimation and are easy to implement. 

The block size L affects the achieving of the global and local adaptiyities of the 

frequentist block thresholding approach. We will summarise discussion about the 

choice of the block size L in § 4.4. 

2.5.4 Bayesian Wavelet Shrinkage and Thresholding 

Various Bayesian approaches for thresholding and non-linear shrinkage in general 

have been proposed recently. See for example Chipman et al. (1997), Abromovich 

and Sapatinas (1999), Abramovich et al. (2000), Clyde and George (1999, 2000) 

and Johnstone and Silverman (1998, 2005). These methods have been shown to be 

effective. In these approaches, a prior distribution is imposed on the wavelet coef­

ficients, which is designed to capture the sparseness of the wavelet expansions that 

is common to most applications. The function can then be estimated by applying a 

suitable Bayesian rule to the resulting posterior distribution of wavelet coefficients. 

In general, a Bayesian rule 7]( x) is a shrinkage rule if and only if 7] is antisymmetric 

and increasing on ( - 00, 00) and 0 < 7] ( x) <:r for all x > O. The family of shrinkage 

rules 7](x, t) will be a thresholding rule with threshold t if and only if 

7](x, t) = 0 if and only if Ixl < t. 

A popular prior model for each wavelet coefficient djl\: is a mixture of one normal 

distribution and a point mass at zero. The normal distribution with large vari­

ance represents the significant coefficients while a point mass at zero represents the 

negligible ones. A hierarchical model can be expressed as 

(2.26) 

where rj "'-J Bernoulli(pj) for different resolution level j and 0(0) is a point mass 

at zero. The binary random variable rj determines whether the relevant \\'av<'let 
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coefficient is nonzero (rj = 1), and comes from an N(O, )..;) distribution, or zero 

(rj = 0), and arises from a point mass at zero. 

From (2.19), the posterior cumulative distribution of djk conditional on the em­

pirical wavelet coefficient djk and u 2 is given by 

(2.27) 

The posterior probabilities can be expressed as 

- 1 
Pr(rjk = 1ldjk) = _, 

1 + Ojk(djk, ( 2
) 

(2.28) 

where the posterior odds ratios Ojk(djk , ( 2
) are given by 

(2.29) 

Suitable Bayesian wavelet shrinkage and thresholding estimators are the poste­

rior mean estimator, the posterior median estimator and the "hypothesis testing" 

estimator, ( see below). 

Shrinkage Estimates Using Posterior Mean Approaches 

Clyde et al. (1998) obtained wavelet shrinkage estimates by considering the posterior 

mean. Assuming that an accurate estimate of the noise variance is available, the 

closed form expressions for the posterior mean of wavelet coefficient djk conditionally 

on djk and u 2 , can be derived from (2.28), (2.28) and (2.29) as 

- 2 1 )..~-
E(djkldjk , U ) = 1 o. (d. 2) u2 ~ )..~djk' + Jk Jk, U J 

(2.30) 

It shrinks the empirical wavelet coefficients djk by a nonlinear factor of 

1 + Ojk(djk, ( 2 ) u2 + )..;. 

This is an extreme case of Chipman et al. (1997), where the prior was chosen to 

be a mixture of two normal distributions. A normal distribution with small variance 
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is used to concentrate on the mass near 0 while the distribution with large variance 

spreads out the rest of the mass across larger values. Antoniadis et al. (2001) 

pointed the important distinction between the uses of a scale mixture of two normal 

distributions and a scale mixture of a normal distribution and a point mass at zero. 

In the former case, no wavelet coefficient estimate based on the posterior analysis 

will be exactly equal to zero. However, in the latter case, with a proper choice of a 

Bayes rule, it is possible to get wavelet coefficient estimates that are exactly zero. 

Thresholding Estimates Using Posterior Median Approaches 

Abramovich et al. (1998) proposed a Bayesian thresholding rule based on the pos­

terior median. From (2.28), (2.28) and (2.29), solving the equation F(djkldjk ) = 0.5 

yields a thresholding procedure 

(2.31 ) 

where 
A; - Aj(Y -1 { 1 + min( Ojk, 1) } 

C;jk = (Y2 + A; I djk I - ((Y2 + (YJ) 1/2 <I> 2 

and <I> is the cumulative distribution function of a standard normal random variable. 

We can see that (2.31) corresponds to a thresholding rule with threshold Aj: 

for all djk in some implicitly interval [-Aj, Aj], the quantity C;jk is negative and 

Med(djkldjk , (Y2) = 0 while for large djk the thresholding rule is asymptotic to linear 

shrinkage by a factor of A; / ((Y2 + A;). 

Thresholding Estimates Using Hypothesis Testing Approaches 

Vidakovic (1998) considered a Bayesian method similar to the statistical hypothesis 

testing method. For each wavelet coefficient djk, this method involves testing the 

hypothesis 

Ho : djk = 0 versus HI : djk f:. O. 
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If the hypothesis Ho is rejected, the djk is estimated by djk . At each level j 

)0, ... , J, the prior distribution could therefore be taken as 

where ~ describes the behaviour of djk when djk is nonzero. which occurs with 

probability 7rj. 

Abramovich and Sapatinas (1999) obtained the Bayes factor, (a particular case 

of the "hypothesis testing" approach), by considering the prior mixture (2.26) in the 

above setting: 

(2.32) 

where I is the indicator function and Ojk is the posterior odds ratio t hat is given 

by (2.29). 

We can see that the thresholding estimator proposed by Abramovich and Sap­

atinas (1999) mimics the hard thresholding rule (2.21). A wavelet coefficient cljk will 

be thresholded (i.e. set to zero) if the corresponding posterior odds ratio O)k > 1 

and will be kept as it is otherwise. 

2.5.5 Bayesian Block Wavelet Shrinkage and Thresholding 

To increase estimation precision, Abramovich et al. (2002) proposed a multivariate 

normal model to incorporate information about neighbouring empirical \\'a\'elet co-

efficients to form block wavelet shrinkage and block wavelet thresholding estimators. 

At each resolution level, the wavelet coefficients djk are grouped into nonoverlapping 

blocks bjK of certain length l = lj. 

Let mj be the number of blocks (K = 1, ... , mj) at level j and consider the 

following prior model on d jK 

(2.33) 

where <5(0) is a point mass at the zero vector. The matrix lj is an lj x Ij nonsingular 

covariance matrix given by Vj = AJPj . where Pj is the I) x Ij matrix \\'ith elements 
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Pj[k, l] = pjk-l
l for k, l = 1, ... ,lj and Ipjl < 1. It is also assumed that rjK has the 

distribution as: 

Pr(rjK = 1) = 1 - Pr(rjK = 0) = Pj, (2.3-1 ) 

and at each level j the blocks bjK , K = 1, ... , mj are independent. Using Bayes' 

theorem, results parallel to (2.30) and (2.31) may be derived. 

It was reported by Abramovich et al. (2002) that the proposed empirical Bayes 

block wavelet shrinkage and block thresholding estimators outperformed the non­

Bayesian block wavelet thresholding estimators in the examples considered. 

In practice, the hyperparameters Pj, AJ and (J2 need to be estimated before any 

of above approaches can be used. Several methods have been used, for example 

estimating the noise level (J with the robust estimate (2.23), and then obtaining 

maximum likelihood estimation of Pj and AJ using the EM algorithm (see Clyde and 

George, 1999). Another possibility is maximum likelihood estimation of (J2 and Pj 

and AJ together using the EM algorithm (see Clyde and George, 2000). 

2.6 Summary and Research Plan 

Previous work related to wavelet shrinkage and thresholding is summarised in §2.5. 

From the above survey, it is clear there are some areas that would benefit from 

further investigation, despite the progress made by authors in recent years. In this 

thesis, the focus is on the following topics: 

1. It would be desirable and of interest to develop a Bayesian approach to block 

shrinkage/thresholding based on the sum of squares of the wavelet coeffi­

cients in a block. Although block thresholding in a frequentist framework has 

been studied both from a theoretical point of view and in simulation studies, 

Bayesian block shrinkage approaches have received much less attention. 

2. More computationally efficient ways to estimate the hyperparameters in the 

Bayesian framework are needed. Previous work has mainly used the E~I alga-
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rithm (or a combination of the EM algorithm and robust estimation of 0-2 ) to 

estimate the hyperparameters, which tend to be far slower than the frequentist 

methods. 

3. Correlated data often arise in more realistic settings. There is a need to pay 

more attention to this issue, and to extend existing methods to the correlated 

data setting. 

This thesis is divided into three main parts: theoretical results, practical issues 

and extension to correlated data. The theoretical results part (Chapter 3) devel­

ops new Bayesian methodology based upon the non-central X2 distribution. In the 

second part (Chapter 4), the Bayesian methodology presented earlier is used to con­

struct Bayesian block shrinkage and thresholding procedures for wavelet coefficients 

obtained from noisy data. In the third part, a semi-parametric model is discussed in 

Chapter 5, which is focused on estimating the covariance structure of the correlated 

nOIse. 
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Appendix A: Some Bayesian Analysis Background 
We review the basic elements of Bayesian inference which will be used later. 

It is obvious that we should be able to improve the information or the models ,\"() 

develop and inference if we incorporate whatever a priori qualitati"e or quantitatin) 

knowledge we have available. The Bayesian approach allows us to assign prior 

distributions to the parameters in the model, and then to update these priors in 

light of the data, yielding a posterior distribution via Ba~'es' Theorem: 

Posterior ex: Likelihood x Prior. (') '3') ~.' .J 

The ability to include prior information in the model is not onl~' an attractive prag­

matic feature of the Bayesian approach, but also theoretically vital for guaranteeing 

coherent inferences. 

A.I Basic Theory 

In this section we will review the fundamentals of the Bayesian paradigm. For 

a rigorous and detailed survey of Bayesian methodology, see Bernardo and Smith 

(1994), O'Hagan (1994). 

Bayes' Theorem 

In the Bayesian approach, to specify the model for the observed data x = 

(Xl, ... ,xn ) given the vector of the unknown parameters 8, assumed to lie in a 

parameter space 8, we define the likelihood function L(x I 8) as a joint probability 

of observed data x given the parameter vector 8 and let Jr( 8) denote the prior dis­

tribution for the parameters. Inference concerning 8 is then based on its posterior 

distribution Jr(8 I x), given by 

L(x I 8)Jr( 8) 
Jr(8 I x) ex: L(x I 8)Jr(8) = feES L(x I 8)Jr(8)d8 

(2.3G) 

We refer to this formula as Bayes' Theorem. The integral in the denominator on 

the right-hand side of (2.36) is a normalising constant and ib calculation has tra-
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ditionally been a severe obstacle in Bayesian computation. Clearly, the likelihood 

may be multiplied by any constant (or any function of x alone ) without altering the 

posterior. 

Moreover, the prior distribution 7r(8) of 8 may also be expressed conditionally on 

some unknown hyperparameters ¢ E <P as 7r( 8 I ¢). The prior must be completed 

by a distribution of ¢, say g( ¢), yielding 

7r( 8) = 1 7r( 8 I ¢ )g( ¢ )d¢. (2.37) 
cfJE4> 

Such a model is called a hierarchical model because of the way in which the distribu-

tion of parameters in each level of the hierarchical model depends on the parameters 

of next level. We could also write the distribution of ¢ conditional on some more 

parameters and this process could continue as far as is needed. For the detailed 

discussion, see O'Hagan (1994). 

A.2 Prior Distributions 

The choice of prior distributions represents information available about unknown 

parameters. Ideally, we would like to work with families of prior distributions which 

are sufficiently flexible to represent various states of prior knowledge and at the same 

time result in computationally tractable posterior distribution. 

Conjugate Priors. When choosing a prior from a parametric family, some choices 

may be more computationally convenient than others. In some problems it is pos­

sible to select a distribution which is conjugate to the likelihood, that is, one that 

leads to a posterior belonging to the same family as the prior. It is shown in Morris 

(1983) that exponential families, a commonly used form of likelihood function, do 

in fact have conjugate priors, so that this approach will typically be available in 

practice. 

Mixture Priors: Continuous Case. It is common to specify a prior as a mixture 

of conjugate priors. Such mixtures can offer a very diverse family of distributions 
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that is capable of representing much more varied prior beliefs than a single conjugate 

prior. Also, the posterior distribution is then a mixture of posteriors. For example. 

consider a three-level hierarchical model in \yhich a mixture prior is expressed a:-; 

(2.37). Then the posterior can be easily calculated as a continuous mixture of 

component posterior distribution, 7r( 0 I x, ¢»: 

where 

and 

7r( 0 I x) = ( 7r( 0 I x, ¢> )g( ¢> I x)d¢>, 
Jct>E<P 

7r 0 X _ L(x I O)7r(O I ¢» 
( I ' ¢» - IeEe L(x I O)7r( 0 I ¢> )dO 

g( ¢> I x) 
g( ¢» IeEe L(x I O)7r( 0 I ¢> )dO 

Ie,ct> L(x I O)7r(O I ¢»g(¢»d¢>dO 

g( ¢» IeEe L(x I O)7r( 0 I ¢> )dO 

IeEe L(x I O)7r(O)dO 

(2.38) 

Mixture Priors: Discrete Case. Suppose that in a hierarchical model. ¢> is (1 

discrete variable taking values ¢>1, ¢>2,' .. , ¢>m· Let Pr(¢> = ¢>i) = Pi and 7r(O I¢>= 

¢>i) = 7ri(O), for i = L 2 ..... m, then the unconditional prior distribution (2.37) is 
m 

(:2.39) 

i=l 

This is called a mixture of the prior distribution 7ri(O) with \\'eights Pi· B~' simple 

calculation, we can obtain the posterior as a discrete mixture of component posterior 

distributions 7r(O I x.¢>J: 
m 

7r(O I x) = LQi7r (O I X,¢>i), (:2 AO) 

i=l 

where 

and 

Qi = L~l Pi IeEe L(x I O)7ri (O)dO' 

In fact, the results of the mixture posterior distribution (2.38) and(2AO) are used 

several times in Chapter 3: see for example Theorem 3.1 and Theorem 3.:2. 
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Non-informative Priors. In many practical situations, no reliable prior infor­

mation concerning (J exists, and/or inference based solely on the data is desirable. 

In this case we typically wish to define a prior distribution 7r( (J) that contains no 

information about (J in the sense that it does not favour one (J value over another. 

We may refer to a distribution of this kind as a noninformative prior for (J and argue 

that the information contained in the posterior about (J stems from the data only. 

Bayesian Computation 

The use of Bayesian methods in applied problems has exploded during the 1990s 

due to the availability of fast computing machines combined with a family of iterative 

simulation methods known as Markov chain Monte Carlo (MCMC) algorithms. The 

main idea behind MCMC is to generate a Markov chain which has, as its unique 

limiting distribution, the posterior distribution of interest. It dates back to the 

seminal paper of Metropolis et al. (1953) although the computational power required 

was not available at that time. The original generation mechanism was generalised 

by Hastings (1970) in the so-called Metropolis-Hastings algorithm and has been 

widely used in Bayesian statistics after about 1990, see Gelfand and Smith (1990). 

However, Bayesian computation goes beyond the scope of this thesis and we shall 

not give more detail here. 



Chapter 3 

Bayesian Results for the 

Non-Central X2 Distribution 

The block shrinkage and thresholding methods developed in the frequentist frame­

work (see Cai, 1996, Hall et al. 1998, 1999), for estimating regression functions 

from noisy data by thresholding empirical wavelet coefficients in a block rather thall 

individually, can increase the estimation accuracy of the wa,"elet coefficients. The 

aim of the research recorded in this chapter is to develop a parallel methodology in 

the Bayesian framework. Bayesian results for the non-central X2 distribution, which 

can be used as the theoretical basis for an empirical Bayes block (EBB) shrinkage 

method, are provided. A useful (and, to the best of our knowledge, newly dis­

covered) identity satisfied by the non-central X2 density is exploited. \Vhen used 

with suitable families of prior distributions, it turns out that the EBB shrinkage ap­

proach proposed in this thesis (Chapter 3 and Chapter 4) combines a high degree of 

theoretical and computational tractability with high quality practical performance. 

The outline of this chapter is as follows. §3.1 will introduce the definition of 

a non-central X2 distribution used in this chapter, and then discuss some rele'"Clnt 

properties of the non-central X2 distribution which provide the bases for the EBB 

approach. §3.2-§3.5 will concentrate on developing Bayesian methodology for the 

non-centrality parameter of the non-central X2 distribution. Se,"era1 properties of 

37 



Chapter 3: Bayesian Results for the Non-Central X2 Distribution 38 

this approach, which will help to fully understand this methodology, are discussed 

in § 3.6. Most of the proofs are given in § 3.7. 

3.1 Introduction 

3.1.1 Definition of the Non-Central X2 Distribution 

The standard non-central X2 distribution can be defined as follows: 

Definition 3.1 Let Xl, X2, ... ,Xm be a set of mutually independent normal variables 
m 

with means aI, ... ,am respectively and common variance 1. Then L xl has a non­
i=l 

central X2 distribution with m degrees of freedom and non-centrality parameter a = 
m 

La;. 
i=l 

From the definition of the standard non-central X2 distribution given above, \\T 

can derive the density of a rescaled non-central X2 distribution. 

Definition 3.2 The density of a non-central X2 distribution with m degrees of free­

dom) non-centrality a and scaled by b > ° may be written 

2 (I b) = ~ e-a/(2b) {a/ (2b )}k ,/2 . (yiO. b) 
Xm Y a, ~ k!\.17l+21, (y > 0) (3.1) 

/':=0 

where 
2 1 ( 1 ) (m/2)+k (m/2)+k-l -y/(2b) 

Xm+2k(yIO, b) = f{(m/2) + It} 2b Y e 

is the central X2 density on m + 2k degrees of freedom) also scaled by b. 

Note that, since 



Chapter 3: Bayesian Results for the Non-Central X2 Distribution 39 

we can see that x~(Yla, b) is a probability density. Thus the distribution (3.1) 

may be interpreted as a Poisson mixture of scaled central X2 distributions: see e.g. 

Muirhead (1982, p. 23), Johnson and Kotz (1970, Chapter 28). We shall denote the 

standard non-central X2 distribution with m degrees of freedom and non-centrality 

parameter a by x~(a). Therefore the distribution with density (3.1) may be written 

as bx~(ab-l). Note that the distribution bx~(ab-l) and its density x~(Yla,b) are 

distinguished by the presence of the vertical bar in the latter. 

3.1.2 Some Properties of the Non-Central X2 Distribution 

The cumulative distribution function (CDF) of a non-central X2 distribution bX~ (ab- 1
) 

(Johnson and Kotz, 1970, p.132) may be written 

Fm(Yla, b) = 1" x;'(ula, b)du 

~ e-a/(2b) {a/ (2b )}k l Y 
X2 (uiO b)du 

~ k' m+2k' 
k=O . 0 

~ -a/(2b) {a/ (2b )}k F; (YIO b) (3.2) 
~e k! m+2k , 
k=O 

where Fm+2k(yI0, b) = J~ X~+2k(uI0, b)du is the CDF of a central X
2 

distribution, 

which is given by 

1 (~)(m/2)+k fY u(m/2)+k-l e- u /(2b)du 

f{(m/2)+k} 2b Jo 
1 (~) (m/2)+k (m/2)+k fl t(m/2)+k-le-yt/(2b) dt 

f{(m/2)+k} 2b Y Jo 

1 (~) (m/2)+k (m/2)+kc m 2 k-l ( JL), (3.3) 
f{(m/2) + k} 2b Y ( /)+ 2b 

where 

Ch (,) = 11 xhe-1Xdx (3.4) 

for h > -1 and all 'Y E R. Note that, when'Y > 0, Ch("Y) is proportional to the 

complete gamma function f(h + 1) multiplied by an incomplete gamma function, 

and both are available as a standard functions in Matlab. Relevant properties of 

this function will be discussed in §3.3. 
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The moment generating function of a standard non-central X2 distribution X~ (a) 

may be written 

M(t) = (1 - 2t)-m/2 exp{ at/(l - 2t)}. (3.5) 

Therefore, the cumulant generating function can be easily obtained as 

r,n at 
K(t) = log{M(t)} = --log(l - 2t) + . 

2 1- 2t 
(3.6) 

More generally, the moment generating function and the cumulant generating func­

tion of the scaled non-central X2 distribution with density x~(yla, b) can be written 

directly as 

Ma,b(t) = (1 - 2bt)-m/2 exp{ at/(l - 2bt)} (3.7) 

and 
r,n at 

Ka,b(t) = log{ Ma,b(t)} = -"2log(l - 2bt) + 1 _ 2bt· (3.8) 

Since the nth moment /1n is equal to the nth derivative of Ma,b(t) evaluated at t = 0, 

we write down the first and second moments 

/11 = M~1~ (0) = br,n + a , 

and 

The mean, variance and third cumulant of this distribution, which will be needed 

later can also be obtained in the similar way: , 

(3.9) 

(3.10) 

and 

(3.11) 
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3.2 The Non-Central X2 Distribution: Bayesian 

Results 

The approach developed in this chapter and used later is based on Theorem 3.1 

and Theorem 3.2 below. Theorem 3.1 tells us that if the non-centrality parameter 

of a non-central X2 distribution has a prior which is a scale mixture of central X2 

distributions with the appropriate degrees of freedom, then the posterior distribution 

of the non-centrality parameter is a certain mixture of non-central X2 distributions, 

where the mixture distribution can be readily identified. Theorem 3.2 gives explicit 

expressions for relevant posterior quantities when the mixture distribution in the 

prior has the structure given by (3.20) and (3.21). 

Theorem 3.1 Suppose that the likelihood is given by f(zlp, 0"2) = x~(zlp, 0"2) where 

the prior distribution of p given (3 has a density f(pl(3) = x~(pIO, (3-1), and {3 given 

hyperparameters 0"2 and () has CDP F((310"2, ()) with support (0,00]. Write 

(30"2 
u = u((3) = 1 + (30"2 (3.12) 

where 0"2 is treated as a constant. Then 

f(plz, 0"2, (), (3) = X~ {plz(l - U)2, 0"2(1 - u)}, (3.13) 

2 x~(zIO, 0"2 /u)dF(f3I0"2, ()) 
dF((3lz,O" ,()) = J{jE(O,OO] X~ (zIO, 0"2 /u)dF(f3I0"2, ()) , 

(3.14) 

and therefore the posterior density of p with (3 "integrated out" is given by 

f(plz, 0"2, ()) = r X~{plz(l- U)2, 0"2(1- u)}dF((3lz, 0"2, ()), 
) (jE(O,oo] 

(3.15) 

where u = u((3) is defined in (3.12) and dF((3\z, 0"2, ()) is given in (3.14)· 

Thus Theorem 3.1 states that the posterior distribution of p is a 6-mixture 

of scaled non-central X2 distributions, where the mixture distribution is given in 

(3.14), for the discussion of mixture distributions, see Appendix A. Before we prove 

Theorem 3.1, a key identity will be given in the following Lemma. 
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Lemma 3.1 The non-central X2 density in (3.1) satisfies the following identity: 

where u = u(f3) is given in (3.12), 

A proof is given in §3.7. To the best of our knowledge, identity (3.16) is new. 

Proof of Theorem 3.1 

We have 

and 

By assumption 

and 

f(p\f3) = x~Jp\O, (3-1), 

so we can deduce from Lemma 3.1 that 

so that (3.13) holds and 

(3.17) 

Moreover 
2 f(Z\()2, (3)dF(f3 \ (}2 ,0) 

dF(f3\z, () ,0) = r j( \ 2 (3)dF(f3\ 2 0)' 
J .BE (0,00] z () , () , 

(3.18) 

so (3.14) follows after substituting (3.17) on the right hand side of (3.18). Finally, 

f(p\z, (}2, B) = f j(p\z, (}2, (3)dF(f3\z, (}2, B), (3.19) 
J .BE (0,00] 

so (3.15) follows after substituting (3.13) on the right hand side of (3.19). • 

We now focus on the following mixture structure for F(f3\()2, B): 

F(f3\()2, B = (p, .\)) = pF(f3\()2,.x, J = 1) + (1 - p)F(f3I()2,.x, J = 0) (3.20) 

"I 
,i 
'I 

" o. 
I' .. 
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where, in all cases, 

and 

{

I 13=00 
I{(3=oo} (13) = 

o 13<00 

-B 

(3.21 ) 

is the indicator function; J is a Bernoulli random variable with J = 1 corresponding 

to a unit mass point at 13 = 00 and J = 0 corresponding to some other distribution 

F(f3l(}2, A, J = 0) to be specified; and f) = (p, A) where A is a hyperparalllE'ter in the 

distribution F(f3l(}2, A, J = 0), and p is the prior probability' that J = 1. \ \'e also 

define 6(~), the Dirac delta function, by 

L o(Od~= { 
1 if ~ E A 

o otherwise 

for A C R. 

Remark. If we reparameterise 13 as 13' = 1/13, then ;3' has support [O,x) and t 11(' 

use of 13 = 00 is avoided. This alternative approach, which leads to identical results, 

may be preferred by many readers, as considerable care is needed when working with 

infinity. However, we stress that no problems arose with the use of infinity in the 

present context, essentially because all expectations that are considered are finite, 

due to the fact that when 13 = 00, u(f3) = 1. 

The mixture structure (3.20) is designed to capture the sparseness common to 

most wavelet applications, which is, the majority of the wavelet coefficients are 

negligible (i.e. close to 0) and the remaining few large coefficients determine most of 

the function. The term F(f3l(}2, A, J = 1) produces a point mass at p = 0 whereas the 

F(f3l(}2, A, J = 0) is spread out to accommodate the possibility of larger coefficients. 

We shall consider some particular choices for F(f3l(}2, A, J = 0) below. 

Theorem 3.2 If F(f3l(}2, 0) has the form indicated in (3.20) and (3.21) then the 

posterior density for p is given by 

(3.22) 
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where 7r, the posterior probability oj a unit mass point at p = 0 ~ is given by 

px~ (zIO, 0-2) 7r= . 
J(zI0-2,B) , 

(3.23) 

J(ZI0-2, B), the marginal density oj z, is given by 

J(ZI0-2, B) = px~(zIO, 0-2) + (1- p) r x~(zIO, 0-2 /u)dF(,610-2, A, J = 0); (3.24) 
} {3E(O,oo) 

and 

J(plz, 0-2, A, J = 0) = r X~{plz(1-u)2, 0-2(1-u)}dF(JJlz, 0-2, A, J = 0) (3.25) 
} {3E(O,OO) 

where 

dF(f31 2 A J = ) = x~(zIO, 0-
2
/u)dF(f310-2, A, J = 0) (3.26) 

z,o-, , 0 J{3E(O,OO) x~ (zIO, 0-2 /u )dF (JJI 0-2 , A, J = 0) . 

The posterior expectation oj p is given by 

E[plz, 0-2, B] = (1-7r) r {m0-2(1-u) +z(l-u?}dF(JJlz, 0-
2
, A, J = 0). (3.27) 

} {3E(O,oo) 

Proof of Theorem 3.2 

Given the specific form of F(f310-2, B) in (3.20), we can write down the prior distri-

but ion as 

r J(plf3, 0-2)dF(f310-2, B) 
} {3E(O,oo] 

p8{p=o}(p) + (1 - p) r J(plf3, 0-2)dF(JJl0-2, A, J = 0). 
} {3E(O,oo) 

The marginal density of z is given by 

r J(ZI0-2, (3)dF(JJI0-2 , B) 
} ,6E(O,oo] 

['" pf(zl(J2, (3)dI{~=oo}(f3) 

+ 100

(1 - p)f(zl(J2, (3)dF(f31(J2, >., J = 0) 

px~(zIO, 0-2) + (1 - p) r x~(zIO, 0-2/ u )dF(JJl0-2, A, J = 0). 
} {3E(O,oo) 
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The quantities (3.25) and (3.26) are obtained similarly using the mixture structure of 

F(,Bla
2
,O) in (3.20). For the posterior expectation of p, E[plz, a2, OJ, we use Fubini's 

theorem (see Kingman and Taylor, 1966, p. 147) to obtain 

E[plz, ,,2, BJ = 1= p(l- 7r)f(plz, A, J = O)dp 

(1 - 7r) roo p{ r x~{plz(l - U)2, a2(1 - u)}dF(,Blz, a2, A, J = O)}dp Jo J(3E(O,oo) 

(1 - 7r) r {rOO px~{plz(l - U)2, a2(1- u)}dp}dF(:3l z, a2 , A, J = 0) J (3E(O,oo) Jo 
(1 - 7r) r {ma2(1 - u) + z(l- u)2}dF(,Blz, a2 , A, J = 0) J (3E(O,oo) 

as required .• 

3.3 Some Useful Priors 

We now consider three cases of the prior (3.20), which we refer to as "mass point", 

"exponential" and "power" prior, assuming that (3.21) holds in each case. \\"(, use 

the subscripts AI, E and P, respectively, to denote these priors, One llloti\"atioll 

for considering these priors is that they lead to tractable calculation of posterior 

quantities. However, as we shall see later, these priors, especially E and p, ha\T 

other attractive theoretical and practical properties. Each posterior quantity gin'll 

below may be easily derived using Theorem 3.2. The proofs of all lemmas in this 

section will be given in §3.7. 

Before continuing, a useful lemma is stated. 

Lemma 3.2 Define 

for h > -1 and all '"Y E R, then 

(3.2S) 
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(3.29) 

and 

3.3.1 Mass Point Prior 

In this case we choose F(!3Ia 2
, A, J = 0) to be 

(3.31) 

With straightforward calculations based on Theorem 3.2 we obtain 

a mixture density of two central X2 variables. The posterior probability of the first 

distribution on the right hand side of (3.32) is 

where 

Also, 

As z ---+ 00, RM ---+ 00 and 7rM ---+ 0, so 

while as z ---+ 0, RM(O) ---+ Ur;:/2 and 

]J\~n(zIO, ( 2
) 

fAI(zla 2 , B) 
1 

1 PR ' 1+-=- AI 
P 

1 
7rAI (0) ---+ 1 l:2 R (0)' + P .\1 

(3.33) 
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so 

(3.35) 

3.3.2 Power Prior 

The CD F of the "power" prior is defined by 

and the corresponding density is given by 

(3.36) 

Then from 

r x~(zIO, (52/U )Jp((3\(52, A)d{3 
J ,BE(O,oo) 

l' x;';, (zIO, 0-2 /u )gp( ul0-2 ,A)du, (3.37) 

where gp(ul(52, A) = (A + l)u\ we have 

(A + 1 )z(m/2)-1 ( 1 ) m/2 r1 
(m/2)+>' ( zu ) d 

f( m/2) 2(52 Jo u exp - 2(52 u 

(A+l)z(m/2)-1 ( 1 )m/2 2 
f(m/2) 2(52 CT]{z/(2(5 )}, (3.38) 

where TJ = m/2+A and CT] is defined in (3.4). Furthermore, the marginal distribution 

IS 

The posterior probability of the unit mass point at zero will be 

'lfp = 'lfp(z) 

where 

px:n (zIO, (52) 
Jp(ZI(52,O) 

1 
1 + I-PR ' P p 

(3.40) 

(3.·H) 
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and 

f(131 2 A J - 0) _ 1 (J2 (m/2)+>. { /( 2)} 
Z,(J, , - - C7]{Z/(2(J2)} (1+13(J2)2U exp -UZ 2(J . (3.-12) 

The following results provide more information about the posterior mean in the 

case of the power prior. 

Lemma 3.3 Following the definition of the CDF of the "power~' prior and the mix­

ture marginal distribution given in (3. 39}, the expectation of posterior distribution 

will be 

Ep[plz, (J2, 0] = (1 - 'ifp) [m(J2 + Z - (m(J2 + 2z )Ary,l {z / (2(J2)} + ZA7],2{ z/ (2(J2)}] 

(3.43) 

where Ary,j{Z/2(J2)} = C7]+j{Z/(2(J2)}/C7]{z/(2(J2)} (j = 1,2) and C7]{Z/(2(J2)} 'lS 

defined in (3.4). 

Lemma 3.4 For fixed (J2 and 0, 

and 
(3.45) 

where 
1 

'ifp(O) = 1 + C;P) (~!i) . 

3.3.3 Exponential Prior 

The CD F of the "exponential" prior is defined by 

and the corresponding density is 

(3.46) 
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The results for the exponential prior can be obtained in similar fashion as those for 

the power prior. We have 

where ~ = A + Z/(2(12), 

and 

px~(zIO, (12) 
fE(zl(l2, B) 

1 

z/(2a2 )c (C) 
R = R ( ) = e m/2 "" 

E E Z CO(A) 

(3.47) 

(3.48) 

(3.49) 

Lemma 3.5 Following the definition of the CDF of the "exponential" prior and the 

mixture marginal distribution given in (3.47), the expectation of posterior distribu-

tion will be 

For fixed (12 and B, 

and 

(3.52) 

where 
1 

1fE(O) = 1 + (l=2) {Cm / 2 (..\) } • 

p Co(..\) 

Proof of Lemma 3.5 is similar to the proofs of Lemma 3.3 and Lemma 3.4 and is 

omitted. 
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Following the results (3.35) of § 3.3.1, (3.45) of Lemma 3.4 and (3.52) of Lemma 

3.5, we know that the posterior means of the three priors fail to be either a strict 

shrinkage rule or a thresholding rule (see § 2.5.1). However, according to Johnstone 

and Silverman (2005), a definition of the bounded shrinkage property is provided as 

follows: 

Definition 3.3 The family has the bounded shrinkage property if for some constant 

b 

Ix - 'T](x, t)1 < t + b for all x and t, (3.53) 

where 'T](x, t) is the shrinkage rule. 

The posterior means of the three priors satisfy the bounded shrinkage property. It 

turns out that these posterior means will closely approximate strict shrinkage and 

thresholding rules for suitable choices of hyperparameters. 

Although the exponential prior is qualitatively similar to the power prior and 

has performed well in numerical examples, it has generally performed less well than 

the power prior. For this reason we focus mainly on the power prior to investigate 

properties of the posterior median in the following sections. 

3.3.4 A General Discrete Prior 

In some circumstances we may wish to use a prior which is different from the mass 

point, power or exponential priors discussed above. For a general prior the compu­

tations can be performed using numerical integration or MCMC. However, if we are 

willing to approximate a general prior using a discrete distribution concentrated on 

a finite set of f3 values, then the necessary calculations are similar to those given in 

(3.32) . 
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3.4 Posterior Quantities of Interest 

The posterior distribution of P is given in Theorem 3.2: see (3.22), (3.23). (3.25) and 

(3.26). Here, we shall be interested in the following characteristics of the posterior 

distribution (3.22): Pmean, the posterior mean; the "hypothesis testing" location 

estimate Phyp = zI(1f < 1/2) where I(1f < 1/2) = 1 if 1f < 1/2 and I(1f < 1/2) = 0 

if 1f > 1/2; and Pmed, the posterior median. In this section we shall assume that the 

hyperparameters u 2
, p and A are known. Estimation of the hyperparameters u 2 , p 

and A will be discussed in § 4.3. 

In the framework of Theorem 3.2, Pmean and Phyp are straightforward to calculate; 

see (3.27) for Pmean and (3.23) for Phyp' For the three priors M, P and E discussed 

in the previous subsection, Pmean is given by (3.34), (3.43) and (3.50), and Phyp is 

obtained using (3.33), (3.40) and (3.48), respectively. 

We focus now on the posterior median. From the posterior distribution (3.22), it 

follows that if 1f > 1/2 then Pmed = 0, while if 1f < 1/2 it is necessary to find the 0'­

quantile, with a = (1/2-1f)/(1-1f), of the distribution with density f(plz, u2
, A, J = 

0) given in (3.25). In the case of the mass point prior this involves finding the 0'­

quantile of the u2 (1 - u>.) X~ { z (1 - u>.) / u2
} distri bu tion. In the exponential and 

power prior cases, this involves finding the a-quantile of the CDF 

where 

F(y) = 1 H(ylz,u2 ,u)g(u)du 
uE(O,l) 

In the exponential prior case, 

and in the power prior case, 

(3.54) 

Note that in (3.54) the variable of integration has been changed from t3 to u = 

{3u 2 /(1 + {3(2 ), with u 2 treated as a constant. 
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H(ylz, (/2, u) is the CDF of a non-central X2 distribution. Recall the theoretical 

expression of the CDF of a non-central \:2 distribution we gave in (3.2), \vhich can 

be coded directly using the algorithm given by ~arula and Desu (1981). :-\nothcr 

method, using the Lugannani-Rice (LR) saddlepoint formula (Lugannani and Rice. 

1980) to approximate the real CDF of a non-central X2 distribution, is also \"er~" 

appealing and accurate. Since the algorithm by Narula and Desu inyoh"e:-; summing 

a series which in some cases will have a large number of terms while LR formula has 

explicit form, we choose to use LR formula to approximate the real CDF of a n011-

central X2 distribution in Chapter 4. However, it would be interesting to compare 

the results provided in Chapter 4 with the results using the algorithm gin'n b~" 

N arula and Desu. 

3.5 Theoretical Properties of the Posterior Me-

dian 

In this section, two properties of the median of the posterior distribution (3.22) will 

be investigated. Here. we focus exclusively on the posterior median. denoted Pmed, 

given the power prior (3.36). 

3.5.1 Asymptotic Behaviour of the Posterior Median 

Recall from Lemma 3.4 and Lemma 3.5 in Section 3.3 that the posterior means of the 

proposed power prior and exponential prior have the bounded shrinkage propert~·. 

We want to look at the asymptotic behaviour of the posterior median from a similar 

perspective. In this subsection, med(pz) instead of Pmed will be used to highlight the 

dependence of p and the posterior median on 2. The following proposition descrih(':-; 

the behaviour of med(pz) as z --t 00. 

Proposition 3.1 In the setting of Lemma 3.4, the median of the posterior distn-
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bution of p satisfies 

as z -t 00. (3.58) 

A proof will be given in §3.7. Note that, as z -t 00, med(pz) is smaller than the 

posterior mean given in (3.44) by a fixed quantity, a 2 . 

3.5.2 Shrinkage and Thresholding Properties 

A natural and important question to ask, particularly in the wavelet context, IS 

whether a given estimation rule, such as the posterior mean or posterior median, 

has shrinkage and/or thresholding properties. In the case of the posterior median 

with the power prior, we find a necessary and sufficient condition for it to be a 

thresholding rule and a necessary and sufficient condition for it to be a shrinkage 

rule. 

Proposition 3.2 Let med(pz) denote the posterior median with power prior (3.36) 

and integer m > 1, p E (0,1), A > -1 and a 2 > o. 

A: med(pz) is a thresholding rule, in the sense that med(pz) = 0 for all sufficiently 

small positive z, if and only if 

2(A + 1) > . 
p 4(A+l)+m' 

(3.59) 

B: med(pz) is a shrinkage rule, in the sense that med(pz) < z for all z > 0, if and 

only if 
Mm(a2

, A) 
p > 1 + Mm (a2 , A) , 

(3.60) 

where 

(3.61) 

Rp(z) is defined in (3.41) and F(z) is defined in (3.54)· 
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Proof of Proposition 3.2 

Part A: First, note that Rp = (A + 1)ez/(2a
2 )C1]{z/(2a2)} is a strictly increasing 

function of z because, using the definition of C1] in (3.4), we have 

> 0, 

for fixed A, TJ and a 2
. Therefore 'ifp, defined in (3.40), is a strictly decreasing function 

of z. 

Consequently, the posterior median is a thresholding rule if and only if'ifp > 1/2 

when z = O. When z = 0, 

and 

o A+1 
Rp = (A + l)e C1](O) = -TJ-+-1 

----=p--­
'ifp = P + (1 - p)Rp 

p 

P 
+ (1+p)(A+1) . 

1]+1 

Therefore, the ratio 'ifp > 1/2 at z = 0 is equivalent to 

A+1 A+1 
p> -

A + TJ + 2 - 2 + 2A + m/2 

as required, since TJ = A + m/2. 

Part B: F(z), defined in (3.54), is the CDF corresponding to the posterior den-

sity (3.25) with the power prior. A necessary and sufficient condition for med(pz) < z 

for all z > 0 is 
1 

'ifp + (1 - 'ifp)F(z) > 2' for all z > 0, (3.62) 

which is equivalent to 

(1 - 'ifp )-1 > 2{1 - F(z)}, for all z > O. (3.63) 



Chapter 3: Bayesian Results for the Non-Central X2 Distribution 

From the definition of 7rp in (3.40), it is seen that 

(1 - 7r )-1 - 1 + P 
p - (1 - p)Rp(z)' 

Therefore (3.63) is equivalent to 

P 
1 + (1 _ p)Rp(z) > 2 - 2F(z) 

¢} 1 p > Rp(z){l - 2F(z)} 
-p 

¢} p > sup [ Rp(z){l - 2F(z)} ] 
- z~O 1 + Rp(z){l - 2F(z)} , 

for all z > O. Since f (x) = x / (1 + x) is an increasing function of x for x > 0, from 

which it follows that 

sup [ Rp(z){l - 2F(z)} ] = Mm(a 2
, ,\) 

z~O 1 + Rp(z){l - 2F(z)} 1 + A1m(a2,'\) 

where Mm(a 2
,'\) is defined in (3.61). This completes the proof .• 

Conditions (3.59) and (3.60) have a clear and sensible interpretation. Note that 

small p corresponds to a prior belief in a non-sparse wavelet representation of the 

unknown function f. Since a key notion underlying wavelet methods is that "most" 

unknown function can be well approximated by a function with a relatively small 

proportion of nonzero wavelet coefficients, in case of sufficiently small p, it is far from 

clear that thresolding and shrinkage are the appropriate things to do, particularly 

when prior information is presented. Also, the conditions needed for Proposition 

3.2 were satisfied in all the numerical examples we have considered in Chapter 4. 

Similar necessary and sufficient conditions can be derived for the mass prior and 

exponential prior. 

It is worth noting that Rp{l - 2F(z)}, considered as a function of z with m, ,\ 

and (12 held fixed, is decreasing for all sufficiently small positive z. It is summarised 

as follows: 

Lemma 3.6 In the setting of Proposition 3.2, for fixed values of m. ,\ and a
2

, 

Wm(z) = Rp{l-F(z)} is a decreasing function of Z for all sufficiently small positive 

Z. 
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We will give the proof of this lemma in § 3.7. Also, note that as a consequence of 

Proposition 3.1, F(z) > 1/2 for z sufficiently large, and so Rp {1-2F(z)} is negati\"e 

for z sufficiently large. Moreover, Figure 3.1 shows Rp{l- 2F(.:)}, denoted as ll"m 

for short, as a function of z with numerous choices of integer Tn > 1 and -\ > -l. 

In each case, it seems that the maximum occurred at .: = O. 

Conjecture 3.1 Based on the above discussion, in particular Lemma 3.7 and Fig­

ure 3.1, it seems reasonable to conjecture that the supremum always occurs at z = 0, 

which means that Mm ((J"2 , -\) is equal to 2(-\+ 1)/{4(-\+ 1) +m}, the right-hand side 

of {3.59}. 

3.6 Discussion and Further Work 

To facilitate the presentation, we denote the methods corresponding to the t hl't,f' 

priors (3.31), (3.46) and (3.36) by NC~1, J\'"CE and 0JCP respectively. where the 

"NC" indicates "based on the non-central chi-squared results in §3.T and :"1, E and 

P indicate "mass point prior", "exponential prior" and "power prior" resp(,c( ivd~" 

(see §3.3). In addition, "mean", "hyp" and "med" (the posterior mean, hypothesis 

testing and posterior median methods, respectively, described in §3.3 and §:3.4) will 

be combined with NCM, NCN and NCP to indicate the denoising method used. 

Theoretical motivation for priors. There is an important theoretical reason for 

preferring the power and exponential priors over the mass point prior. Figure 3.:2 

shows the Bayes rule for NCMmean, NCPmean and r.;CEmean, which correspond 

to using Pmean with the mass point prior, power prior and exponential prior, respec­

tively. For purposes of comparison, the exact risk of each rule is shown in Figure 

3.3. For more discussion of the exact risk, see ~1arron et al.. \\"c can see that the 

risk 

where S(.:) is a shrinkage operator, stays bounded as .: ~ x when S is gin)ll b\' 
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Figure 3.1: Wm(z) with m = 1,2,4,8,16 and A = 0, -0.3, -0.6, -0.9. 
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Bayes rule for NCMmean with p=O.95, lambda=5e-3 
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Figure 3.2: Bayesian shrinkage rule for three methods :-JCJ\Imean, NCEmean and 

NCPmean, 

NCPmean and NCEmean, while the risk of NCj\Imean is not bounded when p goes 

to 00. 

Heavy tailed priors. The work of Johnstone and Silverman (2005) has shown 

the theoretical desirability of using heavy-tailed priors in EB approaches to wavelet 

shrinkage. It is interesting to note that the power and exponential priors both imply 

heavy-tailed priors for p. The following lemma shows this in the power prior case. 

Lemma 3.7 In the case of the power prior, as p --+ 00, we have 

where A > -1 and C).. > 0 does not depend on p. 

Therefore, in the case of the power prior, A determines the tail behavior of the 

prior distribution of p in a simple way. 

Posterior mean versus posterior median. From Lemma 3.4 and Lemma 3.5. We' 

can see that the posterior mean, Pmean, is neither strictly a shrinkage rule nOI' a 



Chapter 3: Bayesian Results for the Non-Central X2 Distribution 

. 
50 

~ lI\ "'"" F"~O" o. NCEm •• " -" o~~ -. 0_' ~ 

°0~--22~0~~4~0--~60~--~80~--~1~~0---1~2~0--~1~~0~--1~60----1~80--~200 
Risk Function of NCPmean with p-O.95, larnbda- 0.95 

~~b: ", j 
o 20 40 60 80 100 120 140 160 180 200 

59 

Figure 3.3: Risk functions for three methods NC:l\lmean, ~CEmean and ~CPmean. 

thresholding rule. Consequently, posterior median, Pmed has dear theoretical ad van-

tages over Pmean. However, according to Definition 3.3, the posterior means of the 

power prior and exponential prior have the bounded shrinkage property. Because 

Pmean contains sufficient properties in common with the shrinkage and thresholding 

rules, it performs as well as Pmed, as shown for example in Figure 3.-1, the Bayes rule 

for NCPmean and NCPmedian. Generally speaking, their performances are quite 

similar except that, for small z, NCPmean performs like a shrinkage while :\"CPme­

dian is a thresholding rule and, for z ---+ 00, NCPmedian is smaller than ~CPmean. 

Also, we can see their performance in simulations on the standard model functions 

shown in Chapter 4. Figure 3.5 shows the risk function for NCPmean and ;'\CPme-

dian. 

Empirical block Bayes approach. In this chapter we have assumed that the hy­

perparameters a 2 , p and A are known. In practice, we suggest that the following 

two-stage EBB procedure be adopted: estimate a2
, p and A, using the method out­

lined in §4.1; then substitute these estimates into the relevant formulae. treating 

them as though they are the known values. This, and other practical matters. are 

considered in the next chapter. 
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Figure 3.4: Bayesian shrinkage rule for 1\ CPmean and ~ CPmedian. 
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3.7 Proofs 

Proof of Lemma 3.1 

The marginal density of z is 

1''" f(zlp, 0-2)f(plfJ)dp 

1= x;;' (z Ip, 0-2
) X;;' (pIO, ,6-1 )dp. (3.6~) 

Substitute the definition of the non-central X2 distribution in (3.1) to the right ~icl(' 

of equation (3.64) and simplify it as 

(3.65) 

Noticing that 

100 _p/(2(J2) m/2+k-1 -(3p/2d _ f(m/2 + k) 
o e pep - {lj (2a 2 ) + .j j2}k+m/2' 

we can substitute it into (3.65) and further re-arrange (3.65) to be 

((3 j2)m/2 ::;17l/2-1 00 (,-::/(2172) (:: j a2)k 
f(mj2)(2a 2)m/2{lj(2a2) + /3j2}m/2 £; k!2/;(2a)k{lj(2a 2 ) + .jj2}k· 

U sing the fact that 

~ e-z /(2(J2) (z j a2)k _ e-:: 3 /(2(1+(J2 J )) 

~ k!2k(2a2)k{lj(2a2) + /3j2}k - , 
k=O 

we have 

From the definition of u (3.12), we have 

.) 

J(zla2 ,6) = x~(::IO, :). (3.66) 
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The posterior distribution of p can then be calculated from Bayes' theorem 

Hence we obtain identity (3.16) .• 

Proof of Lemma 3.2 

(3.28) is straightforward. For (3.29), substituting y = '"'(X into (3A), we have 

C ( ) - 1 1"( h -Yd 
h '"'( - h+l y e y 

'"'( 0 
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(3.67) 

(3.68) 

When,",( ---+ 00, using the definition r(h + 1) = Jooo 
yhe-Ydy, we obtain (3.29). Using 

the result of (3.29), as z ---+ 00 we have 

• 

,",(-(h+t+l)r(h + t + 1) 
,",(-(h+l)r(h + 1) 

_tr(h + t + 1) 
'"'( r(h+1)' 

Proof of Lemma 3.3 

In the case of the power prior, we have 

(1- 7rp) [" pfp(plz,a2 ,.x, J = O)dp 

(1 - 7rp) [" P [" X;' {plz(l - U)2, a2 (1 - u)} fp(,Blz. a, .x)d,Bdp 

(1 - 7rp) [" p 1 'x;. {plz(l - U)2, a2(1 - u)}gp(ulz. a, .x)dudp. 

Exchanging the order of integration, we have 

r1 roo 2 2 } 
Ep[plz, (/2,0] = (1 - 'Jrp) in gp(ulz, (/,.x) io PX~ {plz(l - u) , (/ (1 - u) dpdu. 

o 0 (3.69) 
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From (3.9), we have 

and so (3.69) simplifies to 

(1 - 1fp) 11 {m0-2(1- u) + z(l - U)2}gp( ul Z, 0-, A)du 

(1-7rp){m0'2E(1- u) + zE(l- lL)2}, (3.70) 

where expectation 

11 u r +m
/
2+"C" { zj(20-2)} -1 exp{ -uzj(20-2)}du 

C1]+r{ z / (20'2)} 
C1]{ z/(20'2)} 

for r = 1,2. Finally, we obtain (3.43) .• 

Proof of Lemma 3.4 

Using the result (3.30) of Lemma 3.2, as z ----t 00, we have 

rv 

where 77 = m/2 +'\. So 

C1]+1 {z / (20'2)} 
C1]{ Z / (20'2)} 

77+ 1 

z / (20'2) 
m/2 +,\ + 1 

Z/(20'2) 

20'2(,\ + m/2 + 1) -1 
m0'2 + z - (m0'2 + 2z) + O(z ) 

Z 

rv Z - 40'2(,\ + m/4 + 1) 

when z ----t 00, as required. 

As z ----t 0, Ch(O) = l/(h + 1), 

C1]+1 (0) /C1](O) 

77+ 1 

77+ 2 

(3.71) 
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and 

Since, 

7rp(O) = 

Hence 

when z -7 0 as required. • 

Proof of Lemma 3.7 

In the case of the power prior, we have 

Cry+2(0) /Cry(O) 

17+ 1 

17+ 3 

1 

1 + l;P Rp(O) 

1 

1 + e-p )(>-+l)· 
P 1')+1 

jp(pI0"2, A, J = 0) = { j(pl{3)jp({310"2, A, J = O)d{3 
} f3E(O,oo) 

6-i 

A + 1 i {3(m/2)+>-____ p(m/2)-1 (0"2)>-+1 -Pf3/2d{3 
f(m/2)2m/2 f3E(O,oo) (1 + (30"2)>-+2 e . 

Let v = p(3/2, so 

1 (3m/2+>-_____ e-Pf3/ 2d(3 
f3E(O,oo) (1 + (30"2»-+2 

eV )m/2+>- 2 
( P e-v-dv 

JVE(O,OO) (1 + 2; 0"2)>-+2 P 

(~)m/2+>-+11 vm/2+>-e-v 
>-+2 dv 

p vE(O,oo) (1 + 2;0"2) 

As p -7 00, the dominated convergence theorem (see for example Billingsley, 1968, 

Theorem 5.5) gives 



Chapter 3: Bayesian Results for the Non-Central X2 Distribution 

Therefore, as p ---+ 00, 

where 

• 
Proof of Proposition 3.1 

Define 

65 

(3.72) 

The proof firstly involves calculating asymptotic expressions for the first three pos­

terior cumulants of p. Then Esseen's smoothing lemma and related results are used 

to justify an Edgeworth expansion for the posterior CDF of p. Finally, a Cornish­

Fisher expansion for the posterior median is obtained, which reduces to (3.58). This 

proof is broken into four steps: 

Step 1: It is shown that as z ---+ 00 , 

and 

where kl = -a(2 + 2,\ + m/2) and k3 = 3a. 

Step 2: Define 

(3.73) 

where ¢ and <I> are the standard normal density and CDF, respectively. Note that 

(3.73) is a two-term Edgeworth approximation to a distribution with mean :-1/2K1o 

variance 1 and third cumulant equal to Z-1/2 K3 ; see for example Gnedenko and 
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Kolmogorov (1968, Chapter 8) and Hall (1992, Chapter 2). In Step 2 it is shown 

that, for any fixed E E (0,1), 

Step 3: A proof that 

is given. Therefore 

Step 4: Using (3.75), it is shown that 

Then (3.58) follows directly from Step 4, because from (3.72) and (3.76), 

as required. 

2az 1
/
2med(Yz) + z + 0(.:;-1/2) 

Z - a 2(5 + 4,\ + m) + 0(Z-1/2) 

Proof of Step 1 The density of the non-zero component of pz is given by 

f(plz, ,,2,'x,J = 0) = [/(2U') x;;,{ylz(l- 2:2t)',,,2(1_ 2:2t)} 
tTJe-t 

{z / (2a2)}TJ+1CTJ{ Z / (2a2)) dt. 

(3.74) 

(3.75) 

(3.i6) 

We first calculate the conditional moments of the non-zero component of pz. For 

h = 1,2 and 3, 

Ilh(t) E[(pz - z)hl t] to (y _ z)hX;;' {Ylz( 1 _ 2:2t) 2, ,,2 (1 _ 2:2t) }dy 

Using the results about moment and cumulant of the rescaled non-central '(2 distri­

bution (3.7) (3.8) and the general relations between moments and cumulants, which 

are 

(3. ii) 
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see e.g. McCullagh (1987), and putting a = z(l- 2(J2t/Z)2 and b = (}1(1_ 2(}lt/Z). 

we obtain the following: 

/-ll(t) 

and 

/-l3 (t) 

E[(pz - z)lt] 

z(l- 2(J2t / Z )2 + m(J2(1 - 2(J2t / Z ) - z 

m(J2 - 4(J2t + O(Z-l) 

/-l2 (t) Var(pzlt) + {/-ll(t)V 

4ab + 2mb2 + {/-l1(t)}2 

4(J2z + 0(1) 

K:3(Pzlt) + 3Var(pzlt)/-l1(t) + {/-ll(t)P 

24ab2 + 8mb3 + 3(4ab + 2mb2)/-l1(t) + {/-l1(t)}3 

24z(J4 + 12z(J2/-l1(t) + 0(1). 

(3.78) 

(3.79) 

(3.80) 

Next, we will evaluate the unconditional moments E[(pz - Z )h] for h = 1, 2, 3. 

Taking into account the zero component in the posterior distribution of pz. which 

occurs with posterior probability 1f, we have 

(3.81) 

where the expectation on the right hand side is with respect to a gamma variable t 

truncated above at Z/(2(J2). When evaluating (3.81) as Z ---+ 00, the following points 

are relevant 

1. 1f is exponentially small, so in particular 

1flzlh = O(Z-l) for h = 0, L 2.3; 

2. the O(Z-l) term in (3.78), 0(1) term in (3.79) and the 0(1) term in (3.80) 

preserve these orders after expectations are taken over t because each of these 

remainder terms only depends on t through a low power of t : 
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3. the error in ignoring the truncation of t at z/(2a2) when evaluating expecta­

tions of a low order power of t is exponentially small, i.e for fixed h 

for some E > 0 as z ~ 00. 

Taking 1, 2 and 3 into account, we evaluate (3.81) as follows: from (3.78), 

from (3.79), 

and from (3.80), 

Therefore, since ry = .\ + m/2 and using (3.82), we obtain 

and 

E(Yz) E{ (pz - z)/(2az1/2)} 
2 

a 1/2 (4 + 4,\ + m) + 0(z-3/2) 
2az 

_z-1/2a(2 + 2,\ + m/2) + 0(z-3/2), 

1 + O(Z-l) 

E(Yz
3) E{ (pz - z)3 /(2az1/2)3} 

_ 3z-1/2a + (~)z-1/2a-1{ma2 - 4a2(ry + In + 0(.:-3/2). 

Using the general relations (see e.g McCullagh, 1987) 

(3.82) 

(3.83) 
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we have 

and 

E(YZ

2) - {E(Yz)}2 

1 - Z-la2(2 + 2A + m/2) + O(Z-l) 

1 + O(Z-l) 

E(Yz
3) - 3E(Yz

2)E(Yz) + 2{E(Yz )}3 

3crz-1
/

2 + (~)cr-lz-l/2(mcr2 - 4cr21J) - (~)cr-lz-l/2(mcr2 - 4cr21J) 

+0(Z-3/2) 

3az-1/2 + 0(Z-3/2) 

as required. That concludes the proof of step 1. 

Proof of Step 2: Define 
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(3.85) 

and 
f'l -t 

g{tlz/(2a
2
),1J} = {z/(2a2)}1J+~C1J{z/(2a2)}· 

Note that for each t, Fz(ylt) is the CDF of a noncentral X2 distribution which has 

been translated and scaled. From the definition of FAy), it follows that 

where 

Define also 

where Z-1/21'\,1 and Z-1/21'\,3 are, respectively, the first and third cumulants of the 

distribution with CDF Fz(Y), and write 
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where Z-1/2K:1(t) and Z-1/2K:3(t) are, respectively, the first and third cumulants of 

the distribution with CDF Fz(Ylt). Then 

(3.86) 

where 

and 

Now 

uniformly in Y as z ----t 00. Next, for any E E (0,1) and z large. 

I,(y) - I [ + f /
(2.') I 

< o~~fz, IFz(ylt) - GAylt)1 [ g{tlzj(2(T2), 7J}dt 

1
z /(2(72) 

+(1 + C(z)) z' g{tlzj(2a2 ),1J}dt 

< sup IFZ(ylt) - Gz(Ylt) I + O(Z-l) (3.88) 
OSt~z' 

uniformly in y, where we take 

C(z) = sup sup Gz(ylt) 
yEROSt~z' 

and have used the fact that 
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decays faster than any power of z as z ---+ 00. To show this, fix .Y < x. Then 

ZN 1~ g{tlzj(2cr2).1)}dt 

zN 100 

tTJe-tdt 
{z/ (2a2 }1J+1C1J{ tlz/ (2a2

)} z~ 
N 

rv {z/ (2a2 }1J+:C
1J

{ tlz/ (2a2 )} (Zf)TJe-Z< . 

The above comes from the fact that 

see Dudley and Haughton (2002, lemma 4(a)). Also, for E E (0,1), ZN+f1Je-
Z

< ---+ 0 

as z ---+ 00 and 

as z ---+ 00. Therefore 

as z ---+ 00 for any fixed N E (0,00). Finally, 

(Z/(2(j2) 

13(y) = \<I>(Y) - Z-1/2¢(y) io {~l(t) + ~3(t)(y2 - I)}g{tlz/(2a
2
), 1]}dt 

_¢(y) + Z-1/2¢(Y){~1 + ~3(y2 -I)}\. 

Therefore, since 

it follows that 

uniformly in y, since by direct calculation, 
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and ¢(y)ly2 - 11 is a bounded function of y. 

Therefore, using (3.86), (3.87), (3.88) and (3.89), it is seen that 

Proof of Step 3: Firstly, We show that Fz(Ylt) can be viewed as the CDF of the 

sum of l z J independent identically distributed random variables, where L z J denotes 

the integer part of z, plus two other independent random variables. 

Suppose N f'J Poisson(>..) , a Poisson random variable with mean >... and let 

Xl, X 2 , ... denote a sequence of lID random variables, independent of N, with 
N 

common MGF Mx(()). Then the MGF of the random sum S = L Xi is given by 
i=l 

(3.90) 

A non-central X2 variable W with density x~(ylz, a, b) has 1IGF given by (3.7) 

Mw(()) = (1 - 2b())-m/2 exp {I ~a~b()}' (3.91) 

where, in the present setting, 

( 
2O'2t)2 

a = a(z, t) = 1 - -z- and ( 
2O'2t) 

b = b(z, t) = 0'2 1 - -z- (3.92) 

and ° < t < ZE for some E E (0,1). Note that 

lim inf a(z, t) = lim sup a(z, t) = 1 
z-oo o=::;t=::;z< z-oo o=::;t=::;z< 

and 

lim inf b(z, t) = lim sup b(z, t) = 0'2. 
z-oo o=::;t=::;z< z-oo o=::;t=::;z< 

It follows from the above that a random variable Y with MGF given in (3.91) 

may be represented as follows: 

LzJ 

W=b(U+V+LXi) 
i=l 

(3.93) 

where U, V and the Xi are all independent and have the following distributions: 

U rv X~; V f'J L:f;!l X Oj (= 0 if No = 0), where No f'J Poissan{a(.: -l.:J)/(2b)}. 



Chapter 3: Bayesian Results for the Non-Central X2 Distribution 

No and the X Oj are independent; Xi I"V ~~1 Xij (= 0 if ~Yi = 0)). where 'Y
i 

'" 

Poisson{a/(2b)}, i = 1, ... , lzj, the Ni and Xij are independent with Xij ~ \}. 

To see that (3.93) follows from (3.90) and (3.91), note that 

E[e8bU ] = (1 - 2bB)-m/2, 

E[ 8bV] {aB( z - l z j) } 
e = exp 1 _ 2bB 

and 

E[exp{8b fl = exp { lzJa8 } 
i=l 1 - 2bB 

The product of these three quantities gives (3.91). 

A further point to note is that, if a and b are given by (3.92) and II' is the random 

variable in (3.93) with MGF (3.91), then (W -z)/(2(J2z1/2) has CDF F-:;(ylt) defined 

in (3.85). 

Arguing heuristically for the moment, when l z j is large, n' ~ b ~}:Jl Xi, \yhich 

suggests that we may apply the theorem on page 220 of Gnedenko and Kolmogorov 

(1968) to obtain the result (3.74). Condition (C) of the theorem is satisfied because 

the distribution of Xi has an absolutely continuous component. 

To justify (3.74) vigorously, the key requirement is to extend Theorem l(b) on 

page 204 of Gnedenko and Kolmogorov (1968) to include U + 1 '. This can be 

done without difficulty because U and V are light tailed random variables with an 

absolutely continuous component. 

Proof of Step 4: First, note that GAy) converges uniformly in y to <I>(y) as z ---+ :)c. 

It follows that the equation GAy) = 1/2 has a unique solution y = YO,z provided: 

is sufficiently large. Moreover, the derivative G~(y) = dGz(y)/dy is bounded aboH:' 

zero in a neighbourhood of YO,z in the sense that there exists an E > 0 and a :0 such 

that 

inf inf G~(y) > C > 0 (3.94) 
z2:zo Y=ly-yo,zl~f 

By definition, med(Yz ) is such that Fz{med(Yz )} = 1/2. Therefore, from (3.10) 

I~ -Gz{ med(Yz )} I = O(z-l) (3.95 ) 
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By Taylor's theorem, 

where y* lies between med(Yz ) and YO,z. It follows from (3.94)-(3.96) that 

(3.97) 

Finally, it follows from the Cornish-Fisher expansion (see Hall, 1992, p68) that 

Therefore, using (3.97), 

and Step 4 is proved. • 

Proof of Lemma 3.6 

By definition, 

where 'TJ = >.. + m/2 and C1J(r) is defined in (3.4). The CDF F(z) is given by 

A. Behavior of Rp(z) as z -+ 0. Since 

(1 u)z/(2a2 ) • as z -+ 0, the Taylor expansion for e - gIves 

(3.98) 
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B. Behavior of F(z) as z --+ O. Since 

X~{plz(l - U)2, 0"2(1 - un 
00 {Z(l-U) }k 
'"' e-z (1-u)/(2O'

2
) 20'2 X2 {IO 2(1 _ )} 20 k! m+2k P ,0" U 

00 {Z(l-U) }k £; e-z
(l-

ul/(2a'l 2k~ . f(m/~ + k) {2a2(; _ u) } ';+k P ';+k-Ie,·".'-·,. 

and 0 < P < z, as z --+ 0, p --+ 0, we have 

Therefore, substituting (??) into (3.99), we obtain 

F(z) = Cry {z/2a2}-1 r(~/2) (3.102) 

x 1z {11 

(1 - u)-m/2e -"'{'-.'urydu }pm/2- l dp + 0(z2). 

Also using the fact that e-uz/(2O'
2

) = 1 + O(z), we have 

Putting u = y/(l + y), the inner integral of right hand side of (3.102) transforms as 

follows: 

Write 

Hm,ry{p/(2a2)} = ["(1 + y)m/2-2e-~ C! yrdY , 

then the right hand side of (3.103) equals e-p
/(2O'

2
) Hm ,1]{p/(20"2n· 

(3.103) 

Since 0 < P < z and z --+ 0, we consider what happens to (3.103) when p --+ o. 

Three cases arise: m = 1, m = 2 and m > 3. 

Case 1: m = 1. Here, 
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where 

H 1,TJ(0) = (X) (1 + y)-3/2 ( Y ) TJ dy. 
Jo 1 +y 

Putting t = y/(l + y) and dt = (1;y)2dy, we obtain 

Then, using 

F(z) 

therefore, 

l' t"(l ~ t)'/2-'dt 

f(1] + 1)f(1/2) 
f(1] + 3/2) . 

1] + 1 (_1_) ~ (Z e-p/(2u2) f(1] + 1)f(1/2) -1/2 
f(1/2) 2a2 Jo f(1] + 3/2) p dp 

2(1]+1)f(1]+1)(~)1/2 O( 1/2) 
f(1] + 3/2) 2a2 + z . 
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(3.104) 

Consequently, Wm(z) is decreasing for z sufficiently small since zl/2 > z when 0 < 

z < 1. 

Case 2: m = 2. 

As p -+ 0, H2,TJ{p/(2a2 )} -+ 00, so this case is different. Put 7.' = py/(2a
2

) in 

(3.103). Then the right hand side of (3.103) is given by 

e ~ - 1+-- e d~'. _ 100 
(2a

2
) ( 2a

2
V)-1 ( 2a

2
v )TJ_v 

o p p p + 2a2v 

Then as p -+ 0, (3.105) asymptotic to 

[' C:2 +vr'e-Vdv ~ [ C:2 +vr'dv 

{ 
E + p / (2a

2
) } 

log p/(2a2 ) 

log C:'< + 1) 
~ log G) + log(2o-2<) 

~ log G)· 

(3.105) 
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From (3.102), as z ---+ 0, 

Therefore, 

F(z) ~ (ry + 1)C~2) [log G)dP 

rv (7] + 1) (2:2 ) log (~) + 0 (z ) . 

1- 2F(z) = 1- 2(7] + 1) (2:2 ) log (~) + O(z), 

and the result holds in this case too. 

Case 3: m > 3. 

--
I I 

(3.106) 

Consider H m ,17{P/(20-2)} when m > 3. Put v = py/(20-2) in (3.103) again, we 

obtain 

( p ) H - rv 
m,17 20-2 (

20-2) m/2-11°O _ vm / 2- 2e-v dv 
P 0 

(
20-2)m/2-1 (m ) - r --1 

P 2' 

and 

7]+1 (_1 )m/2 {Z(20-2)m/2-1 (m_ ) m/2-1 
F(z) r(m/2) 20-2 Jo P f 2 1 p dp 

Therefore 

(7] + 1)f(m/2 - 1) (_1 ) (Z dp 
f(m/2) 20-2 Jo 

7]+1 z 2 

(m/2 - 1) 20-2 + O(z ). 

1 _ 2F(z) = 1 _ 4(7] + 1) ~ + O(z2). 
(m - 2) 20-2 

(3.108) 

Comparison of (3.108) with (3.101) tells us that for m > 3, H"m,a 2 ,.x(z) is de­

creasing for all z > 0 sufficiently small when 

4(7] + 1) 1 --->-. 
m - 2 7] 

(3.109) 

Since 7] = A + m/2, A > -1 and m > 3, (3.109) is always true. So the conclusion 

holds .• 



Chapter 4 

Empirical Bayes Block Shrinkage: 

Practical Issues 

In this chapter we propose a novel empirical Ba~"es block (EBB) shrinkage procedure 

using the Ba~"esian methodology df'\"eloped in Chapter 3. The key feature of the 

approach is that shrinkage is based on the posterior distribution of the sum of 

squares of the \\"a\"elet coefficients in a block. In §-1.1. \\"e provide the motiyations for 

basing shrinkage on the block sum of squares. In §-1.:2. \\"e describe how to apply the 

Ba~"esian methodology mentioned in Chapter 3 to the task of performing posterior 

shrinkage based on the sum of squares. For simplicity. it is assumed in §-1.:2 that 

the h~'perparameters of the prior are known and that block sizes ha\'e alread\" been 

chosen. Estinlation of the h~"perparameters and choice of block size are considered 

in §4.3 and §4.4. In § 4.5. we discuss an equivariance property of the EBB method. 

Then a simulation study and application of this approach to the denoising of planar 

curves will be described in §4.1 and §-1.8. 

4.1 Motivation 

As mentioned above, the Bayesian methodology developed for the non-central \:2 

distribution in the previous chapter can be used to perform posterior shrinkage based 

IS 
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on a sum of squares of wavelet coefficients. However. before considering the details 

of how this can be done, motivation for basing shrinkage on the sum of squares is 

provided. 

1. It seems appealing and natural to base block shrinkage directly on some mea­

sure of the "energy" of the block, such as the sum of squares of wayelet coef­

ficients in the block. 

2. Frequentist approaches to block thresholding developed by Hall et al. (1997. 

1998, 1999), Cai (1999, 2002) and Cai and Silverman (2001) employ thresh­

olding based on block sums of squares, and these authors have shown that 

there are theoretical and practical advantages in this approach. Therefore. it 

is of interest to develop empirical Bayes block (EBB) methods which directly 

parallel the frequentist block thresholding techniques. 

3. Suppose we wish to denoise a noisy curve Y(t) = (Y1 (t), Y 2(t))T E R2 

observed at t = t l , ... , tn using wavelet shrinkage. In some situations we 

may be interested in the shape of the region enclosed by Y (t), in which case 

we would want to use a method for estimating Y(t) which is invariant with 

respect to rotations of the ambient space R2. Let {~i}f=l and {d;i}f=l denote 

the empirical wavelet coefficients obtained from components YI ( t) and Yi ( t ) 

respectively. Then if the shrinkage procedure is to be equiyariant with respect 

to rotations of the ambient space R 2 , shrinkage should be based on the sums 

of squares {( dti)2 + (d;i)2}r=I' 

4. If complex wavelets are used (see Lawton, 1993, and Lina and ~Iayrand, 1995) 

then it will often be natural to base shrinkage on the amplitude of the complex 

wavelet coefficient, and to leave the phase unchanged. Once again this leads 

to a shrinkage procedure based on a sum of squares. 

5. If multiwavelets are used then we may wish to develop an EB \'ersion of the 

frequentist thresholding procedure given by Downie and Silverman (1998). 
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Once again, this is conveniently achieved by basing the shrinkage procedure 

on a suitable sum of squares. 

4.2 Bayesian Block Shrinkage 

Consider the standard model (2.13) given in §2.4. After performing the D\VT on the 

noisy observations, we obtain the empirical wavelet coefficients djk , ) = )0, ... , J, 

k = 0, ... ,2j -1, which are candidates for shrinkage and the scaling coefficients Cjok' 

k = 0, ... ,2jo - 1 which will be kept unchanged, as mentioned in §2.5.2. Generally, 

it is natural to think of wavelet coefficients as having two indices, one for location 

and one for level. However, for notational convenience we suppress this structure in 

this chapter and just work with a single index. 

Let K denote the labels of the full set of empirical wavelet coefficients {di : i E K} 

under consideration and suppose B c K. There are various cases we may wish to 

consider. 

4.2.1 Bayesian Block Shrinkage in the Standard Model 

In the case of block shrinkage in the standard model (2.13), B may represent a 

single block where, typically, a block would consist of neighbouring coefficients at 

the same level. In the case of complex wavelets, B may consist of labels for the real 

and imaginary part of a single complex wavelet coefficient. 

Define dB = {di : i E B} and let n(B) denote the number of elements (i.e. 

labels) in B. Under the standard model (2.13), 

( 4.1) 

where dB is the noiseless version of dB and in(B) is the n(B) x n(B) identity matrix. 

Define 

and p = IIdB 112 = L di-
ieB 
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For given values of the hyperparameters CJ2 and () = (p. A), let Ba 2.9 (::) denote 

Pmean, Pmed or Phyp defined in §3.4. Then, corresponding to Step 2 (the shrinkage 

step mentioned in §2.5.1), we propose 

(4.2) 

Although (4.2) seems an intuitively reasonable approach, at least when dB has an 

isotropic covariance structure, it is not a fully Bayesian procedure. Here we will 

look more closely at the motivation for choosing (4.2). 

Motivation for (4.2) 

In (4.1), the distribution of dB under the model is stated. What we would like to 

know is dB, the wavelet coefficients in the block B determined by the unknown func­

tion f. Given the isotropic covariance structure assumed in the underlying model, 

and assuming that prior information is non-informative with respect to the direc­

tional component, dB/lldBII, of dB. it seems very natural to estimate the directional 

components of dB by the directional component of dB. namely dB/lldBII. Indeed, 

to estimate the directional component of dB any other way under the isotropy as­

sumptions of the model and prior would seem inappropriate. If we knew P = IldB W· 
then it would be natural to estimate dB by Z-1/2 pl/2dB , where z = IldBW· This 

is the same as (4.2), but with P replacing Ba2 ,9(Z), In practice we do not know 

P = IldB112. A key goal of the thesis is to set up convenient Bayesian machinery for 

estimating P using a suitable posterior quantity. 

However, there is another important point to consider. When considering the 

posterior mean, it could reasonably be asked why we take Ba2,9 (z) to be Pmean = E[p] 

rather than, say, Phmean = h-1 E[h(p)], where h is any strictly increasing function and 

h-1 (.) is the functional inverse of h. Admittedly, there is a degree of arbitrariness 

here in the use of the mean (despite the fact that in our numerical work the posterior 

mean has done rather well). 

In contrast, the posterior median has a strong and attracti\'e invariance propert~': 
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for any strictly increasing function h, median(p) = h-1{median[h(p)]}. 

In summary, we believe (4.2) is theoretically well-motivated under the assumed 

model in the case of the posterior median, but this is not the case to the same extent 

in the case of the posterior mean (because of the degree of arbitrariness in the choice 

of h). 

4.2.2 Bayesian Block Shrinkage in a General Model 

More generally, suppose that instead of (4.1) we have 

(4.3) 

where the matrix V is assumed known. Then we may still use shrinkage procedure 

(4.2), but with z now defined by z = d~V-ldB. Thus shrinkage will generally 

be heavier in those directions in dB-space with larger variance, which makes good 

sense. 

In practice V will often be unknown. In such cases we suggest estimating V and, 

subsequently, treating the estimate as though it were known. Estimation of V will 

be considered in Chapter 5. 

If K is partitioned into N non-overlapping blocks B(l), ... ,B(N), not necessarily 

of the same size, then by applying the above procedure to each block we obtain 

d = {dB(l) : fEN} = {d: : i E K}; 

see Step 2 mentioned in § 2.5.1. 

4.3 Estimation of Hyperparameters 

It is necessary to specify values of the hyperparameters ~2, P and A before the 

shrinkage step (4.2) can be used in practice. 

To obtain an estimate, (j2 say, of ~2 we suggest using the median of the :j 

IldB(i)112 at the finest level J, divided by the median of the standard central \~, 
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assuming that the block sizes at the finest level are all equal to m. ::'\ote that this 

is analogous to the proposal of Donoho and Johnstone (1994, p. --1--16). who suggest 

estimating CT by the median absolute deviation of the wavelet coefficients at the 

finest level J divided by 0.6745. 

--We have estimated A by A obtained using the following "quick-and-dirty" method. 

Suppose that }(, is partitioned into blocks B(l) .... , B(N) of size mi.·· .. ms· \\"e 

shall use (3.32) to obtain a "central" value of (3. Since for each i, 

EM[z,la"- OJ = 100 

z, [px;",(:dO, a2
) + (1 - p)x;", (:.10, a2

/ "3) 1 dz, 

2 

pm iCT2 + (1 _ p) mi
CT 

U3 

2 2 (1 + 30'2) 
pmiCT + (1 - P )miCT '3 2 ,0' 

2 2) mi pmiCT + (1 - p)miCT + (1 - p J 

for 0 < p < 1. it is reasonable to expect that 2::;:1 Zi is larger than 0'22::;:1 mz' 

In practice it is usually substantially larger, due to the presence of a signal. Gin'n 

Threshi = 2miCT2 log N, a preliminary estimator of p is given by 

#{Zi < Threshi : i = 1. ... , ~V} 
PO= N 

(--1.--1) 

Then the "central" {3 is obtained by matching moments 

N (N) (S) ~ z, = 0'2 ~ m, + (1 - Po) ~ m, /.6 

which yields 

--In the case of the mass point prior, we choose A = 13: for the "power" pnor. 

we choose ~ so that jj is the median of (3.36). Note that the calculations are 
--

facilitated if one transforms from jj to u using (3.12). and then finds the A ~o 
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that JoU(~ + l)u:i:du = 1/2. This yields>: = -log2/logu -1. Similarly. for the 

"exponential" prior, we may choose >: so that jj is the median of (3. --16 ) . 

Once &2 and>: have been obtained, we can then estimate p at each different leyel 

by marginal maximum likelihood using (3.2--1) in the general case. and (3.32). (3.--17) 

and (3.39) in the mass point, exponential and power prior cases, respecti\'ely. 

Initially, we attempted to use the EI\I algorithm to estimate A and p jointly. 

Results for the mass point prior were satisfactory. but we found that. for the expo­

nential and power priors, the marginal profile likelihood for A (with p "'maximised 

out") was generally rather fiat and for this reason did not lead to a stable or reliable 

procedure for estimating A. However, once (J'2 and A are specified, the marginal 

maximum likelihood estimator of p is unique. \Ve haye found that the "quick and 

dirty" method described above is very fast and our simulation study indicates that 

it produces consistently good results. 

An alternative to estimating A is to choose A to achieve suitable shrinkage or 

thresholding properties on the basis of Proposition 3.2 in Chapter 3. 

4.4 Choice of Block Size 

In addition to estimating the hyperparameters (J'2. A and p, \\'e need to consider 

the choice of the block size, which corresponds to the degrees of freedom, m, of 

the non-central X2 distribution. The size of the blocks plays an important role 

in estimation. Theoretical results concerning the choice of block size ha\'e been 

discussed by several authors. In particular. Cai (2002) considered the effect of block 

size on local and global adaptivity. Global adapti\'ity can be measured by the mean 

integrated squared error: 

R(i - f) = Ell] - fll; = E{ 1: ([(x) - f(y))2d.I} (--1.5) 

while local adaptivity can be measured by the expected loss at a point .ro: 

( -L6) 
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Cai (2002) noted that there are conflicting requirements in block size for achie\"ing 

the global and local adaptivity. For the block size L = (log n)8. in order to achieye 

global adaptivity, s must be greater than 1, while for the local adapth"ity. s has to be 

less than 1. The optimal choice, L = llog n J, where l· J denotes the integer part. is 

achieved by considering the choice of thresholding constant). for a given block size. 

In the regression case, Hall et al. (1999) suggested choosing block size L = (log n)2 

and threshold constant ). > 48 to attain the minimax rate of convergence under the 

global risk measure (4.5). In the density estimation case, Hall et al. (1998) indicated 

that choosing blocks to be of size Ci(logn)2, where i denotes the resolution le\"el. will 

achieve the minimax rate of convergence under the global risk measure (-1.5). 

However, although such results give valuable theoretical insights, they do not 

provide explicit rules for choosing the block size. The numerical results presented 

in the next section suggest that in a given problem the best choice of block size will 

in practice depend not only on sample size, but also fairly strongly on the unknown 

signal to be estimated. Cai (2002) also pointed out some noticeable discrepancies 

between the asymptotic and finite sample results. 

4.5 Computation of the Posterior Median 

As mentioned before, we will use the Lugannani-Rice (LR) saddlepoint formula (see 

Lugannani and Rice, 1980, Daniels, 1987 and Jensen, 1995) to approximate the CDF 

of a non-central X2 distribution. 

4.5.1 Saddlepoint Method 

In many contexts, the LR formula has been proved to be a remarkably accurate 

approximation to the CDF of a sum of independent random variables. In its standard 

form, the LR approximation for a continuous variable X is given by 

____ {I I} 
Pr(X < y) ~ LR(y) = ~(w) + ¢(w) W - U . (-t.7) 
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where <I> and ¢ are the standard normal CDF and density. respecti\'ely: 

(-1.8) 

and 

u = tK" (t) 1/2 , (4.9) 

where sgn(t) = -1,0 or 1 depending on whether tis negative, zero or positiYe. !\'(t) 

is the CGF (cumulant generating function) of X and t is the (unique) solution to 

the saddlepoint equation K'(t) = y. We may also investigate the second order LR 

approximation (see Wood et al., 1993) as 

where LR(y) is given in (4.7), wand u are as before. and ii = !((i)(i)/{!\'(:2)(i)}i/2 

(i = 3,4) are the standardised third and fourth cumulants. \Ve can see that in 

the first and second LR formula the normal distribution has played a prominent 

role. Since the CDF and density of the standard normal distribution are available 

as standard functions in Matlab, the LR approximation is numerical realisable. 

4.5.2 Finding the Posterior Median 

Recall that finding the posterior median is equivalent to finding the a-quantile, \\'ith 

a = (1/2 - 7r)/(1 - 7r), 7r < 1/2, of the distribution with density f(plz, (J2, A, J = 0) 

given in (3.25). This involves finding the a-quantile of the CDF 

F(y) = ( H(ylz,(J2,u)g(u)du 
JUE(O,l) 

where H(ylz,(j2,U) and possible choices for g(u) are defined in (3.55), (3.56) and 

(3.57) . 

Since H(Ylz, (j2, u) is the CDF of a non-central X2 distribution WE' may approxi­

nlate it using the LR formula mentioned above. Following (4.7). WE' haye 

(-1.11) 
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In order to calculate w = [2{K(t - ty}p/2sgn(t) and u = tKI/(t) 1/2. we have l\". the 

CGF of 0-2(1 - u)X?'Jz(l - U)/0-2}, 

K(t) = __ m log {1- 20-2(1- u)t} + _z-.:..(_1_u~)2_t_ 
2 1- 20-2(1- u)t' 

and its derivatives 

and 

K"(t) = 2m0-4(1 - u)2 + 4z(1 - u)0-2 
{I - 20-2(1 - u)tp {I - 20-2(1 - u)tp' 

The solution, t, of the equation K'(t) = y, is given by 

t = 2y(1 - U)-l - m0-2 - Jm20-4 + 4yz 
4y0-2 

Similarly, we have the second order LR approximation as 

H( I 2) H'-"( I 2) ~(.-..){1 (1.-.. 5'-"2) 1 13 I} y Z, 0- ,u = y Z, 0- ,u - '+' W ::::: -')'4 - -')'3 -:::::- - - + ~ (4.12) 
u 8 24 u3 21i2 w 3 

with the jth derivative, K(j)(t), j = 3,4, of K(t) given by 

(.) (j - 1)!2j- 1m0-2j (1 - u)j j!2j- 1Z0-2(j-1)(1 - U)j+1 
K J (t) = + =------~-----.:~ 

{I - 20-2(1 - u)t}j {I - 20-2(1 - U)t}j+1 . 

Substituting ii or H for H in (3.54), we may evaluate the integral over u nu­

merically to obtain an approximation F or F for F. Then we may solve F(y) = a 

or F(y) = a using a root finder to obtain an estimate Yo. or Yo. of the a-quantile Yo.' 

Although, generally, the second order LR approximation is more accurate than 

the first order LR approximation, it displays numerical problems when tis very close 

to 0 due to the removable singularity at t = O. We have used the linear interpolation 

method to avoid this problem in numerical work. 

Generally, the posterior median, Pmed, is more difficult to compute than the pos­

terior mean. However, in case of the power prior, it can be accurately approximated 

using the LR approach described above. 
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4.6 Equivariance 

We now consider what happens if the coordinate system is changed. Starting \yith 

the standard model 

i = 1 '" n , ,. (4.13) 

we transform coordinates as follows: 

i = 1 ... n , ., 

(4.14) 

where a and b are constants. 

Let f = (A,··· ,f~)T denote an estimator of f = (iI,'" . fn)T based on the 
T ~ ~ ~ 

data vector y = (Yl,'" ,Yn) and let f* = (f{,'" . f~)T denote the estimator of 

f* = (f{.··· ,f~)T based on the transformed data y* = (y~., .. ,y~)T. 

Definition 4.1 The estimation procedure is said to be equivariant if 

(4.15) 

where In = (1, ... ,1)T is the n-vector of ones. 

In other words, the estimation procedure is equivariant if applying the procedure 

to the unknown function in the transformed coordinates gives the same result as 

applying the procedure to the unknown function in the original coordinates and 

then transforming to the new coordinates. This definition of equivariance is tailored 

to the present setting. A more general definition of equivariance in terms of a 

transformation group is given in Barndorff-Nielson and Cox (1994, page 53 and 

page 77). 

Following (2.12), we can then write the orthogonal matrix W as 

W= (~o), 
VJO 
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where Wo is an n x (n - 2io ) matrix, Vjo is an n x 2jo matrix and )0 is the coarest 

level. Also, according to the vanishing moment property (Condition (3) of Definition 

(2.1)), when m = 0, we have 

( -i.16) 

where 0n-2j o is the (n - 2io )-vector of zeros. The three steps of wayelet estimation 

mentioned in §2.5.1 can be represent as follows. 

In Original Coordinates 

Step 1 Obtain the empirical wavelet coefficients 

Wy = (WOY) = (~). 
VJoY C 

Step 2 Adjust d to d by applying a suitable automatic shrinkage procedure to d. 

Step 3 Estimate f by 

In the transformed coordinates, the same procedure is applied to the transformed 

observation vector y*. 

Step 1* Obtain 

W * = (WOY*) = (d*). 
y V· y* c* Jo 

Step 2* Adjust d* to d* by applying a suitable automatic shrinkage procedure to 

d*. 
Step 3* Estimate f* by 

A T(d*) f* = W c* . 

Proposition 4.1 Consider the wavelet-based denoising procedure outlined above. 

Assume that (4.16) holds. Suppose that in step 2 (or step 2*) above, the non-central 

X2 based Bayesian block denoising procedure is used, with power prior, exponential 

prior or mass point prior, as defined in section 3.3, and with posterior quantity gil'en 

by the posterior mean, posterior median or hypothesis testing procedure, as defined 
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in section 3.4. If the hyperparameters are estimated as indicated in section 3.4, then 

the estimation procedure is equivariant, i.e. (4.15) holds. 

Proof of Proposition 4.1: The relevant Zi consist of sums of squares of components 

of d, while the z; consist of sums of squares of components of d*. It follows from 

(4.16) that d* = bd and therefore z; = b2zi , i = 1"" .n. Consequently, (0-*)2 = 

b20-2 , where 0-2 is the rescaled median of the Zi' Po defined in (4.4) is the same 

in either coordinate system, while {3* = (1/b2 ){3. It follows from Theorem 3.1 and 

Theorem 3.2 in Chapter 3 that P":ned = b2 Pmed and P":nean = b2 Pmean. Moreover. 

7r, the posterior probability of the unit mass point, does not depend on the scale 

factor b. Therefore Phyp = b2 Phyp' The remaining part of the proof is to note that 

orthogonality ofW combined with (4.16) implies that VToVjo = I2iox2io. Thus (4.15) 

holds. 

4.7 Simulation Results and an Example 

In this section, we present the results of some simulations to illustrate the methods 

proposed above. 

4.7.1 Simulation Study 

Four signals, "HeaviSine", "Blocks", "Bumps" and "Doppler", first proposed in 

Donoho and Johnstone (1994, 1995) as test functions for wavelet estimators, are 

considered here. Each test function was rescaled so as to achieve a different signal­

to-noise ratio (SNR), which here is the ratio of standard deviations of the signal and 

noise (see Donoho and Johnstone, 1994, 1995). Independent standard normal noise 

was added at each location Xi according to the standard model (2.13). The value of 

the rescaled function was obtained as follows: 

( SNR) 
fscaled = f * std(f) , 

( 4.17) 
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where std is the standard deviation of the test function. ,,"hich is defined as 

std(f) = 

The following signal-to-noise ratios were considered: S::\R=3, 5, 7 and 10. Each 

function was sampled at n=256, 512, 1024 and 2048. In order to compare the re­

sults, we follow most authors by choosing the following ,vavelets for different signals: 

Syminlet 8 for "HeaviSine" and "Doppler", Haar for "Blocks" and Daubechies 3 for 

"Bumps", where the numbers 8 and 3 indicate the number of vanishing moments 

for Symmlet and Daubechies wavelets. respecti\"ely. 

The comparisons discussed below are based on the average mean squared error 

(MSE), defined as the sum of the mean Squared Bias (1\IS8) and variance (Var). 

which are computed as follows. 

MSE: The mean squared error is computed for each run and m"eraged over all 

simulation runs. 

MSB: Let f(Xi) be the average of !(Xi) over the number of the simulation runs. 
n 

The ~dSB is (lin) ~(f(Xi) - f(Xi))2. 
i=l 

n .-..... 

Variance: is (lin) ~(f(Xi) - f(Xi))2. 
i=l 

Figures 4.1 and 4.2 contain the noisy "Bumps" with S~R=3. and "Doppler" 

with SNR=7, and the reconstructions were obtained from NCEmean, ::\CEhyp. 

NCPmean, NCPhyp, NCPmed based on approximation (4.7) and ::\CPmed based 

on approximation (4.10) (see § 3.6 for their definitions). Table 4.1, which is split 

into parts (a) and (b), shows average MSE results with 100 simulation runs for four 

test functions, obtained using NCPmean, NCEmean and i\"C)'lmean at different 

SNRs (3, 5, 7 and 10) and in different sample sizes (256. 512. 1024 and 2048) at a 

fixed block size m = 2. These figures and table show that each of the priors did 

reasonably well. For small SNRs (for example S~R=3). most of the average )'ISEs 

of the NCPmean and NCEmean are smaller than those of the ~C:\Illl('an. while 
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for large SNRs (for example SNR=5, 7 and 10), most of the average ~ISEs of the 

NCPmean and NCMmean are smaller than those of the NCEmean. But overall the 

procedure based on the power prior (NCPmean) had a clear superiority over the 

other two. 

In what follows we will focus on the signal reconstruction methods based on the 

posterior mean and posterior median respectively, using the non-central X2 model 

(NC) with power prior (P) to show the effect of choosing different block sizes. \Ve 

use the notation NCPmean-m and NCPmed-m to denote these two reconstruction 

methods with block size m. 

In Table 4.2, a preliminary study is undertaken to compare the performance 

of NCPmean and NCPmed methods at the block size m = 1,2,4,8,16 with the 

sample size n = 1024. It is interesting to note that the best choice of block size. 

as measured by the average MSE, is fairly constant across a range of signal-to-noise 

ratios, but depends quite heavily on the signal. These simulation results indicate 

that, in these examples, a small block size (m = L 2 or 4) is appropriate for the 

sample size n = 1024. Table 4.3 reports the average MSE of NCPmean and NCPmed 

at the different combinations of the block size m = 1,2,4,8,16 with the sample size 

n = 512, 1024,2048,4096,8192. In Table 4.2 and Table 4.3, the number in each cell 

is the MSE and an asterisk is used to identify the optimum block size. We can see 

that the best choice of block size will depend not only on sample size, but also on 

the unknown signal to be estimated. For example, functions with significant spatial 

variability, such as Doppler, generally work better with a larger block size (m = 4.) 

while smooth functions, such as HeaviSine and Blocks, can achieve better values 

for average MSE by reducing m. To a certain extent, the results agree with the 

simulation results presented by Cai (2002). 

Typical reconstructions using the posterior mean and posterior median with 

block sizes m = 2,4 and 8 are shown in Figures 4.3- 4.5. 
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(a) 

20 

20 20 
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o 0.2 0.4 (e) 0.6 o.a Q2 Q4 m Q6 Qa 
40.---~--~--~--~~ 

20 

O~--~--~--~--~~ 

o 0.2 0.4 (g) 0.6 o.a 0.2 0.4 (h) 0.6 o.a 
40.---~--~--~--~~ 40,---~--~--~--~~ 

20 

O~--~--~--~--~--

o 0.2 0.4 0.6 o.a 
OL---~--~--~--~--

o 0.2 0.4 0.6 o.a 

Figure 4.1: The original Bumps function and various reconstructions based on sam-

pIe size n=1024 and SNR=3: (a) original signal; (b) noisy signal; (c) reconstructed 

by NCEmean; (d) reconstructed by NCEhyp; (e) reconstructed by :\,CPmean; (f) 

reconstructed by NCPhyp; (g) reconstructed by ~CPmed using (-1.7); (h) recon-

structed by NCPmed using (4.10). 
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(a) (b) 
40,---~--~--~--~--- 40r---~--~--~--~--~ 

o~--~--~--~--~--~ O~--~--~--~--~--~ 

o 0.2 0.4 (c) 0.6 0.8 o 0.2 0.4 (d) 0.6 0.8 
40,---~--~--~--~--~ 40r---~--~--~--~--~ 

o~--~--~--~--~--~ 

0.2 0.4 (e) 0.6 0.8 o 0.2 0.4 (f) 0.6 0.8 
40.---~--~--~--~--~ 40.---~--~--~--~--~ 

OL---~--~--~--~--~ OL---~--~--~--~--~ 

o 0.2 0.4 (g) 0.6 0.8 o 0.2 0.4 (h) 0.6 0.8 
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OL---~--~--~--~--~ 

o 0.2 0.4 0.6 0.8 
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Figure 4.2: The original Doppler function and various reconstructions based on sam-

pIe size n=1024 and SNR=7: (a) original signal; (b) noisy signal; (c) reconstructed 

by NCEmean; (d) reconstructed by NCEhyp; (e) reconstructed by ;,\CPmean; (f) 

reconstructed by NCPhyp; (g) reconstructed by' NCPmed using (-1:.7); (h) recon­

structed by NCPmed using (4.10). 



Part (a): HeaviSine Blocks 

Number methods SNR=3 SNR=5 SNR=7 SNR=10 SNR=3 SNR=5 SNR=7 SNR=10 

256 NCPmean 0.1409 0.2181 0.2687 0.3148 0.4704 0.3490 0.3116 0.2986 

NCEmean 0.1326 0.2260 0.3136 0.3963 0.4865 0.3756 0.3080 0.2712 

NCMmean 0.1678 0.2317 0.2771 0.3099 0.4085 0.3355 0.2986 0.2775 

512 NCPmean 0.0881 0.1340 0.1714 0.1780 0.2744 0.2515 0.2321 0.2123 

NCEmean 0.0870 0.1495 0.1886 0.2615 0.2921 0.2887 0.2630 0.2197 

NCMmean 0.1071 0.1334 0.1717 0.1941 0.2840 0.2514 0.2273 0.2010 

I 1024 NCPmean 0.0528 0.0638 0.0851 0.1088 0.2055 0.1689 0.1533 0.1088 

NCEmean 0.0608 0.0787 0.0928 0.1390 0.2451 0.1941 0.1598 0.1357 

NCMmean 0.0611 0.0680 0.0877 0.1071 0.2185 0.1768 0.1521 0.1346 

2048 NCPmean 0.0359 0.0428 0.0496 0.0577 0.1130 0.1038 0.0950 0.0870 

NCEmean 0.0395 0.0528 0.0632 0.0751 0.1317 0.1188 0.0995 0.0801 

NCMmean 0.0372 0.0435 0.0499 0.0585 0.1389 0.1132 0.0965 0.0818 

Table ,Ll: Tht' comparison of thrc(, methods llncil'l' 100 simulatioll l'lms. MSE obtailled for differellt SNRs (:),5,7,10) and saillpl(' 

sizes 11 (256,512,1024,2048), choosillg the block lc11gthm = 2. 
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- -- ------

Part (b): Bumps Doppler 

Number methods SNR=3 SNR=5 SNR=7 SNR=10 SNR=3 

256 NCPmean 0.6137 0.6327 0.6765 0.7228 0.3677 

NCEmean 0.6183 0.7034 0.8190 0.9337 0.3821 

NCMmean 0.5696 0.5762 0.6170 0.6688 0.3876 

512 NCPmean 0.4580 0.4254 0.4256 0.4262 0.1891 

NCEmean 0.4934 0.4913 0.5043 0.5215 0.1999 

NCMmean 0.4595 0.4198 0.4105 0.4091 0.2477 

1024 NCPmean 0.2493 0.2668 0.2753 0.2853 0.1038 

NCEmean 0.2742 0.2992 0.3188 0.3342 0.1126 

NCMmean 0.3132 0.2885 0.2815 0.2856 0.1622 

2048 NCPmcan 0.1550 0.1728 0.1783 0.1~50 0.0554 

NCElllcan 0.1692 0.1950 0.2101 0.2237 O.O5~9 

NCMlllcall 0.2207 0.1963 0.1882 0.1883 0.1118 

SNR=5 SNR=7 

0.3642 0.3505 

0.4059 0.4026 

0.3546 0.3479 

0.2045 0.1954 

0.2236 0.2264 

0.2206 0.2061 

0.1228 0.1250 

0.1452 0.1539 

0.1435 0.1350 

0.0658 0.0712 

0.0700 ().0~5() 

0.0902 0.0823 

--

SNR=10 

0.3694 

0.4598 

0.3656 

0.2117 
I 

0.2453 

0.2169 

0.1298 

0.1497 

0.1312 

0.0732 

0.0911 

0.O7~:3 
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HeaviSine Blocks 

NCPmean NCPmed NCPmean NCPmed 

. m",-SNR 3 7 10 3 7 10 3 7 10 3 7 10 

m=l 0.0508 0.0866 0.1077 0.0546 0.0951 0.1260 0.1667* 0.1248* 0.1163* 0.2069* 0.1199* 0.1014* 

m=2 0.0501 * 0.0840* 0.1027* 0.0539* 0.0880* 0.1149* 0.1928 0.1574 0.1501 0.2359 0.1535 0.1410 

m=4 0.0555 0.0922 0.1169 0.0592 0.0973 0.1272 0.2402 0.2135 0.2090 0.2850 0.2054 0.1954 

m=8 0.0596 0.1037 0.1348 0.0604 0.1081 0.1426 0.2909 0.2894 0.2903 0.3354 0.2876 0.2862 

m=16 0.0608 0.1143 0.1553 0.0614 0.1163 0.1651 0.3333 0.3816 0.3923 0.3780 0.3889 0.4011 

Bumps Doppler 

NCPmean NCPmed NCPllleCln NCPmed 

m",-SNR 3 7 10 3 7 10 ;3 7 10 3 7 10 

m=l 0.2847 0.3120 0.3199 0.3616 0.3831 0.3809 0.1184 0.1498 0.1645 0.1384 0.1769 0.1 ~)l:3 

m=2 0.2483* 0.2746* 0.2862* 0.2845* 0.3095 0.322S 0.102S 0.1235 0.1281 0.1108 0.134G O.1:n2 

m=4 0.2710 0.2943 0.3060 0.2947 0.3077* 0.3219* O. 09S 7* O.11GO* 0.12GO* 0.1008* o .12(H O.l:Wl * 

1ll=8 0.3233 0.3670 0.:3792 0.3461 0.3858 0.3~)77 0.10!)1 0.1217 0.1371 0.1070 0.1197* O.l:~71 

lll=lG O.37~)S O.4G48 0.4814 (l.40S3 0.4924 0.4~)3S 0.1071 0.12!)·1 0.1:374 0.1088 0.1247 O.l:)KQ 
_. 

Tal)l(~ ·1.2: Silllulatioll r<~sllits for NCPllleall awl NCPlllCd c:olllparillg diH'crcllt I) lock sizes In 1,2,4,8, IG llsing; 100 sillllilatioll 

rllllS with smllpl(' siz(' n 1024. 
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HeaviSine Blocks 

n m=l m=2 m=4 1ll=8 m=16 m=l m=2 

512 0.1261 0.1223* 0.1287 0.1417 0.1402 0.2084* 0.2462 

1024 0.0633 0.0628* 0.0703 0.0786 0.0869 0.1376* 0.1694 

2048 0.0436 0.0415* 0.0460 0.0525 0.0596 0.0839* 0.1051 

4096 0.0257 0.0246* 0.0270 0.0302 0.0359 0.0412* 0.0537 

8192 0.0170 0.0155* 0.0161 0.0186 0.0226 0.0245* 0.0315 

Bumps Doppler 

n m=l m=2 m=4 m=8 lll= 16 m=l III = 2 

512 0.4549 0.3978* 0.4389 0.5354 0.6994 0.2400 0.1912 

1024 0.3064 0.2653* 0.2905 0.3598 0."-t394 0.1:366 O.1l91 

2048 0.1931 0.1708* 0.1820 0.2254 0.2844 0.0798 O.()662 

4096 0.1050 0.0956* 0.0998 0.1232 0.1580 0.()431 O.(n:38 

8192 0.0588 0.0539* 0.0552 0.0679 0.0881 0.1891 0.0209 

Table L1.:~: Sinmlatioll results for NCPmeall C'olllparing diH'('l'('llt block siz('s rn 

512, 1024, 2(),lR, 40DG, H 192 usillg 10() simulatioll nlllS. 

m=4 m=8 III = 16 

0.3029 0.3602 0.4606 

0.2238 0.2915 0.3681 

0.1389 0.1870 0.2465 

0.0746 0.1061 0.1489 

0.0437 0.0625 0.0896 

m=4 m=8 lll= 16 

0.1659* 0.1774 0.2049 

0.1059* 0.1112 0.1134 

0.()612* 0.0635 0.0613 

0.0:311 0.0299* 0.0305 

0.0187 0.0170 0.0157* 

1,2, ·1, 8,16 with diH'ercllt SCI III pi<, sizes 1/ 
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In Table 4.4, the new methods are compared with a number of recently proposed 

methods in the literature. This table shows the new methods to be \'ery competitive 

with the best of the existing methods, with the best of the former surpassing the best 

of the latter for two of the four test functions: for the the Bumps signal, ~CP~Iean-

2 is best; and in the case of the Doppler signal, ~CP~Iean-4 is best. The table 

also shows that if the translation-invariant DWT is used with the new methods, 

then major reductions in MSE can be expected; compare methods 9-12 with 13-

16, respectively. See, for example, Percival and Walden (2000) for a discussion of 

the translation-invariant DWT, referred to there as the ~IOD\YT. ~ote: reductions 

in MSE of similar order may also be expected to occur if the translation-invariant 

DWT is used with methods 1-8. 
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Bumps noisy si!J'lal 
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40 
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0 0 
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

postmean-2 postmedian-2 
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postmean-4 postmedian-4 
80 80 

60 60 

40 40 

20 20 

0 0 
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

postmean-8 postmedian-8 
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Figure 4.3: The original Bumps function, the Bumps function with noise added 

and various reconstructions, based on sample size n=1024 and SNR=7. The six 

reconstructions are obtain using the NCPMean and NCPMed procedures with block 

sizes 2, 4 and 8. 
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Doppler 
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40 
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postmean-4 
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postmedian-2 
40 

OL---~--~----~--~--~ 
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Figure 4.4: The original Doppler function, the Doppler function with noise added 

and various reconstructions, based on sample size n=1024 and S:\R=7. The six 

reconstructions are obtain using the NCPMean and NCPMed procedures with block 

sizes 2, 4 and 8. 
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~D2SJ =:PS:2;d 
o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

::D2SJ =:CS2S:J 
o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

::D2SJ =:CS2S:J 
o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

=:D2SJ =:CS2S:J 
o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Figure 4.5: The original HeaviSine function, the HeaviSine function with noise added 

and various reconstructions, based on sample size n=1024 and S:N"R=7. The six 

reconstructions are obtain using the NCPMean and NCPMed procedures with block 

sizes 2, 4 and 8. 



HeaviSine Blocks Bumps 

1. BlockJS 0.1453 (0.1176+0.0276) 0.4593 (0.2797+0.1796) 0.4813 (0.2677+0.2136) 

2. ABWS 0.0874 (0.0433+0.0442) 0.0995 (0.0121+0.0874) 0.3495 (0.1267+0.2228) 

3. BAMS 0.0815 (0.0304+0.0511) 0.1107 (0.0142+0.0965) 0.3404 (0.1428+0.1976) 

4. BBS 0.0860 (0.0394+0.0466) 0.2034 (0.0061+0.1973) 0.2961 (0.0373+0.2588) 

5. EBTCMean 0.0810 (0.0317+0.0494) 0.3225 (0.1094+0.2131) 0.3589 (0.1052+0.2537) 

6. EBTCMed 0.0860 (0.0400+0.0460) 0.3537 (0.1379+0.2159) 0.3840 (0.1374+0.2467) 

7. EBTLMean 0.0816 (0.0304+0.0513) 0.3263 (0.1045+0.2217) 0.3744 (0.1100+0.2644) 

8. EBTLMed 0.0857 (0.0363+0.0495) 0.3522 (0.1315+0.2207) 0.3908 (0.1347+0.2562) 

9. NCPmean-2 0.0836 (0.0414+0.0422) 0.1559 (0.0048+0.1511) 0.2701 (0.0422+0.2280) 

10. NCPmed-2 0.0885 (0.0504+0.0381) 0.1528 (0.0286+0.1242) 0.3087 (0.1073+0.2015) 

11. NCPmean-4 0.0926 (0.0432+0.0494) 0.2103 (0.0041+0.2062) 0.2917 (0.0320+0.2597) 

12. NCPmed-4 0.0973 (0.0493+0.0480) 0.2023 (0.0153+0.1870) 0.3074 (0.0652+0.2422) 

13. TINCPmean-2 0.0666 (0.0294+0.0372) 0.1127 (0.0006+0.1121) 0.2228 (0.0150+0.2077) 

14. TINCPllled-2 0.0677 (0.0372+0.0305) 0.0796 (0.0043+0.0753) 0.2107 (0.0521+0.1586) 

15. TINCPmcall-4 0.0752 (0.0321+0.0431) 0.1556 (0.0015+0.1541) 0.2530 (0.0141 +0.2389) 

16. TINCPlllcd-4 0.0748 (0.0368+0.0380) 0.1237 (0.0024+0.1213) 0.2298 (0.0281 +0.2017) 

Doppler 

0.1764 (0.1066+0.0698) 

0.1646 (0.0640+0.1006) 

0.1482 (0.0584+0.0899) 

0.1185 (0.0288+0.0897) 

0.1534 (0.0557+0.0977) 

0.1637 (0.0675+0.0958) 

0.1606 (0.0549+0.1057) 

0.1665 (0.0666+0.0999) 

0.1238 (0.0305+0.0933) 

0.1390(0.0509+0.0881 ) 

0.1143 (0.0256+0.0887) 

0.1196 (0.0352+0.0844) 

0.0968 (0.0176+0.0793) 

0.0857 (0.0245+0.0G12) 

0.0885 (O.O103+{).O7~2) 

0.0779 (0.013!J+O.O(j()O) 
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Table 4.4: The Comparison of 16 methods using 1000 simulation runs with n=1024, SNR=7, and signals HeaviSine, Blocks, Bumps 

and Doppler. For further details of the methods BlocksJS, ABWS, BAMS and BBS see Cai (1999), Chipman et al (1997), Vidakovic 

and Ruggeri (2001) and De Canditiis and Vidakovic (2004), respectively; the next four methods are variants of EBayesThresh due 

to Johnstone and Silverman (2005) based on the posterior mean or median, using the Cauchy or Laplace prior, in obvious notation; 

methods 9-12 are variants of the new methods using the DWT; and methods 13-16 are variants of 9-12 respectively in which the 

translation-invariant (TI) DWT is used. 
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Electrical Signal 
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BAMS Denoising 
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500 

100~--~~--~~--~~--~~--~L---~~~~----~ o 500 1000 1500 2000 2500 3000 3500 4000 

Figure 4.6: Electrical consumption signal and denoising results by BlockJS and 

BAMS 

4.7.2 An Electrical Consumption Example 

We further illustrate the performance of the above procedures using an electrical 

consumption signal measured over a 5-week period (Antoniadis et aL 2001). Fig­

ure 4.6(a) shows a selection of the electrical signal, sampled minute by minute over 

a 3-day period. The noise is introduced whenever a defect occurs in the monitoring 

equipment. The assumption that the noise is IID is rather doubtful in this exam-

pIe because of its time dependent structure. Nevertheless. it is interesting to see 

that the proposed method provides sensible and useful results in this example. The 

denoising results by BlockJS and BAMS procedures are also presented in Figure J.6. 

Figure 4.7 gives the denoising results using NC1Imean, KCEmean and :\CP­

mean. It appears that the methods proposed produce a smoother fit. compared 

with denoising results by BlockJS and BAMS. In this example, the new methods 

appear to be able to remove the noise more effectively. 
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denoised by NCMmean 
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Figure 4.7: Denoising results by NCl\Imean, NCEmean and NCPmean for the elec­

trical consumption signal. 

4.8 Denoising Planar Curves 

As an extension of the application of the EBB method mentioned above. the planar 

curve problem will be investigated. How to recm"er a contaminated planar Clln"e is 

essential in shape description and recognition. Furthermore, for most curve matching 

or shape recognition tasks, it is important that the methods are invariant with 

respect to rotation, translation. 

The problem we consider is that of denoising a noisy closed curve in the plane. 

A new wavelet estimator based on a sum of squares of empirical wavelet coefficients 

of two parametric coordinate functions is introduced and the EBB method is then 

applied to this estimator. The closed planar curve model we consider is gi\"en in 

(4.18). In §4.8.2 the implementation of the approach for calculating the new esti­

mator is explained. The equivariance of this method with respect to translation, 

rotation and isotropic scaling is discussed in §4.8.3. A simulation study is provided 

in §4.8.4, giving comparisons of the proposed methods with some existing methods. 
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4.8.1 The Model 

Planar curves can be expressed in terms of two parametric coordinate functions 

where the two coordinate functions depend on the same parameter as follows: 

_ {(h ( t)) . } 2 C - 12 ( t) . t E [0, l] c R , (4.18) 

where Ii : [0, l] -----+ R, i = 1,2, are continuous, real-valued coordinate functions. 

If Ii (0) = Ii (l), i = 1, 2, then C represents a closed curve in R 2 . 

In this section it is assumed that a noisy version of C is observed at discrete 

points ti = (lin) . i, i = 1, ... , n, and that the following model is appropriate: 

( 4.19) 

where the vector (Eli, E2i)T is IID with N(O, 12x2 ). It is more convenient if n = 2J+l. 

But if n is not an integer power of 2, the TIDWT can be used. 

The method of this section can also apply to non-closed planar curves. However, 

in this case, boundary problems at the end-points of the curves need to be addressed. 

4.8.2 The Denoising Procedure 

As parameterized closed curves can be represented by periodic sequences, a cor­

responding periodic discrete wavelet transformation (Daubechies 1992) that takes 

observations (Yli, Y2i)T, i = 1, ... , n, to the wavelet space will be used. This pro­

cess can be represented by an orthogonal matrix W = (Wl, VTo)T, which yields the 

relations 

( 4.20) 

(
WOfj) 2 (WOEj) 
Vjofj + (J VjoEj 

(:;) +a2(:~) j = 1,2, 

where Yj = (Yjl, ... ,Yjn)T, j = 1,2, and, in similar notation, fj is the column vector 

of signal, dj , d j and Ej are wavelet coefficient vectors of noisy data, signal and noise 

variable respectively. 
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Under (4.21), we have 

(-1.21) 

where i = 1, ... , n-2jo and jo is the coarsest level. In order to keep the equivariance 

with respect to translation and rotation, the following transform of the wavelet 

coefficients is performed: Pi = dii + d~i and Zi = dii + d~i' Let 8a2,6 (z) denote Pmean, 

Pmed or Phyp defined in §3.4, the shrinkage step mentioned in §2.5.1 can be expressed 

as 

( 4.22) 

We can see that (4.22) is a straightforward extension of (4.2) with the block size 

m=2. 

An alternative way to obtain the denoised data (Yli, Y2i)T is by applying the 

methods outlined in the previous section to h(') and 12(,) one by one. However, 

there is a major drawback of this approach: the method is not equivariant with 

respect to rotations of the planar curves. 

4.8.3 Equivariance 

In this section we will show that the shrinkage procedure of the planar curve provided 

in § 4.8.2 achieves equivariance. 

For the standard planar curve model defined in (4.19), we transform coordinates 

as follows: 

(~~:) = (::~::) +bR(~::), ( 4.23) 

where aI, a2 and b > 0 are constants, In = (1, ... ,1)T is the n-vector of ones and 

R = ( cos( '19) - sin( '19) ) . 

sin( '19) cos( '19) 

Let (£1, £2) denote an estimator of (f1' f2) based on the noisy data (Y1, Y2) and 

(fr, f2) denote the estimator of (fi,~) based on the transformed data (Yi, y;). 
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Definition 4.2 The estimation procedure is said to be equil'Qriant if 

( -1.:24) 

Following this definition, the three step procedure in the original coordinates and 

transformed coordinates can be expressed as follows. 

Original Coordinates 

Step 1 Obtain the empirical wavelet coefficients 

WYl = (WOY1) = (~ll): VjoYl 

WY2 = (~:~:) = (~:) 
Step 2 Define Zi = dii + d~i' i = 1, ... ,n - 2jo

, and then obtain the adjusted dli 

and d'2i by using (4.22). 

Step 3 Estimate fl and f2 by 

Transformed Coordinates 

Step 1* Obtain 

Wy~ = (WoYi) (di) . 
VjoYi - ci ' 

Wy; = (~:~D = (~~) 
Step 2* Define z; = (d~J2 + (d;i)2, i = 1, ... , n - 2jo

, and then obtain the adjusted 

di i and d;i by using (4.22). 

Step 3* Estimate fi and f* 1 by 
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Proposition 4.2 In the setting of Proposition 4.1, the estimation procedure is equiv­

ariant, i.e. (4.24) holds. 

Proof of Proposition 4.2: The wavelet transform steps (Step 1 and 3 or Step 1* 

and 3*) achieve equivariance with respect to translation and rotation (see Chuang 

and Kuo, 1996). From the proof of Proposition 4.1, we know that z; = (dti)2 + 

(J;i)2 = b2zi and Ba2,e(zt) = Ba2,e(b2zi) = b2Ba2,e(Zi). Therefore, 

( J.25) 

Since from (4.23), we have 

( 4.26) 

and 

it follows from (4.25) that (dri' d;i)T and (dli , d2i )T also satisfy the translation rule 

(4.26). The remainer of the proof is similar to that of Proposition 4.1. 

4.8.4 Simulation Results 

The purpose of this subsection is to illustrate the practical performance of the pro­

posed Bayesian approaches. The following planar curve, expressed in parametric 

form, was used in the simulation study: 

where ti = -7r + (7r/512)i, i = 0,1, ... 1023 and sgn(t) = -1, ° or 1 depending on 

whether t is negative, zero or positive. For this pair of functions, 1024 pairs of points 
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Figure 4.8: The simulated function based on 1024 signal points and the noisy func­

tion with SNR=7 and SNR=10 

are generated by adding independent random noise (Eli E2i)T rv ~V(O, ()2 hx2)' The 

value of the rescaled functions are obtained as follows 

where 

n 

SNR 
fscaled i = fi * (std(f))' 

and f j = (lin) 2: fj(t i ), j = 1,2. In simulation study. S~R=7 and SNR=10 are 
j=l 

chosen. Daubechies compactly supported periodized wavelets are used. The average 

MSE for the estimator (1;., 1;) of (II, h) is defined as 

( 4.27) 

As shown in Figure 4.8, the original signals and noisy signals with S;\"R= 7 and 

SNR=10 are given. The posterior mean and median methods with the power prior 

(3.36), NCPmean and NCPmed respectivelYl specified in Chapter 3, and the "quick­

and-dirty" method of § 4.3 to estimate the hyperparameters are used. Simulation 

results are given in Figure 4.9. 

SingleMean ( Clyde and George, 1999, 2000) and Singlel\led ( Abromovich et al., 

1998) are methods which are used here to compare with the NCPmean and XCPmed 

methods. The original programs of SingleMean and Singlel\.led are from Matlab 
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Figure 4.9: NCPmean (top) and NCPmed (bottom) with SXR=7 and S~R=10 

package Waveden provided by Antoniadis et al. (2001) . These two methods are 

applied to the simulated noisy data Yl and Y2 one by one. Then the average ~ISEs 

are calculated by (4.27). 

These four methods of reconstruction (NCPmean. NCPmed, Single.\Iean and 

SingleMed) with sample size n=1024 and SNR=10 are provided in Figure -1.10 and 

the average MSEs with mean squared biases (11SB) and variances (Var) oyer 1000 

simulations with SNR=7 and SNR=10 are given in Table 4.5. :N"CPmean gives the 

best reconstruction in terms of the average MSEs for both SNR=7 and S~R=10 al­

though the improvement is not dramatic. However, NCPmean and ~CPmed meth­

ods can be easily applied to higher dimension planar curves, and still remain the 

equivariance property, which is desirable. 
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Figure 4.10: Reconstructions of the noisy function based on 102--1 signal points 

with SNR=10, from left to right, NCPmean and NCPmed (top), SingleMean and 

SingleMed (bottom) 

Methods MSE (MSB+ Var) l\ISE (l\ISB+ Var) 

SNR=7 SNR=10 

NCPmean 0.1065 (0.0334+0.0731) 0.0889 (0.0227+0.0662) 

NCPmed 0.1099 (0.0383+0.0716) 0.0893 (0.0239+0.0654) 

SingleMean 0.1201 (0.0271+0.0930) 0.1025 (0.0174+0.0851) 

SingleMed 0.1192 (0.0293+0.0899) 0.1005 (0.0186+0.0819) 

Table 4.5: The comparison of the four methods based on 1024 sample points with 

SNR=7 and SNR=10 over 1000 simulation runs. 
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4.9 Conclusions and Further Work 

An empirical Bayes approach for block shrinking of wavelet coefficients using the 

block sum of squares has been proposed. A simulation study was undertaken to 

investigate the performance of this new approach, and the new methods were com­

pared with both non-Bayesian block wavelet thresholding estimators and with \"ar­

ious Bayesian estimators. An application of the proposed methods to a practical 

data set has also been presented. 

Our results indicate that the new methods perform well and are competitive with 

the existing methods. Our results so far suggest that NCPmean is the best of the 

new procedures, though not by a big margin. 

In conclusion, we present a number of comments. 

1. It has been demonstrated that, with an appropriate choice of block length 

(block lengths 2 and 4 have worked well in our examples), the proposed meth­

ods are competitive with several existing methods, for example AB\ \"S and 

BlockJS. However, there is scope for further study of the effects of varying 

block length in the framework considered here. We note, however, that imple­

mentation of the proposals does not become more difficult when block length 

is increased. 

2. The "quick and dirty" method for estimating the level-independent hyperpa­

rameter A described in section 4.3 is computationally faster than most of the 

published Bayesian and EB methods and produces good results. 

3. It is noted in Johnstone and Silverman (2005) that shrinkage based on the 

mean does better in terms of MSE than shrinkage based on the median when 

the standard DWT is used, but the reverse holds when the translation-invariant, 

or stationary, DWT is used. We note that our numerical results conform to 

their finding: when we used the standard DWT, the mean outperformed the 

median in the case of the "power" prior (the only prior for which WE' have so 
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far implemented median-based shrinkage), but the median tended to provide 

the best results when the translation-invariant D\\'T \vas used. 

4. A simulation study investigating the proposed methods in the planar cun"e 

application was described. The equivariance of these methods with respect to 

translation, rotation and isotropic scaling is a desirable property, though in 

the simulation study the improvement was not dramatic. 



Chapter 5 

Estimation of Covariance 

Parameters in Wavelet Regression 

with Correlated Noise 

5.1 Introduction 

Various Bayesian approaches for thresholding and non-linear shrinkage of wayelet 

coefficient s have been proposed and shown to perform well under the IID Gaussian 

noise assumption. However, in realistic situations noise is often correlated, some­

times highly correlated. To extend the existing methods to handle this situation, a 

semi-parametric approach for estimating the unknown function f in the presence of 

correlated noise E has been developed. This approach has been investigated using a 

simulation study, and numerical results indicate that the proposed mrthod does a 

good job of reconstructing the signal eyen with highly correlated data. 

The outline of this chapter is as follows. In § 5.2, the model considered III 

this chapter is given and numerical results show the necessity of accounting for 

the correlation in the noise. A semi-parametric model is explored in § :-).3. This 

model includes a parametric part and a nonparametric part. In the parametric 

part, given the covariance structure of correlated noise. t",o distinct parametric 

116 
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approaches to estimate the parameters in the covariance structure are provided . 

In the nonparametric part, after the parameters are estimated. the EBB method 

proposed in Chapters 3 and 4 can be used to reconstruct the function. A simulation 

study is undertaken and graphics are presented in § 5.4. 

5.2 A Model with Correlated Noise 

5.2.1 Model and Notation 

The model to be considered in this chapter is 

i = 1 ... n , , (5.1) 

where f is the unknown function to be estimated, {Yi} is a set of observations, 

Xi = i/n and {Ci} is a stationary correlated sequence. 

When introducing the semi-parametric approach, we allow the error sequence to 

be a general stationary Gaussian sequence with known covariance structure. Later, 

in the simulation study, we only consider the {ci} modelled by a zero-mean stationary 

Gaussian autoregressive process or a moving average process of orders p and q, 

(especially, we consider p, q = 1,2 here), which are given by 

AR(p) (5.2) 

or 

MA(q) Ct = (31T/t-l + ... + (3qT/t-q + T/t, (5.3) 

where T/t is independent N(O, (}2). Given that we are assuming the {ci} is stationary 

and Gaussian, there is little loss of generality in restricting attention to autore­

gressive process as most Gaussian stationary processes can be approximated by an 

autoregressive process of sufficiently high order (see e.g. Brockwell and Davis. 1991). 
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5.2.2 An Example 

The only difference between the standard model (2.13) and the model (5.1) above 

is the different assumption about the noise E: independent N(O, (}2) noise in the 

former case and autocorrelated noise in the latter case. Since the properties of the 

wavelet transform show that wavelets are "almost eigenfunctions" of many operators 

(see Frazier et al., 1991, Meyer, 1992), which means that the autocorrelation of the 

wavelet coefficients of a noisy signal within each level dies away rapidly and little or 

no correlation between the wavelet coefficients at different levels exits (see Johnstone 

and Silverman, 1997), one may ask if it is possible to get away with using standard 

methods (i.e. methods designed for the standard model (2.13)) in the correlated 

data situation (5.1). 

We will use a numerical example to answer this question. For the standard test 

function "HeaviSine" (Donoho and Johnstone 1994, 1995), three types of noise are 

added: lID normal, AR(l) with 0: = 0.3 and AR(l) with 0: = 0.7. For correlated 

noise (AR(l) noise with 0: = 0.3,0.7) cases, we normalise the noise by using 

Enormalised = std( E) 

and rescale the signal for all three situations as usual by using 

SNR 
fscaled = f * (std(f))' 

(5.4) 

(5.5) 

where std is the standard deviation of the test function or noise. The signal-to-noise 

ratio (SNR) equals 7 in each level. Four methods, BlockJS, BAMS, EBTCMean and 

NCPmean-2 (see Cai, 1999, Vidakovic and Ruggeri, 2001, Johnstone and Silverman, 

2005 and posterior mean method of non-central X2 distribution with block size m = 2 

mentioned in Chapters 3 and 4 of this thesis), which we used for comparison in 

Chapter 4, will be considered here. Reconstructions of the signal from three types 

of noise are given in Figure 5.1. Clearly, all methods can give the reasonably well 

denoised results in the lID noise case. However, in the correlated noise cases, we 

can still see lots of wiggles in the reconstructed functions, especially for AR( 1) with 

0: = 0.7. 
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Figure 5.1: Denoising three noisy signals with SNR=7 using four denoising methods: 

BlockJS, BAMS, EBTCMean and NCPmean-2 
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Figure 5.2: Wavelet coefficients of lID noise (above) and AR(1) noise (bottom) 

More extensive study of numerical examples shows that if standard methods are 

used on correlated data, it can seriously affect the quality of the reconstruction of 

f, particularly when the noise are highly correlated. Thus there is a clear need to 

account for correlation in the noise when it is present. 

Furthermore, Figure 5.2 plots the wavelet coefficients of lID noise (above) and 

AR(l) noise with a = 0.7 (bottom). The difference between two groups of wavelet 

coefficients at each level shows clearly: wavelet coefficients of lID noise are still IID 

at each level while those of correlated noise are definitely not IID. Thus there is 

a need to have a close look at the dependence structure of wavelet coefficients of 

correlated data. 

5.2.3 Analysis of Existing Work 

In published work, some consideration has been given to modifications of shrinkage 

and thresholding procedures to deal with the correlated noise situation. Johnstone 

and Silverman (1997) pointed out that if the noise in the data is stationary and 

correlated, then the variance of the wavelet coefficients djk will depend on the level in 

the wavelet decomposition but will be constant at each level. A natural extension of 

the standard wavelet thresholding method is to apply level-dependent thresholding 

to each level of wavelet coefficients after the wavelet transform. A specific example 
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was proposed by Johnstone and Silverman (1997). Let Aj be a sequence of thresholds 

to be applied to the coefficients djk at level j and ~k be the estimator, 

........ -
djk = 7] (djk , (}jAj). 

Hence 7] denotes soft or hard thresholding, or some compromise between the two: the 

noise variance {}] at each level can be estimated from the data and one possibility 

is to use a robust estimator such as 

(Jj = MAD(djk , k = 0"" ,2
j 

- 1)/0.6745, 

where MAD is the median absolute deviation, and a conservative choice (in the 

sense of tending to oversmooth) of threshold from certain theoretical perspectives is 

s'j = V2logn. 

This is a quick and convenient way to cope with the problem of adaptive estima­

tion in correlated noise, especially under a wide range of possible forms of correlation, 

but it is not a final answer to this question. In the results we give later. we will see 

that this method does not cope well with rough signals. 

Another possibility is to specify the covariance structure of the wavelet coeffi­

cients at each level, which allows various forms of dependency between the wavelet 

coefficients. For example, Abramovich et al. (2002) specified the covariance matrix 

Vj of each block of lj wavelet coefficients to be an lj x lj matrix with elements 

where Ipi < 1, k, l = 1,' .. ,lj. (5.6) 

Although correlated data were discussed in some of these papers, more attention 

was paid to the resulting covariance structure of wavelet coefficients. As far as 

we know, the specific forms of covariance structure were given according to prior 

knowledge about the characteristic of wavelet coefficients. For example, (5.6) was 

chosen because it was believed that as the distance between two wavelet coefficients 

increases the correlation between them generally weakens. However, in this chapter, 

we will consider the covariance structure of the underlying noise vector E. 
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5.2.4 Finding the Variances of the Wavelet Coefficients 

I t is important to find the variances of the wavelet coefficients if the covariance 

matrix of the original data is known. Consider the general case in which E r-v 

Nn(O, V), where V is the covariance matrix. Vannucci and Corradi (1999) and 

Kovac and Silverman (2000) provided insights into correlation structure of wayelet 

coefficients for large classes of common processes that the correlated noise may 

belong to. 

The DWT of E, WE say, has the distribution 

(5.,) 

where ~ = WVWT is the covariance matrix of wavelet coefficients. 

Vidakovic and MiLller (1995) suggested incorporating correlation within each 

level. Vannucci and Corradi (1999) gave a model allowing full correlation bet,,·een 

and within levels and, furthermore, developed a recursive algorithm to calculate the 

covariance of wavelet coefficients within and across levels. Here. we use this recursive 

algorithm to obtain the covariance structure. 

Figure 5.3 shows the covariance matrix, ~ in (5.7), of AR(l) noise with Cl = 0.7. 

The small squares along the diagonal of the matrix mark the existing correlation 

after applying the DWT to the (correlated) data. From the finest level to coarsest 

level, the colour of the squares tends to be darker when the correlation of the wavelet 

coefficients is higher. 

As a comparison, Figure 5.4 shows the covariance matrix, ~, of the IID noise. 

Once again we can see that the covariance matrix is an identity matrix with the 

same vanance. 

5.3 Semi-Parametric Approaches 

Having provided strong motivation for considering the correlation structure of the 

original data, we now propose a semi-parametric approach to identify this st ruct ure. 
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We set 

Parametric part: € is multivariate Gaussian with a general (parametric) covari­

ance structure, V = V(O), where 0 is a parameter vector to be estimated' , 

Nonparametric part: I is treated nonparametrically as usual. 

It is worth noting that in Vannucci and Corradi (1999), they specified a covari­

ance structure of wavelet coefficients according to the properties of wavelet trans­

form, while here we specify the covariance structure V(O) of the observed data. 

To estimate the covariance parameters we can either use estimators in wavelet 

domain or estimators in time domain. Although these two parametric procedures 

use the data in different ways, the aims are the same: to estimate parameters in the 

covariance structure V = V(O). We shall see from the simulation results that both 

methods do a good job in the examples considered. 

5.3.1 The Parametric Procedure in Time Domain 

Firstly, we will have a look at the parametric procedure in time domain. If we know 

that the € comes from the time series model and a preliminary estimator E of € 

can be obtained, then we can use the time series model identification techniques to 

identify a suitable time series model for E. As we know that the level-dependent 

"Universal" threshold method mentioned in Johnstone and Silverman (1997) IS a 

quick thresholding method, we will use it here as a preliminary estimator. 

The approach proposed in this subsection can be summarised as follows: 

Step 1 Start with the model Yi = Ii + Ei, obtain a preliminary estimation Ii of Ii 

by using the level dependent "Universal" threshold; 

Step 2 Obtain Ei = Yi - h, which can be regarded as an estimate of the noise, Ei: 

Step 3 Use standard time series model identification techniques to determine a 

suitable parametric covariance structure for vector €, and then estimate the 

parameters in this covariance structure. 



Chapter 5: Estimation of Covariance Parameters 12.5 

0.7 !.--"-T-----,----,-----r----r----"-T--......--~ 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

o 

-0.1 

-0.2 

-0.30~----:;5---:1-;;;0--~15~--=20---::2'::-5 ---'-30---35-'-------.J40 

Figure 5.5: The first 40 numbers of the sample pac.f for the estimated data Ei with 

the bounds ±1.96n-1/ 2 . 

Steps 1 and 2 are quite straightforward. Here we will look at Step 3 by two exam­

ples. Appendix B will give the basic background of time series model identification 

techniques based on the Durbin-Levinson algorithm and Innovation algorithm. For 

more detail, see Brockwell and Davis (1991). 

Example 5.1 : 1024 data from a simulated AR(2) process with coefficients al = 0.7 

and a2 = -0.2 are added to the HeaviSine signal f· Using the level dependent "Uni-
---.. 

versal" threshold method, we obtain the smoothed signal f· Hence we estimate the 

noise ti as Ei according to the above steps. By applying the Durbin-Levinson algo­

rithm (see Brockwell and Davis, 1991) to fit successively higher order autoregressive 

processes to Ei, we obtain the sample partial autocorrelation function (the sample 

pac.j) (ijj. The first 40 numbers of the sample pac.j with the bounds ±1.96n-
1

/
2 

are 

shown in Figure 5.5. Inspection of the graph supports the view that the appropriate 

model for the noise is an AR(2) process. 

Example 5.2 : 512 data from a simulated MA(l) process with coefficients f3 = 0.5 

are added to the Doppler signal f. Using the same steps as Example 5.1, we obtain 

€i. By applying the Innovation algorithm (see Brockwell and Davis, 1991) to fit 
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A 

i3mj ~'m 

m \j 1 2 3 4 5 6 7 8 

1 0.437 1.043 

2 0.513 0.051 0.844 

3 0.527 0.059 0.013 0.818 

4 0.532 0.053 0.025 -0.017 0.813 

5 0.532 0.055 0.021 -0.005 -0.029 0.810 

6 0.532 0.054 0.023 -0.009 -0.020 -0.029 0.810 

7 0.533 0.054 0.023 -0.008 -0.021 -0.028 -0.015 0.810 

8 0.534 0.051 0.023 -0.015 -0.012 -0.048 0.032 -0.095 0.809 

9 0.544 0.051 0.024 -0.015 -0.011 -0.050 0.037 -0.101 0.798 

10 0.550 0.050 0.024 -0.016 -0.011 -0.051 0.037 -0.102 0.791 

50 0.526 -0.002 -0.024 -0.053 -0.039 -0.067 0.008 -0.115 0.709 

100 0.534 0.007 -0.034 -0.053 -0.031 -0.067 0.007 -0.129 0.646 

Table 5.1: The estimated coefficient values iJmj, j = 1,'" ,8 and noise variances 

Vm , m = 1, ... ,10,50,100 for the estimated error vector E. 

successively higher order moving average processes to the EiJ we obtain the estimated 

coefficient values iJmj and noise variances vm. Table 5.1 shows iJmj J j = 1, ... , 8 

and vmJ m = 1, ... , 10,50,100. This table suggests that MA{1) is the appropriate 

model for the noise. 

5.3.2 The Parametric Procedure in Wavelet Domain 

Now we consider the parametric procedure which uses the finest-level wavelet co­

efficients to estimate the covariance matrix V(8). As we mentioned in § 2.3.1. the 

wavelet transform has the property that a wide range of functions have economical 

wavelet expansions. This means that a function f can be well approximated by 
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a function whose wavelet coefficients are mostly zero. These do not just include 

functions that are smooth in a conventional sense, but also those that haye disconti­

nuities of values or of gradient. It was proved using mathematical results discussed 

by Donoho et al. (1995). However, wavelet expansions of noise do not haye such 

a property, which can be seen from Figure 5.2. Based on these facts, we suggest 

the following steps to obtain the wavelet coefficients of the noise to estimate the 

parameters of the covariance matrix V(O). 

Step 1 Threshold the finest level wavelet coefficients, dJ say, to obtain dSignal; 

Step 2 Estimate the portion of the finest level wavelet coefficients attributable to 
........ - ........ 

the noise by dnoise = d J - dsignal; 

Step 3 Use maximum likelihood, or if more convenient, a pseudo-likelihood proce-
........ 

dure, with estimated data d noise , to estimate the unknown covariance param-

eters of V(O). 

The reason for basing estimation of the covariance parameters on the finest-level 

wavelet coefficients only is that these coefficients should be least affected by the 

smooth parts of the signal. However, if the signal has a few discontinuities, then 

the finest-level coefficients may have a few very large values due to discontinuities in 

the signal rather than due to the noise. The purpose of Steps 1 and 2 is to remove 

these very large coefficients and obtain the wavelet coefficients which come from the 

nOIse. 

Since we are interested in the finest-level of wavelet coefficients, we look closely 

at the first part of the wavelet transform, see § 2.3.3. Assume for the moment 

that we know the noise € added to the signal. Let W J be the wavelet transform 

to transform € to the finest level wavelet coefficients W J €, which has distribution 

Nn / 2 (O, EJ), where EJ = WJVWJ and WJ is a rectangular matrix of dimension 

n x n/2, which is a submatrix of an n x n orthogonal matrix. Then we have an 

n/2-vector of the finest level wavelet coefficients d noise given by 

d noise = WJ€. (5.8) 
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In the following we show how to estimate the parameter vector () of \. ((}) 

dnoise, an estimate of dnoise' 

5.3.3 Maximum Likelihood Estimation 

llsing 

In order to estimate the parameter vector () in a Gaussian model with covariance 

structure V = V (0), maximum likelihood estimation may be used. A~~ume that 

we have dnoise obtained from Step 2 in § 5.3.2. To simplify the presentation, the 

notation d rather than rlnoise is used in this subsection though in practice \\'e ll~e 

the latter. 

The Full Maximum Likelihood Estimation 

The log-likelihood based on d is 

l( 0) = log{f( dlO)} = - ~ log(27f) - ~ log{ det (~J)} - ~dT2::Jld (5.9) 

~Iaximum likelihood estimation can be carried out by maximizing (5.9) moer the \Oalid 

parameter space. For example, in the case of AR(1) defined in (5.:2). we han' (}2 > O. 

o < Q" < 1. However, we found that when the dimension of d increases. it. becomes 

difficult to calculate the inverse and determinant of ~J. For thi~ reason, \\T have 

investigated various pseudo-likelihood (PL) approaches (Besag, 1975. 1977). PL is a 

sub-optimal alternative to maximum likelihood but is often easy to implement and 

is useful when the maximum likelihood estimator is too hard to compute. It lllay 

be inefficient when spatial interactions are strong. 

PL Estimation based on Pairs 

There are many ways of implementing PL. For example, we mayO take the PL 

to be the product of the bivariate density functions of all distinct pairs of element s 

from vector d, which is, for any index i and j, the pair (d i . dj)T distributed as the 

bivariate normal distribution 
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The PL is 

(5.10) 

In our case, when the data are highly correlated, the PL estimation based on pairs 

is not accurate enough. 

PL Estimation Based on Large Blocks 

In this thesis, we consider a different type of PL in which the data is split 

into a small number of large blocks: we split the vector d into k subvectors , 

where k is relatively small. Each subvector has h = n/(2k) elements, denoted 

as d i = (dil , di2 , ... , dih)T r-..J Nh(O, ~Ji). For each block, we can write log-likelihood 

distribution as 

(5.11) 

and 2:7= 1 li ( (J) is the sum of these com ponent log-likelihoods to be maximised. It is 

worth noting that this PL approach ignores correlations between blocks. 

5.3.4 Identification of Parametric Structure 

This parametric procedure in wavelet domain brings forward a problem of its own, 

which is the need to determine the parametric structure of the covariance matrix 

beforehand. A preliminary study, an idea we borrowed from the parametric proce­

dure in time domain, may be used to satisfy this need. Before proceeding to follow 

the steps mentioned in § 5.3.2, we perform the following preliminary study: 

,.... 
Step 1 Start with the model Yi = Ii + ti, obtain a preliminary estimate Ii of Ii by 

using the level dependent "Universal" threshold; 

Step 2 Obtain €i = Yi - h, which can be regarded as the estimation of noise fi: 

Step 3 Use standard time series model identification techniques to determine a 

suitable covariance structure. 
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This three-step preliminary study is similar to the steps of the parametric pro­

cedure in time domain. After identifying the parametric covariance ~tructure. we 

can follow the procedure in § 5.3.2. 

5.3.5 The Nonparametric Procedure 

After estimating the covariance parameter Yector 0, we can treat the \ ° = \ 0(0) as 

known. Hence the unknown function f can be estimated using a suitable shrink­

age or threshold method. In order to in\Oestigate this semi-parametric approach. 

we will concentrate on the generalized EBB model (-1.3), with:: now defined by 

dT (~( 8) )-ld. 

5.4 Simulation Study 

In this section, \ve present the results of some simulations to illustrate the methods 

proposed aboye. As a comparison, the results of the level dependent "Cniversal" 

threshold methods (JS) mentioned by Johnstone and Silverman (1997)~ th(' semi­

paralnetric method with the parametric procedure in time domain (TD), and the 

parametric procedure in wavelet domain (\\,D) with block sizes equal to 2, treated 

as two separate methods, will be presented here. 

5.4.1 Specific Covariance Matrices 

The types of correlated noise we will consider here are AR(l), AR(:2) and :"1:-\( 1). If 

the model where the noise comes from is known, we can write down the covariance 

matrix, see Cox and Miller (1968), Chatfield (1975). For the AR(l) process. the 
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covariance matrix with two parameters 0: and (J2 is given in the following: 

1 

1 

1 n-3 0: , 

For the AR(2) process, Et = 0:1Et-1 +0:2Et-2+7]t, where E(7]t) = 0, E(7]t7]s) = 0 for 

t =f. s, and E(Ttl) = 1. When the process is stationary (i.e. 0:1 + 0:2 < 1. 02 - 0:1 < 1 

and -1 < 0:2 < 1 ), the elements of the covariance matrix E( EET) = (J2S1 can be 

found from the variance 

and the autocorrelation matrix n = [ri,j] with ri,j = Pli-jl 'where Po = 1, PI = 

0:1 (1 - 0:2)-1, P2 = 0:2 + 0:~(1- 0:1)-1 and Pi = 0:1Pi-1 + 0:2Pi-2 for i > 2. The inverse 

of n is given by 

1 -0:1 -0:2 0 0 

-0:1 1 + o:i -0:1 + 0:10:2 -0:2 0 

-0:2 -0:1 + 0:10:2 1 + o:i + o:~ -0:1 + 0:10:2 0 
n-1 = 

0 -0:2 -0:1 + 0:10:2 1 + o:i + o:~ 0 

o o o o 1 

For the MA(l) process, the covariance matrix (J2V(,6) with two parameters 3 

and (J2 is given in the following: 

1 +,62 ,6 0 0 0 

,6 1 +,62 ,6 0 0 

(J2V (,6) = (J2 0 ,6 1 +,62 ,6 0 
.. . , .. 

0 0 0 0 1 + [32 
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Because of the way we normalise the noise, see (5.4),0-2 in abO\'e three cases are 

actually equal to 1. In the following simulations, we do not estimate 0-2 . If 0-2 is 

unknown, the methods described above can easily be extended to estimate 0-2 with 

the other parameters at the same time. 

5.4.2 Simulation Results 

Four signals, "HeaviSine", "Blocks", "Bumps" and "Doppler", first proposed in 

Donoho and Johnstone (1994, 1995) as test functions for wavelet estimators, are 

considered here. In order to compare with different methods, signal-to-noise ratio 

(SNR) equal to 7 and sample size equal to 1024 have been used for all signals. 

Figures 5.6- 5.9 show the reconstructions of four test functions (HeaYiSine, Bumps, 

Blocks and Doppler) from three types of noises: AR(I) (a = 0.7), AR(2) (01 = 0.7 

and a2 = -0.2) and MA(l) ({3 = 0.5). Three methods, JS (Johnstone and Sil­

verman, 1997), TD (the semi-parametric method with the parametric procedure in 

time domain) and WD (the semi-parametric method with the parametric procedure 

in wavelet domain) are used to de noise the noisy functions. Generally speaking, all 

three methods can give approximately noise-free reconstructions; compare Figure 

5.6 with Figure 5.1. However, if we compare these three methods based on Fig­

ures 5.6- 5.9, we can see that TD and \VD methods work better than JS method 

when the signal has a few discontinuous points (e.g. in the case of Bumps signal). 

It is worth noting that, in the simulation study, the correct AR~IA model was as­

sumed when implementing the TD and WD approaches. Thus, the TD and \YD 

methods had an advantage that they would not have in a real data example, where 

the correlation structure would be unknown. Nevertheless, the results show conclu­

sively that explicit modelling of the correlation structure can lead to substantially 

improved performance relative to the Johnstone and Silverman (1997) approach. 

Table 5.2 gives the simulation results of AR(l), AR(2) and ;\lA(l) noises. The ii 

for AR(l) case, &1 and &2 for AR(2) case and ~ for ~lA(l) case are the a\'erage yalues 

of 100 estimations of the parameters in each case. From ~lSEs of these three methods 
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with three noise types, we can see that the TD and \VD methods are superior to 

the JS method. Especially, from Table 5.2 we can see that for rough signal, like 

Bumps, the MSEs of the TD and WD methods are more than ten times smaller 

than that of the JS method for three signals. The TD and WD methods are quite 

competitive although the PL estimation based on large blocks of the "'D method is 

computationally intensive, especially when the order of the noise is high. However, 

considering the improvement of the average MSE and the widespread availability of 

high-powered computers, this cost is worthwhile. 

Figures 5.10- 5.12 represent box plots of 100 estimations of the parameters in 

each noise type, which is added to Doppler signal. The boxes have lines at lower 

quantile, median and upper quantile of 100 estimations. The lines extending from 

each end of the boxes show the extent of the rest of the estimations. The plus symbol 

("+") denotes estimates which are beyond the ends of the extension lines. Generally 

speaking, the estimations obtained by the WD method have smaller variance than 

those obtained by the TD method. 

5.5 Conclusions and Further Work 

1. A semi-parametric approach to the problem of estimating f in the presence 

of correlated noise E has been explored. In the parametric part of this semi­

parametric approach, two estimating procedures, a time domain approach and 

a wavelet domain approach, are used to estimate the parameters in the covari­

ance structure of E. Some simulation results examined the effect of combining 

this parametric approach with the empirical Bayes block (EBB) shrinkage 

method, and showed that this combined approach can successfully handle the 

correlated data situation. 

2. Many of the methods developed for obtaining thresholding/shrinkage estima­

tors of f in the standard case can be adapted to the case when t he covariance 

matrix of E is known. It is easy to combine the parametric part of this semi-
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parametric approach with these existing methods, for example Abramovich f t 

al. (2002). 

3. In the semi-parametric approach there is a need to specify the parametric 

structure of the covariance matrix of E beforehand. A preliminary study, which 

involves the use of traditional time series identification techniques, has been 

used to determine a suitable parametric structure. 
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Figure 5.6: HeaviSine signal with three types of noises added, based on sample size 

n=1024 and SNR=7. The reconstructions are obtained using the JS (Johnstone and 

Silverman, 1997), TD (the semi-parametric method \yith the parametric procedure in 

time domain) and WD (the semi-parametric method with the parametric procedure 

in wavelet domain) procedures. 
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Figure 5.7: Blocks signal with three types of noises added, based on sample size 

n=1024 and SNR=7. The reconstructions are obtained using the JS (Johnstone and 

Silverman, 1997), TD (the semi-parametric method with the parametric procedure in 

time domain) and WD (the semi-parametric method with the parametric procedure 

in wavelet domain) procedures. 
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Figure 5.8: Bumps signal with three types of noises added, based on sample size' 

n=1024 and SNR=7. The reconstructions are obtained using the JS (Johnstone and 

Silverman, 1997), TD (the semi-parametric method with the parametric procedure in 

time domain) and WD (the semi-parametric method with the parametric procedure 

in wavelet domain) procedures. 
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Figure 5.9: Doppler signal with three types of noises added, based on sample size' 

n=1024 and SNR=7. The reconstructions are obtained using the JS (Johnstone and 

Silverman, 1997), TD (the semi-parametric method with the parametric procedure in 

time donlain) and WD (the semi-parametric method with the parametric procedure 

in wavelet dOlllain) procedures. 
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II i Ii 

Met- AR(l) AR(2) ?-.IA(l) 

Signals hods MSE a MSE al a2 :\ISE ;] 

WD 0.2791 0.6905 0.1603 0.7272 -0.3436 0.1266 0.5529 

Heavi- TD 0.2976 0.6045 0.1776 0.5967 -0.2374 0.1286 0.3944 

Sine JS 0.3337 / 0.2316 / / 0.1848 / 

WD 0.5567 0.6375 0.4411 0.6876 -0.3677 0.3618 0.-184-1 

Bumps TD 0.5493 0.7814 0.4816 0.5525 -0.2694 0.3576 0.6277 

JS 6.8436 / 6.948 / / 6.9175 / 

WD 0.3795 0.7072 0.2816 0.7783 -0.3318 0.2281 0.5466 

Blocks TD 0.4102 0.608 0.2939 0.6006 -0.1909 0.2329 0.-142-1 

JS 0.465 / 0.3560 / / 0.2827 / 

WD 0.3448 0.6781 0.2573 0.7004 -0.3419 0.2002 0.560 

Doppler TD 0.3732 0.6182 0.2932 0.5948 -0.2807 0.2035 0.4115 

JS 0.5463 / 0.4342 / / 0.3747 / 

Table 5.2: The comparison of three methods, JS (Johnstone and Silverman, 1997). 

TD (the semi-parametric method with the parametric procedure in time domain) 

and WD (the semi-parametric method with the parametric procedure in wavelet 

domain), under 100 simulation runs. MSE obtained for SNR=7 and sample sizes 

n=1024. The three noise types are AR(l) with a = 0.7~ AR(2) with al = 0.7 and 

a2 = -0.2 with MA(l) with {3 = 0.5 



Chapter 5: Estimation of Covariance Parameters 

0.8 

0.75 

0.7 

0.65 

0.6 

--.--
I 

g 
I 

------L.­

+ 

B 
I 

I 

------L.-

WO TO 
100 estimations of Cl for AR(1): WO (left) and TO (right) 

1-10 

Figure 5.10: Box plots for 100 estimations of 0: of AR(l) noise added to Doppler 

signal. The true 0: = 0.7, SNR=7 and sample size n = 1024. 
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Figure 5.11: Box plots for 100 estimations of 0:1 and 0:2 of AR(2) noise added to 

Doppler signal. The true 0:1 = 0.7, 0:2 = -0.2, SNR=7 and sample size n = 102-1. 
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Appendix B: Review of Time Series Techniques 
Most of the results in this appendix are from Brockwell and Dayis (1991)~ where 

further details can be found_ 

A time series {Xt, t E T} is a realization of family of random variables {X (t) _ t E 

T}, where T is a set of times at which observations are made. A time series is said 

to be strictly stationary if the joint distribution of X(t l ), ... ,X(tn) is the same as 

the joint distribution of X(tl + T), ... ,X(tn + T) for all t l , ... , tn~ T. This definition 

shows that the distribution of X(t) must be the same for all t, so that 

J-l = J-l(t) = E{X(t)}, 

(J"2 = (J"2(t) = Var{X(t)}, 

')'(T) = E[{X(t) - J-l}{X(t+T) - J-l}], 

p(T) = ')'(T)/')'(O). 

mean 

vanance 

autocovariance 

autocorrelation function 

The sample autocorrelation function (ac.f) based on a set of observations of a 

time series is an important set of statistics for describing the time series. Given 

n observations Xl, ... ,Xn of a time series, the sample autocovariance function is 

defined as 
1 n-k 

9k = n I)Xt - X)(Xt+k - x) 
t=l 

O<k<n 

and 9k = 9-k, -n < k < 0, where x is the sample mean n-ll:;=l Xt· The sample 

autocorrelation function is defined in terms of the sample autocovariance function 

as 

for k = 1, 2, ... , m where m < n. 

The partial autocorrelation function (pac.f), like ac.f, conveys vital information 

regarding the dependence structure of a stationary process. Let {X(t)} be a zero 

mean stationary process with autocovariance function ')'(.) such that ,(h) ---+ 0 as 
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h ---* 00, and ac.f p(.). If we have an AR process, we have 

p(O) 

p(l) 

p(l) 

p(O) 

p(2) 

p(l) 

p(k - 1) 

p(k - 2) 

p(k - 1) p(k - 2) p(k - 3) p(O) 

where k > 1, then the pac.f ((k) of {X(t)} at lag k is 

((k) = ¢kk k > 1, 

where ¢kk is uniquely determined by (5.12). 

p(l) 

p(2) 

p(k) 

143 

. (.5.12) 

The sample pac.f at lag k of {Xl, ... ,xn } is defined, provided Xi =I Xj for some i 

and j, by 

1 < k < n, 

..-. 

where ¢kk is uniquely determined by (5.12) with each p(j) replaced by the corre-

sponding sample ac.f p(j). 

Definition B.l The autoregressive moving-average process of order p and q (de-

noted as ARMA{pJq)): a process Xt, t = 0, ±L ±2, ... is said to be an AR1\IA(p.q) 

process if X t is stationary and for every t J 

where Zt is the process which has zero mean and covariance function 

'Y(h) = 

(J2 if h = 0 
(5.l.! ) 

o if h =I 0, 

denoted Zt rv WN(O, (J2). 

In particular, a process is said to be an autoregressive process of order p (AR(p)) 

if {31 = {32 = ... = {3q = 0 and X t - Q'lXt - 1 - ... - Q'pXt- p = Zt· A process is said 

to be a moving-average process of order q (MA( q)) if Ql = Q2 = ... = Q p = 0 and 

X t = Zt + {31Zt-l + ... + {3q Zt-q. 

For an ARMA process, there are two related questions: 
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• What are the AR and MA orders of the process? 

• How can we estimate the parameters of the process? 

It is usually difficult to assess the order of an AR process from the sample ac.f 

alone. One way to determine the order of the AR process is the pac.f. The sample 

pac.f is estimated by fitting AR processes of successively higher order and taking 

((1) = ¢l when an AR(l) process is fitted, taking ((2) = 4>2 when an AR(2) process 

if fitted, and so on. If the sample pac.f values {( (k)}, k > p, lie outside the bounds 

±1.96n-Ij2 , the AR process "cuts off" at p so that the "correcf' order is assessed. 

If an MA process is appropriate for a given set of data, the order of the process 

is usually evident from the sample ac.f. The theoretical ac.f of an ~IA( q) process 

has a very simple form in that it "cuts off" at lag q: 

1 k=O 
q-k q 
I: 13i13i+k/ I: 13; k = 1,··· ,q 
i=O i=O (5.15) 

0 k>q 

p(-k) k<O 

The parameters of the AR(p) or MA( q) process can be estimated by using the 

following propositions. Suppose we have observations Xl,.··, xn of a zero-mean 

stationary time series. Provided i(O) > 0, we can fit an autoregressive process of 

order m < n to the data. The fitted AR(m) process is 

(5.16) 

J. J. and VA can be obtained by the following proposition, see Brockwell \f'ml, ... , \f'mm m 

and Davis (1991). 

Proposition B.1 The Durbin-Levinson algorithm for jitting autoregressive mod-

els: If i(O) > 0 then the jitted autoregressive models (5.16) for m = 1, 2 .... , n - 1. 

can be determined recursively from the relations, ¢11 = ,0(1), VI = )(0)[1 -,?(1)]. 

m-l 
¢mm = {i(m) - L ¢m-l,{y(m - j)} / Vrn-I, (5.17) 

j=l 
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¢m-l,m-l 
A A 

= c/>m-l - ¢mm 

¢m,m-l ¢m-l,l 

and 

(5.18) 

Similar to fitting autoregressive models of orders 1,2, ... , to the data Xl, ... ,Xn 

by applying the Durbin-Levinson algorithm to the sample autocovariances. we can 

also fit moving-average models, 

A A 

X t = Zt + (}mlZt-l + ... + (}mmZt-m, (5.19) 

of orders m = 1,2, ... , by means of the innovations algorithm as follows (see Brock-

well and Davis, 1991): 

Proposition B.2 The Innovation algorithm of moving-average models: If l (0) > 

0, we have the innovation estimates 8m , Vm appearing in (5.19) for Tn = 1,2, ... , n-

1, by the recursion relations, VA = 1'(0), 

and 

k-l 

Bm,m-k = V;l{ 1'(m - k) - L Bm,m-jBk,k-{lJj} 

j=O 

(5.20) 

(5.21) 



Chapter 6 

General Conclusions and 

Suggestions for Further Research 

6.1 General Conclusions 

This thesis has extended Bayesian machinery for wave let shrinkage and thresholdillg 

by developing block shrinkage Bayesian lllethodology based upon the non-central 

\ 2 distribution. Following this theoretical ,york. an empirical Ba~'ps block (EBB) 

shrinkage and thresholding procedure was developed. 

In this Bayesian model, families of prior distributions ha,'e been chosen \\'i t h 

careful consideration. These priors are sufficiently flexible to represent a \'aridy of 

forms of prior knowledge and at the same time the theoretical calculation of the 

posterior distributions is relatively straightforward. Among these priors. the pmver 

prior shows advantages in both theoretical and numerical aspects. The posterior 

median with the power prior as an estimation rule is proved to be a shrinkage or a 

thresholding rule if certain mild conditions are satisfied. 

Step (4.2) of the Bayesian block shrinkage approach is not a fully I3an'sian 

procedure although the shrinkage of the sum of squares we proposed is full~' Ba~·esian. 

However, our discussion of the shrinkage estimator in (4.2) and sinmlation results 

of the EBB procedure show that (-1.2) is theoretically well-motivated and that the 
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proposed EBB procedure is competitive with existing methods. Furthermore. this 

approach can be easily extended to more general situations if the covariance matrix 

is known or can be effectively estimated. 

The "quick and dirty" approach of §4.3, which is a completely data-based method 

for estimating the hyperparameters, provides a fast and accurate estimation proce­

dure. An extensive review of previous work shows that the approach is competiti\·e 

with alternative published methods. 

Some existing standard shrinkage and thresholding methods and the EBB method 

proposed in the first part of this thesis are adapted to data with correlated noise. 

It is shown by numerical example that standard methods, which are based on the 

assumption that the noise is IID noise, will sometimes perform poorly if used in the 

correlated noise setting. 

To address this problem, a semi-parametric approach is used for the identification 

of the covariance structure of correlated noise according to the data available. In 

the parametric part of this semi-parametric approach, estimation of the covariancE' 

structure in both the time domain and the wavelet domain are considered. Two 

estimation procedures, time series techniques and maximum likelihood estimation. 

are used to estimate the parameters in the covariance structure. The nonparametric 

part can be regarded as an application of the proposed EBB approach in a general 

situation where the covariance matrix of the noise is treated as a known matrix. The 

simulation results of this semi-parametric approach were compared with Johnstone 

and Silverman's (1997) approach and showed a significant improvement. 

6.2 Suggestions for Further Work 

It has already been noted that for the proposed EBB approach, the power prior 

and exponential prior for p have a heavy tail in both cases. It would be useful to 

investigate the theoretical properties of these wavelet estimations and determine to 

what extent a theory parallel to that developed by Johnstone and Silverman (2005) 
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for empirical Bayes in the standard framework can be developed in the non-central 

X2 framework considered here. 

In this thesis, the EBB approach is developed using a block thresholding ::;trategy 

to denoise the noisy data. As one specific application considered in § 4.9, the EBB 

approach has been applied to deal with the planer curve denoising problem. It 

would be interesting to use this approach to higher dimension planar cun'es. shape 

recognition and curve matching. In addition, the application of the EBB approach 

to fitting smooth curves in shape space is also envisioned: cf. Kume et al. (2004). 

As pointed in § 4.2.1, if complex wavelets or multiwavelets are considered, the 

proposed EBB approach seems attractive and natural since it is convenient to base 

the shrinkage procedure on a suitable sum of squares. Although more work is needed 

to develop these application, we believe the proposed EBB approach can be success­

fully applied to these situations and obtain good practical performance. 

In this thesis, only simple forms of time series model have been considered. It 

would be desirable to consider more general types of dependence and develop robust 

estimators of the covariance structure in correlated data settings. Furthermore, a 

challenging problem would be analysing the asymptotic properties of variances of 

robust estimations of the covariance parameters. 

More generally, we could relax the assumption of Gaussian noise. If we consider 

non-Gaussian noise, extra steps in the wavelet transform procedure can be included 

to weaken the correlation of the wavelet coefficients of a noisy signal. For example: 

Donoho and Yu (1997) constructed a nonlinear multiresolution analysis based on a 

triad grid, which worked well in a non-Gaussian noise. The idea of this approach is 

to use the data at coarser levels to predict data at finer using median interpolation. 

This type of approach deserves further consideration. 
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