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Abstract

Elongated bubbles which are constrained by the walls of a pipe are commonly known as Taylor

bubbles. Taylor bubbles are prevalent in industrial gas-liquid flow, where they are commonly

found in buoyancy driven fermenters, the production and transportation of hydrocarbons in

the oil and gas industry, the boiling and condensing process in thermal power plants, and the

emergency cooling of nuclear reactors. These bubbles also exist in the natural world, and are the

driving force behind certain types of volcanic eruption. An analysis of the literature identified

a paucity of experimental or numerical studies investigating the rise of Taylor bubbles in pipes

with a diameter in excess of 0.12 m or in pipes which contain a change in geometry.

The aim of this thesis was to gain a better understanding of the behaviour of Taylor bubbles

in flow conditions which have not previously been studied. To achieve this, a CFD model was

used to simulate the rise of single Taylor bubbles and a set of experiments conducted. The CFD

model was validated against the results of published experimental studies, empirical correlations

and theoretical predictions.

Further validation was conducted using the results of the experimental study which investi-

gated the rise of Taylor bubbles in a pipe of diameter 0.29 m. These experiments confirmed that

the theoretically predicted stability and rise rate of the bubble were correct. Bubbles were also

shown to exhibit oscillatory behaviour. Sets of parametric simulations replicated the behaviour

observed in the experiments and predicted by theoretical models for a wide range of conditions.

The qualitative and quantitative experimental behaviour of a Taylor bubble rising through

an expansion in pipe geometry was replicated by the CFD model. Bubbles of sufficient length

were observed split as they rose through the expansion in diameter, which produced pressure

oscillations. The effects of a variation in a number of parameters, including the angle of expansion,

the ratio of the upper to lower pipe diameters and the liquid viscosity, were explored.
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1
Introduction

1.1 Context

1.1.1 Multiphase Flow

The term ’multiphase flow’ covers a wide variety of multi-component gas, liquid and solid flow

regimes, but the sub-group of flows that are the principal focus of this thesis are two phase

gas-liquid flows in a vertical pipe. There are a number of ways in which gas and liquid phases

can interact in a vertical pipe. These can be categorised into four different flow regimes, shown

in Figure 1.1 and are described below (Yeoh and Tu, 2010):

1. Bubbly Flow - In a bubbly flow, the gas phase is distributed into discrete bubbles in a liquid

phase. As the volume of gas increases, the number of these bubbles increases. Transition

from bubbly flow to slug flow is thought to occur at a gas volume fraction of between 0.25

and 0.3 (Wallis, 1969).

2. Slug Flow - Slug flow consists of large, bullet shaped gas bubbles (Taylor bubbles) rising

through a liquid. Each large bubble creates a thin film of liquid flowing around the outside

of it. This liquid film jets into the wake region behind the gas bubble and can cause breakup

at the rear of the bubble.
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3. Churn Flow - This is a highly turbulent and unstable flow regime often characterised by

pulsing oscillations. A high gas flow rate is often responsible for the instability observed in

this flow regime.

4. Annular Flow - This flow regime is characterised by a central core of gas. Liquid travels

in an annular film close to the wall of the pipe. Waves are often observed at the interface

between the phases and these this can cause liquid droplets to be entrained in the gas

phase.

Figure 1.1: A diagram showing the classification of gas-liquid flow regimes (Ghajar, 2005).

In this thesis, the flow of Taylor bubbles, a characteristic part of the slug flow regime, has

been studied. Taylor bubbles are encountered both in research and industry. From use in

microfluidics and in capillary flows to a much larger scale, where Taylor bubbles are commonly

found in buoyancy driven fermenters, the production and transportation of hydrocarbons in the

oil and gas industry, the boiling and condensing process in thermal power plants, and emergency
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cooling of nuclear reactors are a few such examples. However, the motivation for the research

presented in this thesis is their existence in the natural world, and in particular the role they

play in the eruption of volcanoes.

The eruption of Strombolian volcanoes is widely accepted to be caused by the rise and burst

of large Taylor bubbles. These bubbles form at a great depth and rise through the conduit

before bursting at the surface. The cross sectional shape of a volcanic conduit may vary as it

approaches the surface, which in turn can alter the behaviour of the Taylor bubble. The most

extreme example of this can be observed in the case of a lava lake, where the conduit enters

a reservoir of fluid close to the surface. An example of a Strombolian eruption is shown in

Figure 1.2 These topics will be discussed in greater depth in Section 2.2.

Figure 1.2: An example of a Strombolian type eruption at Stromboli, Italy (Geology.com, 2011).

1.1.2 Single Taylor bubbles

A Taylor bubble is a large, elongated gas bubble which is constrained within a fluid by the walls

of a pipe. There are four main sections to a Taylor bubble: (i) the nose region ahead of the

3



CHAPTER 1. INTRODUCTION

Nose

Liquid Film

Tail

Wake

Figure 1.3: Still photograph of a Taylor bubble rising through water, highlighting the bubble

nose, liquid film, bubble tail and bubbly wake areas.

bubble, (ii) the body region surrounded by a liquid film between the bubble and the wall of the

pipe, (iii) the tail region and (iv) the wake region behind the bubble, these are shown in Figure

1.3. The body section may be subdivided into two sections, one in which the film is developing

and one where the film is fully developed and of a constant thickness (Llewellin et al., 2011).

Despite the large volume of research investigating the rise of Taylor bubbles, a critical analysis

of the literature, presented in Chapter 2, identified number of areas lacking in published work. In

particular, there is a little work that reports the rise of Taylor bubbles in pipes of diameter over

0.12 m or which investigate the behaviour of Taylor bubbles rising through pipes which contain

a change in cross-section.
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1.2 Research Aims and Objectives

The primary focus of this research is the modelling of the rise behaviour of single Taylor bubbles.

The research has been carried out with the aim of

Gaining a better understanding of the rise behaviour of single Taylor bubbles in flow conditions

which have not previously been studied.

To achieve this aim, the following objectives have been met:

I. Conduct experiments to confirm the rise behaviour of single Taylor bubbles in conditions

which have not been previously studied.

II. Use CFD (Computational Fluid Dynamics) to model the rise of single Taylor bubbles.

III. Use the experimental data to validate the numerical model.

IV. Carry out a number of parametric studies using the CFD model to investigate the behaviour

of Taylor bubbles outside of the experimental parameter space.

1.3 Methodology

Numerical simulations using CFD models are used as the primary method of investigation in

this research. The commercial CFD code ANSYS FLUENT 12.1 is used for the CFD modelling.

The CFD models used are both verified and validated before being used to perform parametric

studies to investigate how the variation of various parameters affects the solution. The verification

studies are conducted to minimize the errors introduced. In all cases, the Grid Convergence Index

(GCI) method of Roache (1998), as detailed in Section 3.3.2, is used to quantify these errors for

both spatial and temporal discretization and ensure mesh and time-step independence.

The models are validated against experimental data to ensure that the use of the chosen

models accurately replicates the observed behaviour. This is conducted for cases using published
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experimental results and empirical formulae such as those proposed by White and Beardmore

(1962), Viana et al. (2003) and Llewellin et al. (2011) in Section 3.3. More specific validation

studies are conducted for the simulations to replicate the rise of air–water Taylor bubbles in a

0.29 m diameter pipe and the rise of Taylor bubbles through expansions in pipe diameter, which

are reported in Chapters 5 and 6 respectively.

Once the numerical models are verified and validated, sets of parametric studies are con-

ducted. These investigate the effects that changes in specific parameters, such as initial bubble

pressure, bubble length and fluid viscosity, have on the rise behaviour. The results of these tran-

sient simulations are monitored by periodically storing values (such as the pressure at a certain

location) to files which can then be subsequently analysed. Full data files recording all computed

values at all locations at specific times are also stored, but with longer intervals between the

recording of files. Full details of the methodology used for the parametric studies may be found

in Chapters 5 and 6.

Experimental methods were also used to investigate the rise behaviour of Taylor bubbles

in quiescent water in a pipe of diameter 0.29 m. The rise speed of these Taylor bubbles was

calculated by determining the time taken to rise through a specific height from an analysis of

video recordings. An analysis of these video recordings was also used to determine the length

and stability of the rising bubbles and the change in level of the top surface of the water during

the experiments. Full details of the methodology used for the experimental studies conducted

are presented in Chapter 4

1.4 Thesis Outline

Chapter 1 - Introduction This initial chapter provides a brief introduction to the work that

will be covered in the thesis, outlining the aims and objectives of the study, the methodology
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which was used, along with the structure of the document.

Chapter 2 - Literature Review This chapter provides a detailed background into the rise of

single Taylor bubbles. The flow of Taylor bubbles in volcanic systems is discussed and a critical

review of the literature in this area is presented, from which a number of potential topics that

could be studied are discussed.

Chapter 3 - Numerical Model In the first part of this chapter, the numerical model used

is presented, together with explanations for particular choices of models. In the second part, a

number of studies validating the model against published data are presented.

Chapter 4 - Bubble Rise - Experimental A set of experimental studies into the rise of

Taylor bubbles were conducted in a vertical pipe filled with quiescent water and with internal

diameter of 0.29 m. These experiments were conducted in collaboration with a Research Asso-

ciate, Dr Chris Pringle. The stability, rise velocity and oscillatory behaviour of Taylor bubbles

rising in this apparatus are examined. The methodology, results and conclusions drawn from

this study are presented in this chapter.

Chapter 5 - Bubble Rise - Numerical The numerical model presented in Chapter 3 is

used to model the experimental studies. The results obtained in the experimental studies are

used to further validate the numerical model. A number of physical parameters, such as the

initial length of the bubbles, the initial pressure of the bubble, the viscosity of the fluid and the

diameter of the pipe are varied to investigate the resultant changes to the behaviour of the rising

Taylor bubbles.

Chapter 6 - Expansion of pipe diameter This chapter details the results of a numerical

study into the rise of a Taylor bubble through an expansion in pipe diameter. Published ex-
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perimental work is discussed and other experimental studies conducted at the Universities of

Nottingham and Bristol are detailed. The results of these experimental studies are used to fur-

ther validate the numerical model. This numerical model is then used to explore the effects of a

variation in a number of parameters, including the angle of expansion, the ratio of the upper to

lower pipe diameters and the liquid viscosity.

Chapter 7 - Conclusions A summary of the outcomes and conclusions drawn from the studies

reported above are presented in this chapter, along with recommendations for further work that

may be conducted.

1.5 Highlights

A number of the of highlights of this research are:

• A validated (and verified) CFD model capable of replicating the rise behaviour of Taylor

bubbles was created.

• Stable Taylor bubbles were shown to exist and be sustained in a pipe of internal diameter

0.29 m in the experiments of Chapter 4, which is a significantly larger diameter than had

been reported in previous work.

• Taylor bubbles were also shown to exhibit oscillatory behaviour in the experiments of Chap-

ter 4. The frequency of these oscillations was shown to be consistent with the theoretical

predictions of Vergniolle et al. (1996) and Pringle et al. (2014).

• The CFD model was used to successfully replicate the oscillatory behaviour observed in

the experimental studies with the frequency of oscillation within 10 % of the experimental

values. The theoretical models proposed by Pringle et al. (2014) and Vergniolle et al. (1996)
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predict that the frequency of bubble oscillation is proportional to L−1/2, where L is bubble

length, a relationship which is confirmed by the CFD modelling.

• The qualitative and quantitative experimental behaviour of a Taylor bubble rising through

an expansion in pipe geometry was replicated by the CFD model. Bubbles are observed to

expand as they encounter an expansion in pipe diameter. This causes an increase in the

liquid flux in the film surrounding the bubble, which leads to a necking of the bubble. For

bubbles of sufficient length, this necking process will split the bubbles into two parts. The

resultant pressure oscillations generated by this splitting were validated against the results

of James et al. (2006).

• An analysis of the results of the simulations confirms that there is a linear relationship

between the critical length of bubble which can pass through an expansion before the neck

closes and the cosec of the angle of the expansion. An analysis of the experimental results

of Soldati (2013) confirms of this relationship.
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2
Literature Review

2.1 Single Taylor bubbles

2.1.1 Non-dimensional groups

In Section 2.1 a Taylor bubble was described as a large, elongated gas bubble which is constrained

within a fluid by the walls of a pipe. Another defining feature of single Taylor bubbles rising

in a vertical pipe is that of a constant non dimensional rise rate. This was first observed by

Dumitrescu (1943) and Taylor and Davies (1950) who suggested rise velocity was dependent on

the square root of the pipe diameter, D. This gives rise to the non-dimensional parameter group

known as the Froude number, Fr, defined by,

Fr =
U

√

gD(ρL − ρG)/ρL
, (2.1)

where U is the rise velocity of the bubble, g is the acceleration due to gravity, ρL is the

liquid density and ρG is the gas density. The Froude number is constant for inviscid flow in a

regime which is independent of surface tension. The Froude number has been both theoretically

predicted and calculated from empirical data in numerous papers (Dumitrescu, 1943; Taylor and

Davies, 1950; White and Beardmore, 1962; Brown, 1965; Wallis, 1969; Viana et al., 2003). Of
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these, the theoretical model of Dumitrescu (1943) is widely regarded as being the most accurate

for this regime (Fabre and Line, 1992).

As the effects of viscosity or surface tension become important, the Froude number will vary.

To describe the effects of viscosity or surface tension, the definition of further non-dimensional

parameter groups are required. Firstly, the Eötvös number,

Eo =
g(ρL − ρG)D

2

σ
, (2.2)

where σ is the surface tension coefficient. The Eötvös number is a measure of the ratio of buoyant

forces to surface forces. And secondly, the Morton number,

M =
gµ4

L(ρL − ρG)

σ3ρ2L
, (2.3)

which is the ratio of viscous to surface forces, where µL is the liquid viscosity.

Figure 2.1, taken from White and Beardmore (1962) summarizes the results of many exper-

iments that were conducted to determine at which parameter values the observed flow regime

becomes independent of inertial forces, surface tension and viscosity. In this figure, Morton

number is plotted against the Eötvös number with line of constant Froude number shown. The

graph is divided into regions where the results are independent of particular forces. As can be

observed from this diagram, as the Eötvös number increases above 100, there is no change in

Froude number. This implies that as the pipe diameter increases above a certain level, deter-

mined by the fluid properties, the rise velocity will become independent of surface tension forces.

In addition, if the Eötvös number is below 3.37, then a bubble will not rise as the surface tension

force matches the buoyant forces. For an air-water system this corresponds to a pipe diameter

of approximately 0.005 m. As the Morton number is increased, the effects of the viscosity of

the liquid in relation to the surface forces will also increase. The effects of viscosity on the rise

rate of a Taylor bubble can be considered negligible provided the Morton number is less than

approximately 10−8 given an Eötvös of less than 50. For an Eötvös number of over 50, the effects

11
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Figure 2.1: Crossplot of dimensionless data showing different flow regimes (White and Beard-

more, 1962).

of viscosity may be neglected provided that the Froude number is at least 0.33, which is observed

to occur in the shaded regions II and V of Figure 2.1 respectively.
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2.1.2 Rise speed of Taylor Bubbles

The Froude number can be estimated using a Reynolds number based on the buoyant forces,

ReB.

ReB = Nf =
(D3g(ρL − ρg)ρL)

0.5

µL
, (2.4)

If, ReB < 10, F r =
9.494× 10−3R1.026

(1 + ( 6197
E3.06

o
))0.5793

, (2.5)

If, 10 < ReB < 200, F r = L[R;A,B,C,G] ≡ A

(1 + (R/B)C)G
, (2.6)

where

A = L[Eo; a, b, c, d], B = L[Eo; e, f, g, h], C = L[Eo; i, j, k, l], G = m/C, (2.7)

and the parameters (a, b, ...,m) are

a=0.34, b=14.793, c=-3.06, d=0.58, e=31.08, f=29.868, g=-1.96, h=-0.49, i=-1.45, j=24.867,

k=-9.93, l=-0.094, m=-1.0295.

If, ReB > 200, F r =
0.34

(1 + ( 3805
E3.05

o
))0.58

. (2.8)

This is also referred to as an "inverse viscosity" in some papers and is referred to as the parameter

Nf (Campos and Carvalho, 1988; Llewellin et al., 2011). If it assumed equal to the classical

Froude number, it may be arranged to yield an expression for the terminal velocity, vt, due to

the fluid properties and pipe diameter (Viana et al., 2003), (Figure 2.2). Viana et al. (2003)

collated a large amount of experimental data to create empirical models to estimate the Froude

number for varying Reynolds numbers. The experiments these conclusions are drawn from have

an upper viscosity limit of 3.9 Pa.s, it is currently unknown whether the correlation is valid for

higher viscosities.
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Figure 2.2: Figure showing the variation of the Froude number with the Reynolds number based

on buoyancy for a collection of experimental data, (Viana et al., 2003). A clear distinction can

be observed between the two flow regimes described by Fr= 0.341 and Fr = 9.221× 10−3R0.977

respectively.

The classical definition of the Froude number is given by Equation 2.1. A rearrangement of

this equated to the Froude number calculated with the buoyancy Reynolds number yields the

following expression for the terminal velocity of a slug.

vt = Fr
√

gD(ρL − ρg)/ρL. (2.9)

A Taylor bubble is defined to be fully developed when its length does not have an effect on

the rise velocity. After the flow passes the top of the bubble it is squeezed into an annular gap

around the bubble, forming a thin film of liquid near the wall. Once the length of the bubble
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reaches a value of 1.5 D, the flow may be assumed to be purely in vertical direction and the

length of the bubble will not affect its terminal velocity (Taylor and Davies, 1950).
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2.1.3 Flow fields around Taylor bubbles

A number of experimental studies have used a Particle Image Velocimetry (PIV) method to visu-

alise the flow field around a rising Taylor bubble and obtain quantitative data from it (Polonsky

et al., 1999; van Hout et al., 2002; Nogueira et al., 2003, 2006a). PIV methods are non–intrusive

imaging techniques which can provide qualitative instantaneous velocity fields (Adrian, 1991).

This technique may be implemented for two phase flows by seeding the liquid phase with

fluorescent particles. The PIV process uses a laser sheet which is pulsed at regular time inter-

vals. These laser sheets illuminate the fluorescent particles. A camera is triggered at the same

frequency as the time intervals to capture individual frames of the successive positions of the

particles suspended in the fluid. The laser light was filtered out by a high pass filter (only light of

wavelength > 550 nm is observed, the laser light typically has wavelength of 532 nm so is filtered

but the particles emit light at a wavelength of 572-594 nm) and hence only the particles are

observed on the final photograph frames. The images are then analysed using specialist software

which compares the successive positions of the individual particles to generate instantaneous

velocity fields (van Hout et al., 2002; Nogueira et al., 2003).

van Hout et al. (2002) used PIV techniques to analyse the flow field around a Taylor bubble

in a 0.025 m pipe filled with stagnant water, which provided an Nf number of approximately

150. In this study, the resulting flow fields were generated for 100 single Taylor bubbles and were

subsequently averaged. An example of one of these flow fields is shown in Figure 2.3. From an

analysis of the results they concluded that an individual Taylor bubbles only influenced the flow

ahead of their nose for one pipe diameter. This conclusion was also drawn by both Polonsky

et al. (1999) and Bugg and Saad (2002) who also used PIV methods to study the flow around

Taylor bubbles. A further detailed description of the study of van Hout et al. (2002) is provided

in Section 3.3.4 where the results are used to validate a numerical model.
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Figure 2.3: An example of flow fields around a Taylor bubble rising in water in a vertical pipe

of diameter 0.025 m which were generated using a PIV method, (van Hout et al., 2002). These

flow fields are averaged from 100 experimental runs. The top image shows the flow around the

nose of the Taylor bubble, the middle image shows the flow around the tail of the bubble, and

the bottom image the flow further into the wake (2-4 pipe diameters below the tail).
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Figure 2.4: A comparison of images captured by using PIV and PST and a combined method

(Nogueira et al., 2003). A much clearer outline of the bubble is captured with the combined

method than by using PIV alone.

Bugg and Saad (2002) used a similar PIV method to study the flow field around Taylor bubble

rising under laminar flow conditions in a 0.019 m pipe filled with olive oil. The velocity profiles

observed in the lower section of the liquid film matched that expected for a viscous falling film.

The flow in the wake region was also seen to fall into the laminar regime, with a Nf number of

approximately 90. The shape of the bubble was sketched by hand from an examination the PIV

results, which, although providing an estimate of the bubble shape, is not very accurate.

To obtain a more accurate representation of the bubble shape, a method called the Pulsed

Shadow Technique (PST) may be used. This method pulses a panel of LED lights which illu-

minate the Taylor bubble. This produces a shadow which passes through an optical filter that

may be recorded by a digital camera (Nogueira et al., 2003). An example of the images that

may be created by the use of the PST method in comparison to the PIV technique is shown in

Figure 2.4.

Nogueira et al. (2006a) used the results from simultaneous PIV and PST studies to determine
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the flow field around single Taylor bubbles rising in both stagnant and co–current flow conditions

(with a maximum viscosity of 1.5 Pa.s) contained within a vertical 0.032 m diameter pipe. An

analysis of the results obtained from these studies concluded that the bubble shape and film

thickness are strongly influenced by changes in the liquid viscosity. It was observed that as the

viscosity increases (hence decreasing Re number), the thickness of the liquid film increases, as

the bubble outlines shown on Figure 2.5 illustrate.

2.1.4 Film Thickness around Taylor Bubbles

Early research studies proposed a series of theoretical and empirical expressions to represent

the ascent velocity of a Taylor bubble in terms of the observed film thickness, λ (Goldsmith and

Mason, 1962; Brown, 1965; Batchelor, 1967). Goldsmith and Mason (1962) solved a mathematical

model constructed using the laminar Navier-Stokes equations to represent the film flow around

a Taylor bubble to derive an expression for the ascent velocity of a Taylor bubble in terms of a

thin film,

vt =
2ρgλ3

3µr
. (2.10)

Brown (1965) and Batchelor (1967) both derived similar forms of expression for this same

film thickness,

vt =
2ρgλ3

3µr − λ
, (2.11)

vt =
2ρgλ3

3µr − 2λ
.

(2.12)
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Figure 2.5: The effects that an increased Re number has on the film thickness developed around a

rising Taylor bubble, (Nogueira et al., 2006a). This Reynolds number is based on bubble velocity

and pipe diameter and is varied by using aqueous glycerol solutions of different viscosities in a

0.032 m pipe.
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If the film is assumed to be thin (i.e. r >> λ), both of these expressions reduce to that in

Equation 2.10.

However, Brown’s expression does not depend on this assumption of a thin liquid film. He

instead uses an alternative definition of the Froude number, which is based on the radius of the

Taylor bubble and not of the pipe radius. This leads to his formulation of film thickness,

λ =

√
1 +NDt − 1

N
, (2.13)

where,

N =

(

14.5
ρ2g

µ2

)1/3

, (2.14)

where the parameter N, which relates buoyancy to viscous forces, along with the pipe diameter,

D, gives an expression for the film thickness. This can then be used to provide an expression for

the slug ascent velocity (Brown, 1965),

vt = 0.345
√

g(D − 2λ). (2.15)

Studies of more general liquid films, not restricted to the rise of Taylor bubbles, also provide

estimates for film thickness which can be applied to Taylor bubbles. The theoretical study of

Nusselt (1916) derives a value for film thickness for a viscous, laminar film falling under gravity,

λ =

[

3µ2

4ρ2g
Ref

]
1

3

, (2.16)

where Ref is a Reynolds number based on film velocity (Dukler and Bergelin, 1952), given by,

Ref = 4
ρλvf
µ

, (2.17)
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where vf is the average velocity in the film. This theoretical model compares well to the exper-

imental work later carried out by Dukler and Bergelin (1952) for Ref < 1000. However, this

model under-predicts for higher Reynolds numbers due to the laminar flow assumption. Dukler

and Bergelin (1952) propose an implicit relationship for film thickness,

Ref = 4η(3 + 2.5 ln η)− 256, (2.18)

where η = ρ
√

gλ3/µ. This theoretical model is validated by experimental work conducted

over a range of Reynolds numbers, 500< Ref <3000. The thickness of the film observed in

these experiments was not constant, but varied with time due to the formation of waves along

the surface of the film. For this reason the mean film thickness is compared to the model in

Equation 2.18, rather than the thickness at a particular time.

More recent work has sought to develop explicit, empirical models to estimate the film thick-

ness over a wide range of Reynolds numbers (Karapantsios et al., 1989; Karapantsios and Kara-

belas, 1995; Lel et al., 2005; Zhou et al., 2009). The results of these studies comprise the con-

clusions of the analysis of a large number of experiments over a wide range of Reynolds numbers

(10 < Ref < 15000). Flows with Reynolds numbers below 3000 are assumed to be laminar, and

turbulent above this value. For Ref < 3000, the model proposed by Lel et al. (2005) was seen to

best reproduce the experimental data. This model is characterised by,

λ

[

ρ2g

µ2

]
1

3

= 1 + 0.321Ref
0.47. (2.19)

For turbulent flow, where Ref > 3000, the model of Karapantsios and Karabelas (1995) is

determined to be more accurate,

λ

[

ρ2g

µ2

]
1

3

= 0.214Ref
0.538. (2.20)
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A recent study by Llewellin et al. (2011) derived a theoretical model to represent the dimen-

sionless film thickness, λ′ = λ
r , based on the model of Brown (1965). Instead of assuming a

constant value for the Froude number, this model uses a rearrangement of Equation 2.11 in the

cubic form,

λ′3 + aλ′ − a = 0, (2.21)

where a = 6 Fr
Nf

, which has the solution,

λ′ =
3
√
b2 − 3

√
12a

3
√
18b

, (2.22)

where b = 9a+
√

12a3 + 81a2. (2.23)

The derivation of this result does, however, assume that the flow is laminar and hence it is only

valid for Ref < 3000 (Llewellin et al., 2011). This model was validated against the experimental

work of Nogueira et al. (2006a) and found to closely match the findings of the experimental work

across its range of validity. This is shown in Figure 2.6.

2.1.5 Wake behaviour of Taylor Bubbles

Moissis and Griffith (1962) used a pitot tube to measure the velocity profiles of the fluid flow

at various distances behind a Taylor bubble. They concluded that in the slug flow regime, the

wake of the preceding bubble interacts with the dynamics of the following Taylor bubble. They

proposed that slug flow may only be classed as fully developed when the wake of one bubble

does not affect the flow behaviour of the next. For the rise of a single Taylor bubble, the wake

of any previous bubbles must not affect the flow behaviour if it is to be considered as rising into

a quiescent fluid.
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Figure 2.6: The cubic Brown model proposed by Llewellin et al. (2011), dashed line, compared

to experimental data, Llewellin et al. (2011) ,dots with error bars and Nogueira et al. (2006a),

crosses.
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Campos and Carvalho (1988) studied the wake of individual Taylor bubbles using photo-

graphic evidence from experiments of single Taylor bubbles rising in stagnant, Newtonian liquids.

Three distinct flow regimes were observed in the wake behind the bubbles. For bubbles longer

than

Z =
(gd2/2ν + U)2

2g
, (2.24)

the flow regime of the wake is governed by the dimensionless parameter, Nf . The first of the

three flow regimes observed occur at vales of Nf < 500 and will be referred to as a laminar wake

region. The wake is observed to be closed and axisymmetrical and to rise at the same velocity as

the bubble. The rear of the Taylor bubble was observed to have an oblate spheroid shape that

does not oscillate. An example of such a wake is shown in Figure 2.7 (a).

Non-dimensional expressions for the length and volume of the wake for this flow regime may

be empirically represented for 100< Nf <500 by the expressions,

lw
D

= 0.30 + 1.22× 10−3Nf , (2.25)

and

vw
D

= 7.5× 10−4Nf , (2.26)

where lw is the length of the wake and vw is the volume of the wake.

Increasing the value of Nf to between 500 and 1500 defines the second regime, in which there

is still a closed wake although it is no longer axisymmetric, (Figure 2.7 (b)). The rear of the

bubble now has a flat shape and oscillates with a frequency which increases with an increase in

the value of Nf . The use of Equation 2.25 remains valid whilst Nf < 800 but not if it rises above

this value. This is termed a transitional wake.

For values of Nf > 1500 the wake behind a Taylor bubble ceases to possess clearly defined

25



CHAPTER 2. LITERATURE REVIEW

Figure 2.7: (a) A Taylor bubble with Nf < 500 rising with a laminar wake which is closed and

axisymmetric, (Campos and Carvalho, 1988) and (b) a Taylor bubble with 500 <Nf < 1500 rising

with a transitional wake which is closed but no longer axisymmetric, (Campos and Carvalho,

1988).
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boundaries. There may also be some re-circulatory regions of flow when Nf approaches 500.

As the value increases, more turbulent eddies are formed which may affect the flow regime

further behind the bubble. This is referred to as a turbulent wake region. An example of this

phenomenon is seen in Figure 2.8

Sousa et al. (2005) used the combined PIV and PST technique described earlier to investigate

the rise of Taylor bubbles in an aqueous solution of CMC polymer. This is a non-Newtonian fluid

with CMC weight percentages ranging from 0.1 % to 1 %, giving a variation in Nf up to 900.

Film thickness was seen to increase with an increasing weight percentage of CMC and hence an

increase in the Nf . The wake behaviour observed behind these Taylor bubble was studied and

compared to the work of Campos and Carvalho (1988), shown in Figure 2.9. The length of the

wake is estimated to be,

lw
D

= 0.20 + 1.14× 10−3Nf . (2.27)

Pinto and Campos (1996) investigated the coalescence between consecutive Taylor bubbles

in a stagnant liquid. They found a correlation between the minimum non-dimensional length at

which bubbles would coalesce and Nf , for each of the flow patterns observed in the wake.

lw
D

= 1.46 + 4.75× 10−3Nf , for a laminar wake, 100 < Nf < 500 (2.28)

lw
D

= 0.692 + 7.90× 10−3Nf , for a transitional wake, 500 < Nf < 1500 (2.29)

lw
D

= 12.5, for a turbulent wake,Nf > 1500 (2.30)
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Figure 2.8: A Taylor bubble with Nf > 1500 rising with a turbulent wake which is open and not

axisymmetric, (Campos and Carvalho, 1988).
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Figure 2.9: A graph illustrating the dependence of the wake length on the value of Nf for a

non-Newtonian CMC solution (filled line) in comparison to the results presented for Newtonian

fluids (dashed line) by Campos and Carvalho (1988), (Sousa et al., 2005).
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2.1.6 Other experimental methods

There are a number of other experimental techniques which may be used to determine the various

characteristic features of Taylor bubbles.

One such method to determine the shape, film thickness and rise velocity of a Taylor bubble

is to use electrical capacitance tomography (ECT). This non-invasive device is formed from a

number of electrodes which are externally mounted on the pipe. The capacitance of the fluid

between every possible pair of electrodes is measured, and these are converted into voltage signals

which are collected by a data acquisition unit, which digitalises the signal and communicates it to

a computer. The computer process this data using a suitable “image reconstruction algorithm” to

generate an approximate cross-sectional image, and from these a void fraction may be estimated

(Huang et al., 2005). This is more common in studies investigating slug flow rather than single

Taylor bubbles, as it is less accurate but capable of recording data for long periods of time.

A wire mesh sensor (WMS) is an intrusive device which measures not only the total gas void

fraction within a fluid, but also the void fraction distribution within the pipe. For this reason,

it can be an extremely useful sensor, although it has some severe limitations. As it is intrusive,

the flow downstream of the WMS will be severely affected by its presence. At very high liquid

viscosities (50–100 Pa.s) bubbles of gas may not rise through the WMS and hence it is unable

to measure the void fraction in these cases. A photograph of a WMS is shown in Figure 2.10.

The WMS consists of two horizontal planes of wires perpendicular to each other at slightly offset

heights. The local capacitance of the liquid is measured at each of the points where these wires

cross. This is achieved by pulsing the lower transmitter wire with a signal at regular intervals,

and measuring the signal received at the corresponding receiving wire. From this a local void

fraction can be determined and hence the distribution of the void fraction can be determined

(Abdulkadir et al., 2010).
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Figure 2.10: A photograph of a wire mesh sensor. This is an intrusive device which measures

not only the total gas void fraction within a fluid, but also the void fraction distribution within

the pipe.

2.1.7 Stability of Taylor Bubbles

The stability of Taylor bubbles is less well understood than its other characteristics. A number of

previous studies have, however, attempted to theoretically determine stability criteria for Taylor

bubbles, (Batchelor, 1987; Clift et al., 1978; Kitscha and Kocamustafaogullari, 1989). A bubble

can be regarded as unstable if it is observed to break up as it rises. An example of an unstable

Taylor bubble is shown in Figure 2.11.

It is proposed that the large difference in densities that exist between the air and water

phases may cause small inter-facial disturbances around the gas-liquid interface of the bubble to

grow. If these become large enough then they cause the bubble to break up. There is, however,

a limited time for growth as they are simultaneously transported down the side of the bubble

into the liquid film due to the upward movement of the rising bubble. Following an analysis of
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Figure 2.11: A Taylor bubble rising in water in a 0.3 m pipe in an unstable manner (left) and in

a stable manner (right) Pringle et al. (2014). This instability is the result of the fluid not being

completely quiescent before the bubble was released.
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the critical wavelengths and amplitudes of these disturbances, Batchelor (1987) predicted that a

Taylor bubble could maintain a maximum diameter of 0.46 m in an air-water system.

The maximum size of a stable Taylor bubble observed in an experimental air-water system is

0.115 m (Martin, 1976). However, James et al. (2011) reports a stable Taylor bubble of air within

a 0.24 m diameter pipe of water, Figure 2.12. This source is of limited use as they do not provide

sufficient description of their experiment, nor define their measure of stability. An unpublished

conference proceeding by Hsu and Simon (1969) also suggested the existence of stable bubbles

in a 0.3 m tube.

2.1.8 Expansions in pipe diameter

Very little experimental work on the rise of single Taylor bubbles has been conducted in anything

other to a straight pipe. There has been some work on both horizontal and inclined flow, although

these are more commonly observed in the slug flow regime. There is a paucity of research into

the effects of changes in pipe diameter on the behaviour of single Taylor bubbles in vertical

pipes. However, there have been numerous investigations to the effects of expansions in pipe

diameter on various co-current gas-liquid flow regimes for horizontal pipes Lottes (1961); Ahmed

(b); Wang et al.; Azzopardi et al. (2014) and in vertical pipes for bubbly flow (Aloui et al., 1999;

Rinne and Loth). These expansions in diameter (along with other complex geometries, such as

contractions, bends, orifices and valves) are often found in processes transporting oil and gas

mixtures and in heat exchangers in industry (Aloui et al., 1999; Ahmed, a).

A change in the diameter of a pipe will intuitively cause changes in the behaviour of a rising

Taylor bubble. Clearly, there will be a change in the rise velocity of the bubble, as this is

dependent on the diameter of the pipe. Less clear, however, are the effects that this change of

velocity may have on the wider behaviour of the bubble, and in particular its stability.

A recent paper by James et al. (2006) reports the results of an experimental study that
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Figure 2.12: A Taylor bubble rising in water in a stable manner in a pipe of diameter 0.24 m,

(James et al., 2011).
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investigated this problem. They investigate single Taylor bubbles rising through a variety of

expansions and contractions (using 0.038 m, 0.05 m and 0.08 m pipe sections) through a stagnant

liquid. Figure 2.13 shows an example of the experimental set up used in their study. Syrups

with viscosities 0.001, 0.1 and 30 Pa.s were used to compare behaviour across a range of Froude

numbers. It was observed that as the bubbles passed through an expansion they accelerated and

expanded laterally. For bubbles of sufficient length this process caused the bubble to break as

it rose through the expanding section. This bubble break up caused an oscillation in the static

pressure readings recorded at a number of locations. The purpose of this work was to compare

the pressure signals generated in the laboratory with Long Period seismic data from volcanoes,

with the assertion that the pressure oscillations seen in the seismic data were caused by a gas

slug rising through an expanding pipe section. Further details of this study are presented later

in Chapter 6 where it is used as a validation case for the solution of a numerical model.

The only other published study that has investigated Taylor bubbles rising through expansions

in pipe diameter is reported in a conference proceedings paper by Kondo et al. (2002). In this

study, a Taylor bubble of air in a 0.02 m diameter pipe was observed to break up as it entered

a sudden expansion, with pipe diameter increasing to 0.05 m. The focus of this study was co-

current flow (resulting in a bubbly flow regime), but a case with no net liquid flow resulting in

Taylor bubbles is also described. Other unpublished experimental work has been carried out

as a part of a series of parallel studies associated with this NERC funded project. A research

student at the University of Nottingham studied Taylor bubbles rising through a vertical 0.01 m

diameter pipe into a range of larger diameter pipes (Carter, 2012). The rise of these bubbles

were recorded by high speed video and the accompanying acoustic measurements detected by

microphones. A research student at the University of Bristol studied the rise of Taylor bubbles

in through varying angles of expansion in a series quasi-2D experiments (Soldati, 2013). Both of

these studies are discussed in depth in Chapter 6.
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Figure 2.13: The experimental apparatus used by James et al. (2006) to study the rise of Taylor

bubbles through changes in pipe diameter. The full experimental set up is shown on the left

hand side and the profiles of different expansion sections are shown on the right hand side.
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Figure 2.14: A visual representation of the behaviour of a Taylor bubble passing through the

0.038 m to 0.08 m expansion in pipe geometry in water, (James et al., 2006).
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Figure 2.15: A graphical representation of the readings by a static pressure sensor at the base of

the pipe as the bubble passes through an expansion in the pipe diameter (above), and the results

of a subsequent frequency analysis of these signals, (below) (James et al., 2006).
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2.2 Taylor bubbles in Volcanic Conduits

2.2.1 Introduction

As detailed in Section 1.1.1, the focus of this thesis is the behaviour of multiphase gas-liquid

flow, and in particular Taylor bubbles. As well as being commonly found in the oil and gas,

nuclear and chemical industries, Taylor bubbles are also found in the natural world; they are in

fact, the driving force behind certain types of volcanic eruption. The following section provides a

background and introduction to these volcanic flows. The definition of the properties of the fluids

involved and the physical models used to describe these eruptions may influence the development

of a computational model.

2.2.2 Background

2.2.2.1 Eruption Types

The behaviour of basaltic volcanoes acts over a wide range of differing scales and styles, not all

of which can be strictly classified. These range from the smaller Hawaiian and Strombolian type

eruptions through to the larger scale Plinian eruptions, with many varying types in between.

Hawaiian eruptions, Figure 2.16 (a), are mainly effusive with the occasional fountaining of lava.

Strombolian eruptions, Figure 2.16 (b), are driven by the rise of large gas bubbles (often re-

ferred to as slugs) which burst at the surface. This causes short periods of eruptive behaviour

interspersed with effusive behaviour. Plinian eruptions, Figure 2.16 (c), are highly explosive,

sustained eruptions which eject large volumes of tephra - fragmental material produced by an

eruption (Williams, 1979).
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Figure 2.16: Examples of volcanic eruptions (left) Hawaiian at Kilauea, Hawaii. (above right)

Strombolian at Stromboli, Italy. (below right) Plinian at Mt St Helens, USA. (Geology.com,

2011).

2.2.2.2 Properties of magma

The physical properties of the fluid in this system, magma are not that well known, as there is a

lack of quantitative field data. The properties and behaviour of igneous rocks in their solid state

is well documented, but little reliable data is available for its molten form. However, the chemical

composition of most magmas is known and this can give a good insight as to their properties. The

proportion of silicon to oxygen in the magma has a strong influence on its rheological properties,

and in particular, its viscosity. An increase in temperature or a decrease in silica content results

in a decrease in viscosity. At temperatures below crystallisation the viscosity increases with

cooling time due to the increasing proportion of crystals which raise the (effective) viscosity of

the liquid.
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Table 2.1: Influence of water content on viscosity of magmas (Scarfe, 1973; Murase, 1962).

Composition T (oC) Dry Viscosity (mPa.s−1) Viscosity with 4% H2O(mPa.s−1)

Granite 785 1012 106

Andesite 1150 104 103.5

Theolitic Basalt 1150 103.2 103

Olivine Basalt 1250 102 102

The ratio of H2O present in igneous melts also has a large influence over the viscosity of the

liquid, as shown by the data contained in in Table 2.1 (Scarfe, 1973; Murase, 1962).

This data, although obtained from a very limited number of experimental studies, does give a

good indication of the viscosity of the effect that water has on the physical properties on igneous

melts. Other preliminary experimental work has shown that viscosity decreases with increasing

pressure for basaltic magmas (Kushiro and Mysen, 1976).

As the viscosities of magmas are very large, the Reynolds number of magmatic flows will

generally be low, and hence the flow may be laminar. The results of many experiments have

concluded that the transition of laminar to turbulent flow in pipes to occur at the critical value of

2,000 (Taylor, 1929). This should still be the case at the scale of gas rising through the magma,

despite the increase in the velocity. Magmas may also have non-Newtonian (shear thinning)

characteristics that effect the flow behaviour particularly at lower temperatures (Hobiger et al.,

2011). Many magmas cannot be deformed by viscous flow until a certain yield stress is exceeded

(Shaw, 1969). The basaltic magma, which is the focus of this study, is clearly shown to be the

least viscous type of magma, partially due to its chemical composition.
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Convection may also occur in a conduit of magma provided the ratio of buoyant forces to

viscous forces exceeds a critical value which is indicated by the Raleigh number

Ra =
gαcρr

4βCp

µk
, (2.31)

where αc is the thermal expansion coefficient, r is the radius of conduit, k is thermal conductivity,

β is the temperature gradient, Cp is the heat capacity. For Raleigh numbers above a critical

value of approximately 1,700 convection is likely to occur. This implies that the majority of

conduits with radii of over 10 m are likely to convect (Bartlett, 1969).

2.2.2.3 Properties of Volatiles

Gaseous volatiles are dissolved in the magma while it is in the mantle or lower crust, before it

rises through volcanoes. These components are exsolved when their concentrations are greater

than their solubility and this forms a gas phase in the magma. The composition of this volcanic

gas differs between volcano and magma types; however, it is normally comprised mainly of H2O,

with CO2 the next largest contributor and SO2 the smallest of the main contributors. Other

gases such as H2S, H2, N2, CO, HCl, HF, He and Ar may also be present in very small volumes

(Shinohara, 2008).

2.2.2.4 Scale

The size of volcanoes clearly differs greatly between sites and eruption types. The radius and

geometry of conduits can only be estimated for volcanoes and this too can vary greatly, roughly

from a radius of around 1 m to 10 m with magma rising from a number of kilometres in depth

(Seyfried and Freundt, 2000). Often the idealised model of a smooth, vertical, cylindrical column

is not accurate as conduits can be inclined (James et al., 2004) or may be not be entirely

cylindrical, e.g. fissure shaped. The diameter of conduits may also vary, especially as the
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bubbles approach the surface and in particular, in the case when a lava lake is present. A lava

lake is a reservoir of magma at the top surface of a volcano. As the conduit approaches the

surface, it undergoes a large expansion in diameter to form a reservoir, as shown in the diagram

of Figure 2.17, (Bouche et al., 2010). Taylor bubbles rising into these reservoirs may provide

hot magma from depth which is entrained in their wake and which can drive convection currents

(Bouche et al., 2010; Danabalan, 2012). This change in diameter may have a large effect on

the shape and behaviour of the Taylor bubbles (James et al., 2006). However, the behaviour of

Taylor bubbles rising through expansions pipe diameter, as previously discussed in Section 2.1.8,

has not been studied in great depth and is a topic that will be investigated in Chapter 6 of this

thesis. There are a number of well studied examples of active lava lakes, including Erebus in

Antarctica, Erta Ale in Ethiopia, Kilauea in Hawaii and Nyiragongo in the Democratic Republic

of Congo.

2.2.3 Strombolian eruptions

Strombolian volcanoes are characterised by relatively small scale, explosive eruptions. They are

more specifically characterised by extended periods of short, spontaneous explosions which can

last up to tens of seconds and which eject ash and volcanic bombs (any material ejected larger

than 65 mm diameter) to heights normally below 200 m. Between these short explosive periods

there are normally interspersed between longer periods of effusive activity (Houghton, 2008).

Strombolian behaviour is widely accepted to be caused by bubble coalescence leading to the

formation of Taylor bubbles. These bubbles rise through the column transporting magma with

them, which then erupt at the surface (Parfitt, 2004). There are two main models which describe

the development of these slugs, which are covered in Section 2.2.4.
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Figure 2.17: A diagram showing the scenario of a bubble rising into a lava lake at Erta Ale,

(Bouche et al., 2010). The rising bubble encounters a sudden change in pipe diameter 40 m

below the liquid surface.

In both of these models, the formation of slugs can be enhanced or facilitated by the geometry

of the conduit system. An inclination close to that of the estimated Stromboli inclination (30o

to the vertical) (Chouet et al., 2003) will lead to an increase of ascent velocity, expected due to

buoyancy, of the slug by around 40%. Pressure data suggests that an inclination of the conduit

enlarges the effect of inertial forces in single slug flows, however these faster and larger bubbles

do occur less often with the same gas input. If consecutive bubbles are within 10-20 diameters

of each other it is likely that they will coalesce (James et al., 2004).
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2.2.4 Models

Basaltic eruptions can often be characterised by cyclic changes in their activity. An example of

this for Strombolian type eruptions is that the activity occurs in discrete bursts. This behaviour

has been widely attributed to structure of the flow inside the conduit of the volcano.

Although it is generally accepted that these discrete bursts of activity are caused by the

rising of Taylor bubbles up through the magma, how these slugs form is less certain. There are

currently two models to describe the way in which these gas slugs are created – the Rise Speed

Dependant model (RSD) and the Collapsing Foam model (CF).

Rise Speed Dependant The RSD model proposed by Wilson (1980); Wilson and Head (1981)

assumes that the gas slugs generated for Strombolian eruptions are generated by the coalescence

of exsolved volatiles in the magma. If the rise velocity of these bubbles is too great they will

not coalesce and the Hawaiian eruptive behaviour will be observed. The cooler magma near

the top of the conduit causes a “skin” which has a finite strength, dependent on the amount

of cooling which has occurred between successive bubbles arriving at the surface. If the gap

between bubbles is too long, the skin will have cooled and thickened, meaning the bubble may

not have the inertia to penetrate the skin. In this case, more than one bubble may be necessary

to build up enough pressure to burst through the skin (Parfitt, 2004).

Collapsing Foam Figure 2.18 shows the basic principle of the collapsing foam model and

RSD models (Houghton, 2008). Gas bubbles are exsolved from the liquid phase in the magma

chamber. These bubbles rise through the liquid and collect in a “foam” at the roof of the chamber.

The bubbles at the top of the foam are being compressed against the roof of the chamber by the

buoyancy force. The force on these bubbles increases with an increase in foam thickness. When

the foam reaches its critical thickness the surface tension cannot balance this buoyancy force
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and the bubbles coalesce (Jaupart and Vergniolle, 1989). If the foam remains below this critical

thickness, a bubbly flow regime will instead be seen in the conduit. When bubbles coalesce, the

gas contained within them has to expand to maintain equilibrium with the surface tension. This

thins the liquid film surrounding the pocket and hence ruptures it adding surrounding bubbles

to the pocket. This is driven by capillary pressure and occurs over a characteristic time. If this

characteristic time is smaller than the time it spends in the foam layer (resident time) then the

foam collapses into a single pocket. For higher viscosity fluids, the characteristic time is closer

to the resident time, and gas slugs are generated (Jaupart and Vergniolle, 1989).

Figure 2.18: Outline of the RSD (left) and CF (right) models (Houghton, 2008). The RSD

model proposes that the formation of Taylor bubbles is caused by the coalescence of smaller

bubbles during their ascent, whereas the CF model proposes that Taylor bubbles are formed by

the collapse of a large foam of small bubbles at the roof of the magma chamber.

The RSD model assumes that large bubbles rise faster than small ones and will overtake and

coalesce with smaller bubbles. Jaupart and Vergniolle (1989) challenged this assumption as they

claimed only bubbles of radius, r, at least ≈ 40 mm would coalesce while magma was rising

(Jaupart and Vergniolle, 1986). So as small bubbles are typically only seen to reach sizes of 10-

50 mm, they argued little coalescence would take place. More recent work has, however, shown
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that bubbles with r > 5 mm will deform and hence enhance coalescence (Manga and Stone, 1994)

and as long as the rise speed is low, gas slugs could be formed by coalescence. Physical evidence

to support the idea of coalescence has been found in both lava and tephra (Mangan et al., 1993).
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2.3 CFD studies

The previous sections have detailed the experimental and analytical research conducted into

the behaviour of Taylor bubbles. However, the majority of real flows cannot be described by

analytical expressions due to their inherent complexity. These flows can be approximated using

numerical methods. Here, the partial differential equations for (PDEs) used to model fluid

behaviour are discretised to difference equations which can be solved on a numerical grid using

a finite volume approach. These governing equations and the techniques used to solve them will

be described in detail in Chapter 3. A large body of work has been carried out analysing bubble

rise using Computational Fluid Dynamics (CFD) methods, including much on the behaviour of

Taylor bubbles.

2.3.1 Modelling Multiphase Flow

There are two main approaches to modelling multiphase flow, and many models within these

methods. One approach is to treat both phases as continuous, and is referred to as an Euler-

Euler model. The other approach is to have one continuous phase and one discrete phase, this

is known as an Euler-Lagrange model, or a particle tracking method.

Euler-Euler There are many models within an Euler-Euler approach and these will often be

referred to by different names, however the main models are briefly discussed below;

• VOF - The Volume of Fluid (VOF) method uses a single set of momentum equations.

The continuity equation for the volume fraction, α, is solved and for each cell the volume

fraction must sum to unity. This model is most commonly used when there is a defined

interface between the two phases. A separate interface reconstruction scheme is required

along with this to determine the position of the phases inside (Youngs, 1982).
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• Interface tracking - These type of methods explicitly track the location of the interface

between two phases. This can be applied in a number of ways, such as using a set of points

and splines Lu and Prosperetti (2009), or by using the velocity at the front of the bubble

to interpolate the shape (Kang and Liu, 2000).

• Level Set - This method uses a level set function, ϕ(x, t), to determine the location of the

phases in relation to the interface. This function is zero at the interface, positive in the

primary phase and negative in the secondary phase. This is more formally defined as

ϕ(x, t) =































+|d| if x ∈ the primary phase,

0 if x ∈ the interface,

−|d| if x ∈ the secondary phase.

(2.32)

• Mixture - This is a slightly more complex model as the two fluids can be inter-penetrating.

One set of momentum equations is still used, however the phases do not have to have

the same velocity and there can be momentum transfer between phases. This is often

implemented in bubbly flow or particle laden flow regimes.

• Eulerian Multiphase - This is the most complicated Euler-Euler model as the momentum

and continuity equations are solved for each phase. The phases are couple by inter-phase

transfer coefficients. This model is commonly applied to bubble columns, particle suspen-

sion or fluidised beds.

Euler-Lagrange This is a particle tracking approach which has discrete models for one phase,

while the other phase is continuous. The bubbles are modelled as spherical particles and tra-

jectories are calculated for each particle. This is particularly suitable for flows where a discrete

phase is introduced to a continuous flow from an inlet.
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When a Taylor bubble rises through a pipe, there is a distinct interface between the large air

bubble and the fluid, and both phases are continuous. Hence, it would seem logical to use an

Euler-Euler approach in preference to any of the other methods.

In recent years, CFD studies using the Volume of Fluid (VOF) model have been shown to be

capable of replicating the behaviour observed in experimental studies, such as bubble rise rate

and wake behaviour (Ndinisa et al., 2005; Taha and Cui, 2004; James et al., 2008; Araujo et al.,

2012). This method is also widely available as part of commercial CFD software.

Other multiphase schemes have been used to model the gas-liquid interface. For example,

Suckale et al. (2010) developed a numerical model using a level set method. Their results sug-

gested that a stable bubble could not be sustained with a Reynolds number of more than 100.

This corresponds to a maximum pipe diameter of under 0.01 m for a water-air system which

is contradicted by many experimental studies. James et al. (2011) questioned whether this is

the result of a physical instability or a numerical instability and pointed out that the simulation

durations were limited by numerical divergence.

Another recent study has used a front tracking method. This tracks the interface explicitly

with the velocity at the front of the bubble being interpolated from the finite difference in the

grid (Kang et al., 2010). They used this front tracking method to successfully simulate the

rise of Taylor bubbles in 2D axi-symmetrical pipes. However, no studies have used this method

to simulate 3D Taylor bubbles. Lu and Prosperetti (2009) also simulated axisymmetric Taylor

bubbles rising through liquids in a vertical tube. Their model neglected the flow in the gas, and

tracked the interface between the gas and liquid phases using a set of marker points which were

linked by cubic splines. Again, this method of interface tracking has not been used to perform

3D simulations.

The VOF method has produced reliable results in both 2D axi-symmetric and 3D geometries
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and will be used in this study. The details of this method and its implementation can be found

in Chapter 3.

2.3.2 Implementation

There are a number of different ways to implement interface tracking methods in the solution of

CFD models. On approach is to use a single grid containing the entire domain. This method has

been used to successfully model the rise of Taylor bubbles in many studies (Gupta, 2009; James

et al., 2008). For situations in which it is required to model the behaviour of the whole system

– such as if the atmospheric liquid-gas surface is required, or bubble behaviour changes as it

rises in the pipe – this is an effective approach to take. However, this method can be extremely

computationally expensive with a large domain.

An alternative modelling method, known as the “moving wall” approach, involves moving

the walls of the domain vertically downwards around the rising bubble. Here a velocity inlet is

placed ahead of the bubble and an outlet behind it, the walls move at the same velocity as the

inlet conditions (Taha and Cui, 2004; Kawaji et al., 1997; Araujo et al., 2012). This method

is much more computationally efficient as the size of the domain required is smaller. However,

the main disadvantage of this method is that the full domain is not modelled. This means that

this approach does not take into consideration the hydrostatic pressure differential in the pipe or

include the effects of the top surface of the liquid column. These factors make it an ideal method

to use to study the effect of parameters on characteristics which are independent of the presence

of gas-liquid surface, such as the wake behaviour and film thickness (Araujo et al., 2012). An

example of the computational domain for this method is shown in Figure 2.19.

Another modelling process involves using a periodic boundary condition at the inlet and outlet

of the domain (Clarke and Issa, 1997; Shao et al., 2009). This is not, however, recommended for

practical use by commercial CFD code manufacturers (CD-ADAPCO, 2011; ANSYS FLUENT).
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This method has the same advantages and disadvantages of moving walls approach, which delivers

a shorter computational time, but with limits placed on what can be modelled. One further note

with this method is that the wake of one bubble may interact with the front of the following

bubble, which, depending on the flow regime being modelled, could be either an advantage or a

disadvantage. For example, if modelling a single bubble rising in a vertical pipe, these interactions

could influence the behaviour of the bubble and hence would not be a realistic representation of

the flow. However, if slug flow is being modelled, Taylor bubbles may well encounter the wake of

previous bubbles and so this model is appropriate. A similar domain to that shown in Figure 2.19

may be used but where the flow from the outlet boundary is used as the flow entering the inlet

boundary.

A Moving Frame of Reference (MFR) approach could also be applied to this problem. The

co-ordinate system in this case would be set at the centre of mass of the bubble, and would move

with the velocity of the bubble. The computational domain is defined with respect to the moving

frame such that an arbitrary point in the domain is located by a position vector, −→r from the

centre of mass of the bubble. The fluid velocities are transformed from the stationary frame to

the moving frame using the relation,

−→
U r =

−→
U −−→

U t, (2.33)

where
−→
U r is the relative velocity (from the moving frame),

−→
U is the velocity viewed from the

stationary frame, and
−→
U t is the translational velocity of the moving frame (ANSYS FLUENT).

As the bubble is rising through a hydrostatic pressure gradient, time varying pressure conditions

will be required to be placed on the boundaries above and below the bubble. As discussed in

Chapters 4 and 5 this may cause the bubble’s rise rate to accelerate and decelerate, and so an

additional term will be required in the momentum equations to account for this. This approach

has very similar advantages to the previously discussed moving walls approach, in that as only
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the flow around the bubble is modelled, a much shorter domain is required, substantially reducing

computation times.

It can be concluded, therefore, that the approach taken should depend on the situation which

is to be modelled, as each method has both advantages and disadvantages. A periodic domain will

not be used due to the recommendations of the code manufacturers. In the scenarios presented

in Chapters 5 and 6 , the whole domain is required to be modelled, and so the moving walls or

periodic boundary approaches are not appropriate.

2.3.3 Results

Many CFD modelling studies (Taha and Cui, 2004; Lu and Prosperetti, 2009; Araujo et al.,

2012) have predicted Taylor bubbles with a terminal rise velocity that agree with the predictions

of White and Beardmore (1962) over a wide range of conditions. The studies of Taha and Cui

(2004); Kawaji et al. (1997) and Araujo et al. (2012) used the moving walls approach described

in Section 2.3.2. These studies compared the effect of varying Eotvos and Morton numbers on

the dimensionless rise velocity, expressed by the Froude number. An example of these solutions

are shown in Figure 2.20, where CFD results of Taha and Cui (2004) are plotted against the

benchmark data of White and Beardmore (1962). These studies were all 2D-axisymmetric models

which drastically reduced the computational expense. Taha and Cui (2004) also include a full 3D

model for some simulations where unsteady flow was present. James et al. (2008) were able to

simulate Taylor bubbles which matched the predicted rise rate over a range of conditions whilst

modelling the whole domain. However, for larger values of the Eötvös number, significant errors

in the solutions were incurred. These errors resulted in a computed rise velocity that was 10-15 %

below the theoretical predictions and experimental observations and is shown in Figure 2.21. No

explanation of this discrepancy in computed rise velocity was given but this is discussed further

in Chapter 5.
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The computational model solutions of Kawaji et al. (1997) using a moving walls condition

showed good agreement with the experimental conclusion of Taylor and Davies (1950) that bubble

length does not alter the rise velocity of Taylor bubbles longer than 2.5 D through a stagnant

liquid using a VOF method.

The first numerical simulations of the rise of a single Taylor bubble were conducted by Mao

and Dukler (1991). Their method neglected the flow of the gas in the domain, solving the steady

state flow of liquid around and ahead of the Taylor bubble. This enabled them to determine the

shape and rise velocity of the Taylor bubble but did not model the wake of the bubble. Their

simulations suggested that although the different viscosities they tested (over the range from µ

= 0.001 to 0.05 Pa.s) did not largely affect the rise velocity, an increase in the liquid viscosity did

increase the thickness of the liquid film. Bugg et al. (1998) extended this model to include the

flow in the wake of the Taylor bubble. This allowed them to simulate the rise of a Taylor bubble

for a large range of conditions and to compare these results with the results of an experimental

study. The velocity fields around the rising Taylor bubble were experimentally determined using

a PIV method. The results of both the experimental and numerical studies suggested that the

influence of a Taylor bubble on the flow field ahead of it was limited to approximately one pipe

diameter.

More recent studies have shown that when using the VOF model, the computed thickness of

the liquid film around the Taylor bubble compares well with experimental data (Taha and Cui,

2004; Ndinisa et al., 2005; Araujo et al., 2012). Araujo et al. (2012) also validated their work

against the studies of Brown (1965); Campos and Carvalho (1988); Viana et al. (2003) . This

validated model was then used to conduct a numerical study with the Eotvos number over the

range 6 to 900 and the Morton number from 4.72 × 10−5 to 104. They developed empirical

models to estimate the length and volume of the wake, which were shown to be comparable to

the experimental results of Campos and Carvalho (1988),
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Lw

D
= 0.25[0.555− 7.793× 10−3 ln(M)]. ln

(

Eo3

M

)

− 2.133 + 8.046× 10−2ln(M), (2.34)

Vw

D3
= 1.365× 10−1.

(

Lw

D

)2

+ 2.176× 10−1.

(

Lw

D

)

− 2.919× 10−1. (2.35)

A flow map of the behaviour of the tail is presented in Figure 2.22, showing at which conditions

the shape of the tail turns from convex to concave and a wake becomes prevalent (Araujo et al.,

2012).

The PIV experiments of Bugg and Saad (2002) are used by Lu and Prosperetti (2009) to

validate the solutions of their axisymmetric, moving wall model. This study was conducted

for Eötvös numbers over the range of 15 to 100, across which surface tension is an important

factor. They observed that as the effects of surface tension decreased, an increase in the unsteady

behaviour was observed. Waves appeared in the liquid film, which eventually led to the shedding

of bubbles at the tail of the bubble. These waves can be seen in Figure 2.23 where the interface

shapes observed are plotted for a range of times during one simulation.

Kang et al. (2010) formulated an empirical model for the film thickness based on the results

of a numerical study. However, this expression was subsequently confirmed by Llewellin et al.

(2011) only to be valid for an extremely limited range of values Figure 2.24. Zheng et al. (2007)

and Feng (2008) showed that the development length of the liquid film depended on the value of

the Reynolds number, but for turbulent flow this was between 1.5 to 2.1 pipe diameters in length.

These results were comparable to the experimental observations of Nogueira et al. (2006a).

Results from Kang et al. (2010) have shown that the density and viscosity ratios have little

effect on the shape of the bubble or the length of the wake. The Eötvös and buoyancy Reynolds

numbers both have a large effect on the shape of the tail of the bubble and the wake left behind

it, and increases in either of these numbers result in a longer wake length. An increase in the
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Eötvös number also gives shorter and wider bubbles and hence reduces the size of the liquid film.

An increase in ReB produces the same effect. This is as the surface tension governs the shape

of the bubble, the prolateness of the nose and oblateness of the tail both increase as the surface

tension increases (Taha and Cui, 2004). These effects can be seen in Figure 2.25.

Clarke and Issa (1997) used an iterative scheme to determine the Taylor bubbles shape and

rise velocity, along with the flow surrounding it. Again, the flow in the gas was neglected, and

so only the liquid flow field was calculated. At each iterative step, a new mesh was generated

to account for the change in bubble shape, with a boundary applied at the liquid-gas interface.

Periodic boundary condition were imposed on the domain. This creates a regime similar to slug

flow where some small bubbles may be dispersed in the flow.

Recently, Yan and Che (2010) addressed the problem of small dispersed bubbles in slug flow

by applying a coupled system of equations. This allows different length scales to be resolved for

the different regimes, one length scale for the Taylor bubble, modelled using a VOF model, and

a different length scale for the much smaller, dispersed bubbles in the wake. These small bubbles

are modelled using a mixture model, commonly used to model bubbly flow. An example of the

results generated by the use of this model are shown in Figure 2.26.

The study of James et al. (2008) is the only one to include a compressible gas phase. This

model allows the gas bubble to expand as it rises through the liquid. Their work, validated by

experimental data, shows a rise of the liquid surface due to bubble expansion, as it moves into

regions of lower hydrostatic pressure. Slug oscillations are mentioned to occur when an initial

overpressure is used, however no further detail is provided. James et al. (2008) also detail a

rapid expansion of the bubble near to the atmospheric surface of the liquid. A scaling up of this

simulation is carried out to determine the behaviour of a gas bubble rising in a volcanic conduit

of diameter 2 m with a highly viscous liquid phase. However, little explanatory detail is provided

to detail the changes in the numerical scheme made to overcome the challenges faced by this
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increased scaling. To the author’s knowledge, this is one of the only studies where the results

produced air bubbles in water for a pipe of diameter greater than 0.1 m have been presented in

the literature. Most of the previous studies only increased pipe diameter in order to be able to

neglect the effects that surface tension have on the bubble rise rate, normally not over 0.05 m

giving an Eötvös number in the region of 100. The volcanic conduit flows studied by James

et al. (2008) and the experiments which form the driver for this project have much greater

diameters than this. In addition, the behaviour of bubbles within fluids of higher viscosities are

not normally considered, and so extension to higher viscosity flows is also an area of potential

novel work.

One model feature not tackled widely in the literature is the use of alternate geometries other

than vertical, cylindrical pipes. Taha and Cui (2004) presented the results of a study which

used an inclined pipe at 30◦ to the vertical, Figure 2.27. The PhD thesis of Hernandez-Perez

(2011) also investigated this geometry, conducting both experimental and numerical studies. It

was shown that 3D CFD simulations could replicate the behaviour of Taylor bubbles in inclined

pipes. No numerical work, and very little experimental work, has been conducted on the rise

of Taylor bubbles through changes in pipe geometry. One reason for the lack of CFD work in

these areas is the requirement to employ a full 3D model, which is much more computationally

expensive than the axisymmetric models widely employed in the literature. This is also true

for vertical pipes in which flow is highly turbulent. The particular case of an expansion in pipe

diameter is a gap in the literature which is investigated in Chapter 6.

2.3.4 Other applications

A lot of previous research has analysed Taylor bubbles in small diameter pipes, particularly in

micro-channel and capillary flow. Despite the extremely small scale of these problems (diameters

of the order of 10−4 m), the work does provide useful insight, particularly from the perspective
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of the methodology used. Gupta (2009) uses both a VOF model with geometric reconstruction

(Youngs, 1982) using FLUENT and a level-set model (Osher and Sethian, 1988) in TransAT, to

obtain very similar results for a Taylor flow in a micro-channel with heat transfer. As the flow is

very stable, an axisymmetric model can be used in both cases, in agreement with Taha’s use of

an axisymmetric model to represent these conditions (Taha and Cui, 2004). The inlet condition

used, an annular flow with a small initialised bubble, shown in Figure 2.28, is very similar to one

that could be used, for example, to model slug flow in a short tube filled with glycerin at the

University of Nottingham. A VOF approach, employing the commercial code CFX (Shao et al.,

2009), was used to model this phenomena and concluded that an increase in gas velocity gave a

larger bubble, and that surface tension had the largest effect on the size of the bubble produced,

which was in agreement with Taha and Cui (2004).

2.4 Conclusions

The work presented in this chapter details a critical review of the background literature on

gas-liquid flows, in particular the rise of Taylor bubbles. Previous studies have shown that the

rise of Taylor bubbles may be described by a number of non-dimensional parameters, namely

the Froude, Eötvös, Morton and buoyancy Reynolds numbers. Furthermore, the rise rate, film

thickness and wake behaviour can all be estimated using theoretical or empirical models if these

parameters are known.

From an analysis of the background literature it is concluded that there are a number of

areas upon which insufficient experimental work has been published. Notably, there is a lack of

experimental work in both large diameter pipes (over 0.12 m) and in high viscosity fluids (over

5 Pa.s). This conclusion is used as the motivation for the work presented in Chapters 4 and 5,

which are summaries of investigations that study the flow of Taylor bubbles in larger diameter
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pipes.

Many studies have shown that Taylor bubbles are not only commonplace in the oil and gas,

nuclear and chemical industries, but also prevalent in the natural world, in particular being the

driving force behind the eruption of Strombolian volcanoes. These bubbles rise of gas through

the magma and burst at the surface. Magmas in these systems have viscosities which can be

in the order of hundreds of Pa.s (O(100)Pa.s). Although conduits are normally modelled as

vertical, cylindrical pipes, this is often not the case and conduit inclinations and changes in

conduit diameter often occur. The rise of Taylor bubbles through changes in pipe diameter are

the focus of the numerical studies presented in Chapter 6.

A number of conclusions were drawn from previous work conducted using numerical models

to study the rise of Taylor bubbles which influenced the choice of the models adopted for the

numerical studies presented in this thesis. To account for the presence of two fluids, the VOF

model has been shown to be an accurate and robust method when used to simulate the rise

of Taylor bubbles in vertical pipes. This method is investigated in more detail in Chapter

3. Although many studies have used shortened domains with either moving walls or periodic

boundary conditions, it was concluded that the whole domain was required to be modelled in

the studies presented in this thesis. Although this is computationally expensive, the behaviour

of the atmospheric liquid–air surface or expansion of the bubble would not have been able to

modelled otherwise.

An analysis of the theoretical Reynolds numbers (based on buoyancy of the bubble) showed

that in many scenarios, turbulent flow would have to be modelled. The k-ǫ turbulence model has

been shown in previous studies to adequately model the turbulent wake and thin film behaviour

(Taha and Cui, 2004).

An analysis of the results of published numerical studies of Taylor bubbles show that few

previous investigations considered either compressible Taylor bubbles or ones possessing a high
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Eötvös number (≥ 500). There were also no published numerical studies that have considered

changes to the cross section of the pipe geometry. These model and parameter changes provides

the motivation behind the numerical studies presented in Chapters 5 and 6.
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Figure 2.19: A diagram showing the computational domain when using a moving wall method,

(Araujo et al., 2012). The walls move downwards vertically at the same velocity as the Taylor

bubble.
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Figure 2.20: Comparison of the empirical models of White and Beardmore (1962) (symbols) with

the CFD results of Taha and Cui (2004) (lines).
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Figure 2.21: Comparison of the empirical models of White and Beardmore (1962) (filled lines)

with the CFD results of James et al. (2008) (dashed lines and filled circles).
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Figure 2.22: A flow map indicating the behaviour of the tail and presence of a wake behind the

Taylor bubble Araujo et al. (2012).
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Figure 2.23: Depiction of waves in the thin film of a Taylor bubble from the work of (Lu and

Prosperetti, 2009). Interface shapes are plotted at a range of different times throughout one

simulation.
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Figure 2.24: The limited range of values for which the model of Kang et al. (2010) is valid,

(Llewellin et al., 2011).
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Figure 2.25: The change in shape of a Taylor bubble for varying conditions, using a fixed initial

volume, (Taha and Cui, 2004). The Taylor bubble is rising to the left. An increase in the Eötvös

number gives shorter and wider bubbles and hence reduces the size of the liquid film.
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Figure 2.26: Flow in the near wake of a Taylor bubble using a coupled VOF and mixture model

(Yan and Che, 2010).
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Figure 2.27: Streamlines around a Taylor bubble rising in an pipe inclined at 30 ◦ to the vertical

(Taha and Cui, 2004).
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Figure 2.28: Images showing the development of slug flow in a micro channel, with gas injected

at the left hand side (Gupta, 2009). In this set of images, the gas phase is blue and the liquid

phase is red.
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CFD Model

3.1 Numerical Model

3.1.1 Governing Equations

The computational studies reported in this Thesis, employed a commercial CFD solver, ANSYS

FLUENT 12.1, to model the rise of a Taylor bubble. This solves the momentum and continuity

equations using a finite volume method. The continuity equation is derived by applying conser-

vation of mass to a finite volume while the momentum equations (Navier-Stokes Equations) are

derived by applying Newton’s Second Law. This constraint requires that the rate of change of

momentum acting on the particle is equal to the sum of the forces acting upon it. In many situ-

ations, due to the turbulent nature of the flow in the thin film of liquid surrounding the Taylor

bubble and in its wake, the Reynolds Averaged Navier Stokes (RANS) equations are used. These

are given by

∂ρ

∂t
+ ∇.(ρu) = 0, (3.1)

∂

∂t
(ρu) + (u.∇)ρu = −∇p+ (µ+ µt)∇2

u, (3.2)
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where u = (u, v, w) is the ensemble average velocity, p is the pressure, µ and µt are the dynamic

and turbulent eddy viscosity respectively. In the RANS equations, the quantities of the Navier-

Stokes equations, such as pressure, velocity and density, are split into mean and fluctuating

components, which are then time averaged. Consequently, this introduces an additional term

which is required to represent the effects of turbulence in the flow and to close the equations.

Previous studies have shown the family of k− ε models (Shih et al., 1995) is the most suitable to

use for this application due to its accuracy and computational efficiency. For the studies reported

in this Thesis, the Realisable k − ε model was used, which has two transport equations, one for

the turbulent kinetic energy, k, and one for the dissipation rate, ε,

∂

∂t
(ρk) + u.∇(ρk) = ∇.

[(

µ+
µt

σk

)

∇k

]

+ µtS
2 − ρε, (3.3)

∂

∂t
(ρε) + u.∇(ρε) = ∇.

[(

µ+
µt

σε

)

∇ε

]

+ C1εS − ρC2
ε2

k +
√
νε

, (3.4)

where S is the modulus of the mean rate of strain tensor, ν is the kinematic viscosity and σk

and σε are the turbulent Schmidt numbers. In this model, C1 is given by

C1 = max

[

0.43,
η

η + 5

]

, (3.5)

here η = Sk/ε. The remaining model constants, C2, σk and σε have been determined empirically

and have values of 1.9, 1.0 and 1.2 respectively. The eddy viscosity is given by, µt = ρCµk
2/ε. In

this Realisable model Cµ is not constant but is calculated using the mean strain rate and the rates

of rotation, as described in (Shih et al., 1995). This method has been shown to predict strong

shear flows, such as jets, more accurately than the standard k − ε model. As this characteristic

flow behaviour is observed in the in the rise of Taylor bubbles, the Realisable k − ε model was

used. Details of other turbulence models may be found in Section 3.1.2 and further evidence to

support the applicability of this model is presented in Section 5.1.4.

To satisfactorily replicate the rise of Taylor bubbles, the model requires a distinct interface

between the gas and liquid phases. To determine the location of this interface, the Volume Of
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Fluid (VOF) method is used. This is one of the most commonly used methods to represent the

slug flow regime using CFD. The method tracks the interface by solving a continuity equation

for the gas volume fraction, αG, present in each cell,

∂αG

∂t
+∇.(αGu) = 0, (3.6)

where αG is the volume fraction of gas (Hirt and Nichols, 1981) and where the overbars that

indicate time averaged quantities have been omitted. It is assumed that there is no mass transfer

between the phases. The liquid volume fraction present in each cell is then calculated by observing

the constraint

αG + αL = 1, (3.7)

where αL is the volume fraction of liquid, which must be satisfied to conserve mass.

The surface tension force, FS, at the liquid–gas interface is approximated by the Continuum

Surface Force (CSF) model (Brackbill et al., 1992) which is calculated using

FS = σκn, (3.8)

where σ is the surface tension coefficient, κ is the radius of curvature and n is the unit normal

of the interface, which in terms of the volume fraction, α is

n = ∇αG, (3.9)

and κ is given by

κ = ∇.
∇αG

|∇αG|
. (3.10)

As compressible effects are also considered, an appropriate equation of state must be used,

and which, in this case, is the Ideal Gas Law,

ρ =
pop + p

R
Mw

T
, (3.11)
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where pop is the operating pressure, p is the local pressure, R is the universal gas constant, Mw

is the molecular weight and T is the temperature.

As it is assumed that temperature effects are negligible, an isothermal model is employed

which defines a constant value of temperature throughout the fluid removing the need to explicitly

solve the energy equation.

3.1.2 Turbulence Models

As detailed in Section 3.1.1, to solve the RANS equations, a turbulence model is required to

provide closure. The complexity of these models can range from an empirical formulation rep-

resented by a single equation through to a coupled set of six equations. The turbulence model

employed in the computational models presented in this Thesis, the Realisable k − ε model,

is described in Section 3.1.1 but there are many other possible turbulence models which were

considered. A number of examples of common turbulence models are presented in this section;

this is, however, not an exhaustive list.

The Spallart Allmaras (SA) model is a popular one equation turbulence model. This model is

not commonly used for applications outside of aerodynamics and has been shown to produce large

errors for other flow regimes including jet flows, which are seen in the near wall region around

Taylor bubbles. For this reason, the use of this model is not considered in the simulations

presented in the following chapters.

The standard k − ε model (SKE) (Launder and Spalding, 1974) uses two equations to close

the RANS equations, one for the turbulent kinetic energy, k and one for the dissipation rate ε,

∂

∂t
(ρk) + u.∇(ρk) = ∇.

[(

µ+
µt

σk

)

∇k

]

+ µtS
2 − ρε, (3.12)

∂

∂t
(ρε) + u.∇(ρε) = ∇.

[(

µ+
µt

σε

)

∇ε

]

+ C1ε
ε

k
µS2 − ρC2

ε2

k
, (3.13)
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This is one of the most popular turbulence model for industrial applications due to its accu-

racy, robustness and relative lack of computational expense. Two variations of the SKE model

have been developed in an attempt to improve the performance of the model, these are the

Re-Normalised Group (RNG) k − ε model and the Realisable k − ε model, described in Sec-

tion 3.1.1. The RNG model is derived from the Navier-Stokes equations using Re-Normalisation

Group methods (Yakhot et al., 1992). This method again uses transport equations for k and ε

∂

∂t
(ρk) + u.∇(ρk) = ∇.

[(

µ+
µt

σk

)

∇k

]

+ µtS
2 − ρε, (3.14)

∂

∂t
(ρε) + u.∇(ρε) = ∇.

[(

µ+
µt

σε

)

∇ε

]

+ C1ε
ε

k
µS2 − ρC2

ε2

k
−Rε. (3.15)

However, this formulation includes an additional term in the ε equation which is given by

Rε =
Cµρη

3(1− /η0)

1 + βη3
ε2

k
. (3.16)

This additional term has the effect of improving the accuracy in highly strained flows. It should

also be noted that the values of the constants are derived analytically in this model, with the

exception of β. The values of these constants are Cµ=0.0845, σk=0.7194, σε=0.7194, C1=1.42,

C2=1.68, η0=4.38, β=0.012.

Another commonly used two equation turbulence model is the k−ω model of Wilcox (1988).

This model defines one equation for the turbulent kinetic energy, k and one for the specific

dissipation rate ω, which may be considered of as the ratio of ε to k,

∂

∂t
(ρk) + u.∇(ρk) = ∇.

[(

µ+
µt

σk

)

∇k

]

+ µtS
2, (3.17)

∂

∂t
(ρω) + u.∇(ρω) = ∇.

[(

µ+
µt

σω

)

∇ω

]

+ α
ω

k
µtS

2. (3.18)

where the coefficient α governs the production of ω and µt = ρ k
ω . The model constants σk and

σω . This model has been shown to be effective in regions of low Reynolds numbers such as in
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wall boundary layers and is also able to automatically adapt for problems with low Reynolds

numbers.

Reynolds Stress models (RSM) (Launder et al., 1975) provide an alternative method of achiev-

ing closure of the RANS equations. This approach introduces a set of six partial differential equa-

tions which are solved to obtain the Reynolds stresses. This leads to an additional 22 unknowns

which are required to be modelled, which are estimated using a calibration method. McDonough

(2007) concludes that this does not improve the modelling of the underlying physics, but rather

give a model in which coefficients can be altered, so that results match the observed behaviour.

This method is also clearly more computationally expensive than two equation models which

reduces its feasibility for practical application.

A further set of turbulence models may be derived using an alternate approach to the RANS

method. Large Eddy Simulation (LES) methods are transient (or unsteady) models that filter the

Navier Stokes equations to resolve only the eddies whose scales are larger than the filter width or

grid spacing (Smagorinsky, 1963). The smaller eddies are then modelled using what are known as

subgrid scale models. This method does require very fine grids, particularly in near–wall regions.

This lead to the development of hybrid RANS-LES models, known as Detached Eddy Simulation

(DES) models. DES methods model the near–wall regions using a RANS approach and model

the rest of the domain in an LES manner as first demonstrated by Shur et al. (1999). These

approaches to turbulence modelling are much more computationally expensive than solving the

RANS equations due to both their transient nature and the increased grid resolution required

to accurately resolve the flow fields and hence were not employed in the computational studies

presented in this Thesis.

The characteristics of the flow close to the wall of the pipe in turbulent conditions must also

be considered. At a wall boundary, a no slip condition is applied, meaning that there is zero

velocity at this boundary. This results in a thin layer of laminar flow very close to the wall where
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viscous effects dominate; this is commonly referred to as the viscous sublayer. Above this there

is a layer in which the viscous effects near the wall and the turbulent effects of the main flow are

of similar magnitudes. Outside of these layers, the turbulent effects of the mean flow dominate

and the flow is not affected directly by viscous effects (Versteeg and Malalasekera, 2007).

Two dimensionless groups can be defined to characterise the flow in the boundary layer,

u+ =
U

Uτ
, y+ =

ρuτy

µ
, u+ = f(y+) (3.19)

where Uτ =
√

τw/rho is known as the friction velocity, and in which τw is the wall shear stress.

The viscous sub-layer is very thin and normally limited to y+ values of below 5. In this layer,

it can be shown that a linear relationship between u+ and y+ exists,

u+ = y+. (3.20)

Outside of the viscous sub-layer, for y+ values of between 30 and 500, it can be shown that

the velocity profile fits a logarithmic relationship with the wall distance. In the model presented,

the Standard Wall Function approach of Launder and Spalding (1974) was used, in which the

layer of cells adjacent to the wall are assumed to be in this layer. This log-law is given by

u+ =
1

κ
ln(Ey+), (3.21)

whereκ is the von Karman constant and E is a constant with empirically determined values of

0.4 and 9.8 respectively. In the simulations presented, y+ values were at the lower end of this

range, typically between 15 and 35.

The above RANS models were developed for single phase flows and their applicability to

multiphase flows should be considered. Due to the large difference in densities between the
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two fluids, there is a high density ratio in the vicinity of the interface. This results in the the

assumption of zero velocity divergence, used in the derivation of the turbulent kinetic enrgy

equation, no longer being valid. Sawko and Thompson (2010) derived expressions for turbulent

kinetic energy and turbulence dissipation which are not dependent on this assumption. This

method has been shown to significantly increase the accuracy of a VOF simulation modelling

two phase stratified flow and should be considered for use in future simulations.

3.1.3 Mesh

For the finite volume method to be used to solve these equations, the flow domain must be

sub-divided into a number discrete control volumes (commonly referred to as cells) to form a

mesh (or grid)

This process of sub-dividing the domain is known as mesh generation, and is an important

part of the CFD process, as the density and distribution of a computational mesh can greatly

affect the accuracy of the solution. There are a number of cell types into which a domain may

be split. A 2D domain may be sub-divided by quadrilateral or triangular elements, while a

3D domain may be sub-divided into hexahedral, wedge, tetrahedral, pyramid or more recently,

polyhedral (n-side polygon) volumes. The corners of these cells will be referred to as nodes and

the 3D sides of the cells referred to as faces.

A computational mesh can be classified as either structured or unstructured, based upon

their topology. Each type has its own advantages and disadvantages which must be assessed

according to the requirements of the simulation.

A structured mesh has a regular topology which can be expressed as an array, which allows

an ease of data store and access. However, the structure of the grid must be maintained at all

times. This means that single extra nodes may not be added to the grid, but rather an extra line

in 2D, or plane in 3D, of nodes must be added to maintain the structure. However, this can lead
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to the addition of cells which are not required. Consequently, 2D structured grids are restricted

to the use of quadrilateral cells, and 3D grids to the use of hexahedral.

There are three main subcategories of structured grid topology, O–grid, C–grid and H–grid,

examples of which are shown in Figure 3.1. The O–grid may also map a circular shape onto a

rectangular, or vice versa. The use of this grid configuration is commonly seen in a wide array

of scenarios, particularly in pipe flow where it allows refinement of the mesh close to the wall of

the pipe. The C–grid topology is often employed to model the flow around airfoils as it allows

refinement of the mesh close to the airfoil and in the wake region, whilst enabling larger cells

further away from areas of interest. A H–grid topology is the collective name given to the other

structured meshes which are not of the C or O type.

Unstructured grids are not subject to the same number of constraints as structured meshes.

This does mean that refinement or coarsening of the mesh can be made in any location, and

triangular (in 2D) and prism, pyramid and tetrahedral (in 3D) cells may be used. This means it

is much easier to mesh more complicated domains, or those that require a large amount of local

refinement. One of the main disadvantages of these methods is that the data is not stored in a

structured array, and hence the cell connectivity information must be stored separately, which

will require more memory in order to be stored and thus may be slower to run. However, modern

CFD solvers, such as ANSYS Fluent, treat any mesh as unstructured. The basic mesh topology

is that a face has two cells either side of it (or just one at a boundary).

The quality of a mesh may be assessed by a number of criteria, which include cell skewness,

cell aspect ratio, cell area/volume, cell maximum/minimum angle and cell size growth factors.

Some of these criteria will overlap, for instance, if a triangular cell has a high aspect ratio, it is

also likely to have a small minimum angle. Examples of poor quality cells due to these factors

are shown in Figure 3.2.

For all of the computational models created to study the rise of Taylor bubbles presented in
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this Thesis, a block-structured grid with an O–Grid topology was used, as described in Section

3.3.5.

3.1.4 Spatial Discretisation

In order to solve the governing equations numerically, they need to be converted from continuous

partial differential equations to discrete finite difference equations. The discrete values of a

scalar quantity, φ, are stored at the cell-centroids, but face values, φf , are required and must

be interpolated from the values at the cell centroid. There are many discretisation schemes that

could be used to calculate these face values, and a number of the most common schemes are

introduced in this section.

First-Order Upwind (FOU) methods assume that the values of a variable at the cell centroid

are representative of an average value throughout the cell. This means that when a FOU method

is used, the face value of a variable is equal to the cell centroid value of that variable in the upwind

cell. This method is uncomplicated but only first order accurate.

The Second-Order Upwind (SOU) scheme uses a Taylor series expansion of the cell centred

solution about the cell centroid to obtain the face values. This means the face value, φf is given

by,

φf,SOU = φ+∇φ.~r, (3.22)

where ∇φ is the gradient of the cell centred value in the upstream cell and ~r is the displacement

vector from the upstream cell centroid to the face centroid.

The Quadrilateral Upwind Interpolation for Convective Kinematics (QUICK) scheme is based

on a weighted average of second order upwind and central interpolations of variables. For face e

in Figure 3.3, the face value is given by,

φe = θ

[

Sd

Sc + Sd
φP +

Sc

Sc + Sd
φE

]

+ (1− θ)

[

Su + 2Sc

Su + Sc
φP − Sc

Su + Sc
φW

]

. (3.23)
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In this scheme the weighting variable θ is set to be 1/8 by default.

3.1.5 Temporal Discretisation

For a transient simulation, the time domain is also subdivided into a number of discrete elements,

called time steps, ∆t. This temporal discretisation involves the integration of all of the terms in

the Navier-Stokes equations over a time step. The continuous expression for the time evolution

of a variable, φ, is given by

∂φ

∂t
= F (φ). (3.24)

This may be discretised using a number of different methods. A backward differencing scheme,

to first order accuracy gives this to be

φn+1 − φn

∆t
= F (φ), (3.25)

and to second order accuracy,

3φn+1 − 4φn + φn−1

2∆t
= F (φ), (3.26)

where n is the value at the current time step, t, n+ 1 is the value at the next time step, t+∆t,

n− 1 is the value at the next time step, t−∆t.

After the time derivative has been discretised, F (φ) may then be calculated using an implicit

or explicit time integration scheme.

The implicit time integration scheme evaluates F (φ) at the next time step,

φn+1 − φn

∆t
= F (φn+1), (3.27)

which gives

φn+1 = φn +∆tF (φn+1). (3.28)

This implicit equation is solved iteratively for each time step. This has the advantage of being

stable regardless of time step size.
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The explicit time integration is given by

φn+1 − φn

∆t
= F (φn), (3.29)

which gives

φn+1 = φn +∆tF (φn). (3.30)

This is referred to as an explicit method as φn+1 is explicitly expressed in terms of φn. Unlike

the implicit method, this scheme is not unconditionally stable.

An alternative method is the Crank Nicolson scheme. This is a partially implicit scheme

which can be defined using

φn+1 − φn

∆t
= [θF (φn+1, tn+1) + (1− θ)F (φn, tn)], (3.31)

where 0θ ≤ 1. When θ is 0, the scheme is simply the fully explicit scheme defined in Equation 3.29.

Similarly, when θ is 1, this gives the fully implicit scheme, shown in Equation 3.27. For the Crank-

Nicolson scheme, θ = 0.5 is most often used. Like the implicit scheme, the Crank Nicolson method

is unconditionally stable, but has the advantage of being second order accurate (Versteeg and

Malalasekera, 2007).

The computational models presented in this Thesis employ the implicit time integration

method due to its stability. There is a restriction on the value of the time step that can be

applied to an explicit method, given by the Courant-Freidrich-Lewy (CFL) condition

Cr =
u∆t

∆x
≤ 1, (3.32)

which must hold throughout the domain and where Cr is the Courant number. In the simulations

presented in this thesis, although an implicit temporal discretisation was used, an explicit VOF

model, described in Section 3.1.7 was used. For this reason the CFL condition was still required

to hold. CFL numbers were typically around 1 for simulations in which a bubble was rising in
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a stable manner. This could rise to approximately 2-3 for simulations in which a bubble was

undergoing a breakage.

3.1.6 Pressure-Velocity Coupling

The discretised Navier-Stokes equations have a coupling between the pressure and velocity terms.

These equations may be solved sequentially (in a segregated manner) or as part of a coupled

system. There are a number of solution algorithms which handle this pressure-velocity coupling,

of which the SIMPLE, PISO, and NITA methods are described here.

The SIMPLE algorithm (Patankar and Spalding, 1972) uses a relationship between velocity

and pressure corrections to enforce mass conservation and to obtain the pressure field. To apply

this algorithm, an initial first guess is made for the pressure field and this is used to solve the

momentum equation. The resulting face flux does not satisfy the continuity equation, and so a

correction term is added. This correction term is then substituted into the continuity equation

to obtain an equation for the required pressure correction. The pressure-correction equation is

then solved using the Algebraic MultiGrid (AMG) method. Once a solution is obtained, the

cell pressure and the face flux are corrected using an under-relaxation factor for pressure. The

corrected face flux satisfies the discrete continuity equation identically during each iteration.

This process is iterated until the magnitude of this correction is within a specified tolerance.

The Pressure Implicit with Splitting Operators (PISO) (Issa, 1986) scheme is closely related

to the SIMPLE scheme but applies a “neighbour correction” iteration within the solution stage

for each iteration. This term corrects the velocities to more closely satisfy the continuity and

momentum equations. This means that the PISO algorithm takes more computational time

per iteration, but often requires fewer iterations to converge. For this reason it is particularly

recommended for use with transient simulations (ANSYS FLUENT). The PISO scheme also

includes the option of using a skewness correction which can decrease the number of iterations
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required for a converged solution on a highly skewed mesh. This works by recalculating the

pressure correction gradient after solving the pressure-correction equation, and this is used to

update the mass flux corrections.

Non-Iterative Time Advancement (NITA) (Issa, 1986) is a transient scheme that is used to

advance in time without iterating the whole solution. Instead, inner iterations are used to ensure

convergence of each set of equations, as shown in Figure 3.4. This can significantly decrease the

amount of computation expense in a transient calculation.

Finally, the coupled solver solves the momentum and pressure based continuity equations si-

multaneously. This can provide a more stable and robust solution for supersonic flows, flows with

rotating machinery or internal flows with complex geometries. However, with this comes a large

computational expense. This is not appropriate for the scenarios being simulated throughout

the course of this Thesis.

3.1.7 VOF

To determine the location of the interface between the phases, a continuity equation for the

volume fraction must be solved

∂αG

∂t
+∇.(αGu) = ρqSαq

+

n
∑

p=1

(ṁpq − ṁqp) + Sαq
, (3.33)

where ṁpq is the mass transfer from phase p to phase q, similarly, ṁqp is the mass transfer from

phase q to phase p and Sαq
is a source term. The constraint in Equation 3.7 must also hold.

This continuity equation can be implicitly or explicitly discretised in time in order to be solved.

The implicit discretisation is given by

αn+1
q ρn+1

q − αn
q ρ

n
q

∆t
V +

∑

f

(ρn+1
q Un+1

f αn+1
q,f ) =

[

n
∑

p=1

(ṁpq − ṁqp) + Sαq

]

V, (3.34)

where n+ 1 is the new (current) time step, n is the previous time step, αq,f is the face value of

the qth volume fraction, computed using one of the methods described in Section 3.1.7.1, V is the
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volume of the cell and Uf is the volume flux through the face. In all of the simulations conducted

in the present work, it will be assumed that there is no mass transfer between the liquid and gas

phases, and no source terms are used. Hence, the implicit scheme may be simplified to,

αn+1
q ρn+1

q − αn
q ρ

n
q

∆t
V +

∑

f

(ρn+1
q Un+1

f αn+1
q,f ) = 0. (3.35)

In the explicit formulation of the VOF model, the finite-difference interpolation schemes are

applied to the volume fraction values from the previous time step (as opposed to the time step

being calculated in the implicit formulation). This can be represented, in simplified form, by

αn+1
q ρn+1

q − αn
q ρ

n
q

∆t
V +

∑

f

(ρqU
n
f α

n
q,f ) = 0. (3.36)

3.1.7.1 Interface Reconstruction

In its basic form, the volume fraction, being a scalar, gives no information about the location

of the interface within a cell, as shown in Figure 3.5. The accuracy of the results obtained by

using the VOF model can greatly differ depending on the method used to determine the location

of the interface between the two phases. When using the explicit formulation, there are several

possible schemes to resolve the interface between the two phases. One of the most commonly

used is called the “geometric reconstruction” scheme, based on the “piecewise linear interface

calculation" (PLIC) method (Youngs, 1982). This method assumes that the interface between

the fluids has a linear slope within each cell and this is used to calculate the flow through the

cell. The scheme initially calculates the position of the interface relative to the centre of all

partially filled cells. Then the flux though each face can be found using this calculated interface

along with the velocity field. Finally, the volume fraction is calculated using a balance of the

fluxes from the previous calculations. This scheme has been shown to produce a high quality

interface, and is recommended as the scheme which produces the sharpest interface by ANSYS
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Fluent (ANSYS FLUENT).

The Donor-Acceptor approach uses the standard interpolation schemes whenever a cell is

completely filled with one phase. Near the interface, however, the Donor-Acceptor scheme is

used to calculate the amount of fluid advected through the face. One cell acts as a donor for

an amount of one phase and this is transferred to a neighbour (acceptor) cell which in turn

advects the same amount of the other phase into the donor cell. The major limitations of this

approach are that the interface shape may be significantly different to the actual shape, as shown

in Figure 3.6 and that it can only be applied to meshes with quadrilateral or hexahedral cells.

Other explicit schemes include the Compressive, HRIC, QUICK and First Order Upwind

schemes. The Compressive scheme is a second order reconstruction scheme based on a slope

limiter method. The face VOF value, φf is given by

φf = φd + β∇φd (3.37)

where φd is the donor cell VOF value, β is the slope limiter value and ∇φd is the donor cell VOF

gradient value. The slope limiter value is bounded between 0 and 2.

The High Resolution Interface Capturing (HRIC) method (Muzaferija and Perić, 1997) uses a

non-linear blend of upwind and downwind differencing. The normalised face value of the volume

fraction φf is calculated using the normalised cell value of volume fraction, φc,

φc =
φD − φU

φA − φU
(3.38)

where U refers to the upwind cell, A to the acceptor cell and D to the donor cell and φf is given

by

φf =































φc if φc < 0 or φc > 1,

2φc if 0.0 ≤ φc < 0.5,

1 if 0.5 ≤ φc ≤ 1.

(3.39)
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This scheme along with the QUICK and First Order Upwind schemes, described in Sec-

tion 3.1.4, are used to calculate the face fluxes for all cells and hence do not interpolate the posi-

tion of the interface separately. The HRIC method is more accurate than the upwind schemes but

less computationally expensive than the Geo-Reconstuct algorithm. Unlike the Geo-reconstruct

scheme these methods can all also be applied using the implicit formulation of volume fraction.

One limitation of the explicit formulation, however, is that it is not compatible with a second

order discretisation in time, and therefore a first order method must be used. It should be noted

that all simulations are therefore 1st order accurate. 2nd order accuracy schemes are still used

where available to minimise the error in the simulations.
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Figure 3.1: Diagram of different types of structured grid, showing (a) an “O–Grid” which is often

used in pipe flow simulations (b) a “C–Grid” type mesh, often used for flow around aerofoils and

(c) a “H–Grid” used in many different applications where a structured grid is required.

88



CHAPTER 3. CFD MODEL

Figure 3.2: Diagram illustrating different criteria of poor cell quality (a) high aspect ratio or small

minimum angle cell, (b) a cell with a high growth factor and (c) a highly skewed quadrilateral

cell.

Figure 3.3: A diagram illustrating the QUICK scheme. For face e, the face value is given by

Equation 3.23
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Figure 3.4: A diagram illustrating the steps in the NITA scheme (ANSYS FLUENT). Each set

of equations is iterated to convergence individually to reduce the computation time required.

Figure 3.5: A diagram illustrating three cells each with a volume fraction of 0.5.
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Figure 3.6: A diagram illustrating the results obtained by using the Geo-Reconstruct (b) and

Donor-Acceptor (c) algorithms in comparison to the real solution, (a) (ANSYS FLUENT). As

can be observed from this image, the Geo-reconstruct gives a much sharper interface shape than

the Donor-Acceptor method.
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3.2 Verification

Two important parts of any numerical study are the verification and validation stages. The

verification of a numerical model ensures that the level of error introduced by solving equations

using numerical methods is minimal (and preferably quantifiable). Validation studies ensure

that the equations used appropriately model the real world physics. In the following sections a

verification study is provided along with a number of initial validation studies. Further validation

for specific cases are provided in Chapters 5 and 6.

3.2.1 Error and Uncertainty

When conducting a verification study it is important to consider the difference between uncer-

tainty and error, which in some circumstances may be confused. Uncertainty is defined as,

A potential deficiency in any phase or activity of the modelling process that is due

to the lack of knowledge (AIAA, 1998).

Whereas error is defined as,

A recognisable deficiency in any phase or activity of modelling and simulation that

is not due to lack of knowledge (AIAA, 1998).

Errors may be classified into one of the following categories:

1. Spatial discretisation error,

2. Temporal discretisation error,

3. Iterative convergence error,

4. Computer round off error,
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5. Computer programming error, and

6. Usage error.

The purpose of a verification study is to quantitatively evaluate these errors and minimise

them if possible. The following sections describe this process, and these methods that are used

during the development and solution of the computational models presented in this work.

An example of uncertainty is in the choice of turbulence models. As described in Section 3.1.2

there are many different turbulence models which may be used to model a scenario, however there

is no way to ascertain the level of error introduced by using them. However, sensitivity analyses

may be performed to ascertain the level of uncertainty. Running the same simulation multiple

times with a number of different turbulence models to see the effect on the solution would be

one example of this. An analysis of the results of a series of such model sensitivity studies is

presented in Section 5.1.4.

3.2.2 Spatial discretisation error

Spatial discretisation errors may be introduced when the domain is sub-divided into control vol-

umes. Celik et al. (2008) suggest a procedure for estimating the error introduced by spatially

discretising a domain based on the work of Roache (1998). This five step procedure is sum-

marised here, and is known as the Grid Convergence Index (GCI) method (or the Richardson

extrapolation method):

1. A representative cell size, h, is defined.

2. Three significantly different grid sizes should then be defined, coarse, intermediate and fine.

Simulations should be performed to determine the value of a key variable Φ. Celik et al.

(2008) define the refinement factor, r, as r = hcoarse/hfine and suggest that this should be

in excess of 1.3. This value is based on their experience and not on any formal definition.
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3. Let h1 < h2 < h3 and r21 = h2/h1, r32 = h3/h2. The apparent order of the method, p, is

given by

p =
1

ln(r21)
| ln |ǫ32/ǫ21|+ q(p)|, (3.40)

q(p) = ln

(

rp21 − s

rp32 − s

)

, (3.41)

s = 1.sgn(ǫ32/ǫ21), (3.42)

where ǫ32 = Φ3 − Φ2, ǫ21 = Φ2 − Φ1 and sgn(a) is the sign of a value a. If r is constant,

then q(p) = 0.

4. The extrapolated values can then be calculated from

Φ21
ext = (rp21Φ1 − Φ2)/(r

p
21 − 1), (3.43)

and similarly for Φ32
ext.

5. The following estimates of error may then be computed.

The approximate relative error,

e21a =

∣

∣

∣

∣

Φ1 − Φ2

Φ1

∣

∣

∣

∣

, (3.44)

The extrapolated relative error

e21ext =

∣

∣

∣

∣

Φ12
ext − Φ1

Φ12
ext

∣

∣

∣

∣

, (3.45)

The fine-grid convergence index, GCI,

GCI21fine =
1.25e21a
rp21 − 1

, (3.46)

This method has been used to evaluate the error introduced by spatial discretisation in the

simulations presented in Chapters 5 and 6 and for the validation study described in Section 3.3.2.
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3.2.3 Temporal discretisation error

A transient solution requires the definition of discrete time steps to describe the time dependent

transition from one solution to the next. Much like with the grid spacing, the solution should

be independent of the time step. The level of error introduced by discretising this time step

can be estimated using the same GCI method described for the spatial discretisation detailed in

Section 3.2.2.

3.2.4 Convergence

As detailed in Section 3.1.6 the numerical solutions to the finite difference equations are computed

iteratively. The differences between the computed values of any variables and the values required

to satisfy conservation of that variable is known as the residual. This is summed over the all

the computational cells, giving an “unscaled residual”, and then averaged to give a “globally

scaled residual”. The scheme will iterate until this residual reaches a pre-determined value for

each of the equations being solved. For all of the numerical solutions presented in this Thesis,

this convergence criterion value was set as a reduction of three orders of magnitude within each

timestep. An example of the residuals from the base case simulation of a bubble rising in water

in a 0.3 m pipe, fully described in Section 5.2.1, is shown in Figure 3.7. This image is taken while

the bubble is mid way through its rise through the pipe, 4.75 s from the start of the simulation.

At this time, the residuals of the continuity equation is 3.8 × 10−5, the x, y and z momentum

equations 4.5 × 10−6, 4.45 × 10−5 and 5.5 × 10−6 respectively, the residuals for the k and ε

equations are 2.4× 10−7 and 3.9× 10−7, and the energy equation 7.45× 10−8.
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3.2.5 Computer round off error

The round off error is the error incurred by the computer when rounding. For a standard floating

point number, the precision is 7 digits, hence 1 = 0.9999999, while a double precision number is

typically stored to 19 digits.

3.2.6 Computer programming error

As a full version of the commercial CFD code, ANSYS FLUENT, is being used for simulations,

computer code error verification has not been conducted. Code verification is conducted by

ANSYS before the full release of any software (ANSYS FLUENT). Using a stable release of a

popular CFD code means that users have had time to identify errors over time. However, no

computer code is error free but users have little control over this particular error.
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Figure 3.7: An example of the residuals from the base case simulation of a bubble rising in

water in a 0.3 m pipe. This image is taken while the bubble is mid way through its rise through

the pipe, 4.75 s from the start of the simulation. At this time, the residuals of the continuity

equation is 3.8×10−5, the x, y and z momentum equations 4.5×10−6, 4.45×10−5 and 5.5×10−6

respectively, the residuals for the k and ε equations are 2.4×10−7 and 3.9×10−7, and the energy

equation 7.45× 10−8.
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3.3 Validation

In the following sections, the results of three validation studies are presented. The solutions

obtained from these models are compared against published benchmark studies. The first of

these studies uses the widely acknowledged empirical correlations of White and Beardmore (1962)

to validate CFD model over a range of non-dimensional parameters commonly used in both

experimental and numerical studies (Viana et al., 2003; James et al., 2006; Araujo et al., 2012).

For the second validation study considered, the results of a set of PIV experiments (van Hout

et al., 2002) are used to compare real flow fields around a Taylor bubble, with those simulated

using the CFD model. In the final study presented, the empirical correlations of Viana et al.

(2003) are extended and used to validate the CFD model at conditions beyond the original

experimental limitations.

To introduce these studies, the development and solution of a base case model is described.

This model was subsequently adapted in each of the validation studies, in order to more accurately

represent the problem. Details of these adaptations can be found in the corresponding sections.

3.3.1 The base case model

3.3.1.1 Boundary and Initial conditions

The base case model assumes 2D axisymmetric laminar flow. A representation of this domain

(not to scale) is shown in Figure 3.8. For this 2D axi-symmetric domain, the flow is assumed to

flow from left to right, the x-axis is defined as the vertical axis of symmetry, and so gravity must

be set in the negative x-direction. As the flow is laminar, no turbulence model is required. A

3D case was also created for direct comparison using a vertical, cylindrical domain. The length

to diameter ratio of these domains is set to L/D = 10 to ensure the solution produced was not

affected by the base of the pipe or the outlet of the domain.
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Figure 3.8: Diagram of the boundary conditions for a 2d axi-symmetric flow simulation. The x

and y axes are also indicated, with gravity in the negative x direction.

At the wall boundary, a no slip condition is applied. At the outlet, a pressure outlet condition

is applied. The gradient of variable normal to the boundary is zero at this boundary and zero

average static pressure is enforced across the faces.

3.3.1.2 Spatial Domain

For the 2D axisymmetric model a structured rectangular mesh is used. As the flow is laminar no

additional refinement of the mesh is required near to the walls in order to resolve the turbulent

boundary layer. However, some additional refinement near the wall was added to ensure that the

thin film surrounding the Taylor bubble was adequately resolved. A 3D mesh was also created.

A cross section through the 3D mesh in the xy plane is shown in Figure 3.9. In the 3D model,

the z axis is now aligned with gravity, which acts in the negative z direction. A block-structured

O-Grid hexahedral mesh was chosen as this allows refinement close to the pipe walls whilst

retaining a relatively coarse mesh in the centre of the pipe. Hence, this mesh configuration

can accurately capture the flow field behaviour in the liquid film. This feature makes the mesh

suitable for the modelling of slug flow applications, and consequently the rise of single Taylor

bubbles (Abdulkadir et al., 2011).
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X

YZ

Figure 3.9: Example of a cross section in the xy plane of a 3D O-Grid mesh used in the simula-

tions.
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3.3.1.3 Initial conditions

At t = 0 s, the initial volume fraction of the phases within the domain must be specified. An

initial bubble shape must be specified, the geometry of the bubble shape chosen has a hemisphere

on top of a cylinder of radius equal to the bubble radius. When modelling the surface of the liquid

column, an area (2D) or volume (3D) of gas must also be specified at the top of the pipe. This

process is called patching in Fluent. A back-flow boundary condition is applied to the pressure

outlet where the volume fraction of the mixture is specified to be the gas phase, to account for

the fact the upper most cells will be filled with air for the duration of the simulations. An initial

internal pressure inside the bubble needs to be specified. The pressure throughout the bubble

was set at a constant value matching the hydrostatic pressure at the nose of the bubble. In

addition the velocity components are all set at 0 ms−1.

3.3.2 Verification

During the execution of these studies, a verification stage was conducted to quantify and then

minimise the errors introduced by the numerical model. The errors introduced were estimated

using the schemes summarised in Section 3.2.

3.3.2.1 Spatial Discretisation Errors

A series of three simulations were computed with different mesh resolutions. The static bubble

was released and allowed to rise in a quiescent fluid. The terminal velocity for each bubble was

recorded for each mesh size. The GCI method described in Section 3.2.2 was used to estimate

the error introduced by spatial discretisation on 2D meshes of 16000 (400 in the x direction × 40

in the y direction), 4000 (200 × 20) and 1000 (100 × 10) cells. This method estimates the values

of given variables at an infinitely small grid size to provide an approximate discretisation error.

For these calculations, the simulated rise speeds of the Taylor bubbles were used to compare
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the performance of the three meshes. For the finest mesh, cells the error given by the GCI was

0.19% and for the intermediate mesh this was 0.77%. This procedure was also performed for

the 3D meshes of 205000, 100000 and 50000 cells with a GCI error of 0.41% for the 205000 cell

mesh and 2.45% for the 100000 cell mesh. It was concluded that for all subsequent simulations

the 16000 and 205000 cell meshes should be used as these minimise the error introduced by the

mesh. Figure 3.10 shows graphically an example of the results of the GCI method, for the 2D

case the terminal velocity computed for each mesh is plotted against the average cell size
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Figure 3.10: The velocities computed on the 2D meshes of 1000 cells (average size of 0.1 D), 4000

cells (0.05 D) and 16000 cells (0.025 D) along with the extrapolated value for an infinitesimally

small average cell size.

3.3.2.2 Temporal Discretisation Errors

A series of simulations were also conducted using three different time–step sizes. Similar to the

spatial discretisation, the method introduced in Section 3.2.2 was used to estimate of the error
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introduced by temporal discretisation using time-steps of 0.0001 s, 0.0005 s and 0.001 s. Again,

for these calculations, the rise speed of the Taylor bubble was used to provide a comparison of

the simulation performance provided by the three different time-step sizes. For the smallest time

step of 0.0001 s the error given by the GCI was 0.09% and 0.16% for the time step of 0.0005 s.

These values along with the extrapolated prediction are shown on Figure 3.11. It was concluded

that for the following simulations the time–step of 0.0005 s should be used as this provides a

good balance between error and computational efficiency.
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Figure 3.11: The velocities computed using time-steps of 0.0001 s, 0.0005 s and 0.001 s along

with the extrapolated value for an infinitesimally small time-step.
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3.3.2.3 Iterative Convergence

The simulations were seen to seen to be convergent in fewer than 10 iterations per time-step,

as per the guidelines in the Fluent manual. A decrease of three orders of magnitude in the

normalized residuals of the continuity equation was confirmed, and six orders of magnitude for

the x, y and z component momentum equations.

Figure 3.12: Example of a residual graph from showing the convergence of the continuity equa-

tion, x, y and z component momentum equations as well as the k and ε equations.
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3.3.3 Validation Study 1: White and Beardmore (1962)

White and Beardmore (1962) conducted a series of experiments which investigated the rise of

single Taylor bubbles and which were used to determine the Froude number of Taylor bubbles

with various Morton (10−11 < M < 106) and Eötvös (100 < M < 103) numbers. To study these

non-dimensional parameters, the flow of a range of fluids in glass pipes of diameters ranging from

0.005 m to 0.0387 m was studied. The fluids ranged in viscosity from 0.001 Pa.s to 20.9 Pa.s, in

density from 803 kgm−3 to 1420 kgm−3 and in surface tension coefficient from 0.0228 to 0.0777.

Single air bubbles were introduced to the base of the pipe and the time taken for the bubbles

to rise between two heights, approximately 0.6 m apart was recorded. This enabled the velocity,

and hence Fr, to be calculated. The experiments were repeated “a sufficient number of times” to

enable the average velocity to be determined within a 1% error (White and Beardmore, 1962).

Their results were also compared with other published experimental work, and the majority

of data collapsed onto a curve fitted to their experimental data, as can be observed in Figure 3.13.

The only data points do not lie on this curve are those of Gibson (1913), which was one of the

first studies on Taylor bubbles. White and Beardmore (1962) suggest the discrepancy could

be due to Gibson’s use of larger diameter pipes and the lack of video equipment, which makes

the accurate measurement of rise velocity difficult. Correlations were developed using the full

range of experimental results and White and Beardmore suggest that these are used for future

comparisons. The results of these experiments were also used to create a flow regime diagram

(shown previously in Figure 2.1 which determines for what conditions particular forces can be

neglected).

The 2D axisymmetric CFD model described in Section 3.3.1 was used to model these ex-

periments. The domain (and hence the mesh) was scaled to give different pipe diameters, and

hence a range of Eötvös numbers. The liquid viscosity was also varied (whilst keeping the liquid
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Figure 3.13: Comparison of the results of the experiments of White and Beardmore (1962) with

other experimental studies.

density and surface tension coefficient constant throughout at 1000 kgm−3 and 0.074 kgs−2 re-

spectively) in order to produce a variation in the Morton number without changing the Eötvös

number. These parameter changes produced CFD solutions at Morton numbers of 10−11, 10−4,

10−2, 100, 101, 102 and 104, and Eötvös numbers of approximately 13, 19, 25, 53, 104 and 331.

Figure 3.14 shows the solutions of the simulations plotted against the empirical correlations

developed by White and Beardmore (1962) for their experimental results. An analysis of this

data concludes that the results of the simulations closely match the experimental correlations for

higher the Morton numbers considered. However, the errors between the empirical and simulated

results increase with a decrease in Morton number, particularly with a high Eötvös number. The
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results for the fluid with the smallest Morton number (10−11) show the greatest relative error

(≈ 6%). This may have been due to the flow in these simulations becoming turbulent and

hence the laminar model no longer being applicable. This will be discussed in more detail in

Section 3.3.4 and also later in Chapter 5 where much larger Eötvös number flows are considered.
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Figure 3.14: Comparison of the correlations of White and Beardmore (1962) (line) with the

results from the CFD model (symbols) for various values of the Morton Number. This shows

that the results of the simulations closely match the experimental correlations for higher the

Morton numbers considered. However, the errors between the empirical and simulated results

increase with a decrease in Morton number, particularly with a high Eötvös number.
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3.3.4 Validation Study 2: van Hout et al (2002)

A validation study was conducted in which the solutions from the numerical model were compared

against the experimental studies of van Hout et al. (2002). van Hout et al. (2002) used Particle

Image Velocimetry (PIV) methods to investigate the flow around a single Taylor bubble rising

in a vertical, 4 m long pipe filled with quiescent water. The diameter of the pipe used in these

experiments was 0.025 m, which gives a M= 10−11, Eo= 80 and a theoretical Fr= 0.35 using

the correlation of Viana et al. (2003). The selection of this geometry and fluid properties should

ensure that the rise velocity of single Taylor bubble should be independent of surface tension.

The Reynolds number, Re, for this flow is 4350 meaning the flow in the film and wake regions

will be turbulent. Consequently, to model these experiments, a 3D CFD model with a Realisable

k − ε turbulence model was used. The justifications for the choice of this model were discussed

in Section 3.1.2 and a comparison between this and other turbulence models is presented in

Section 5.1.4.

van Hout et al. (2002) et al injected bubbles through the base of the pipe via a computer

controlled injection valve at a pressure of 0.4 bar. In their study, the average length of the Taylor

bubbles was 3.6D ± 0.3D. As the nose of the bubble passed a determined point of the pipe, the

PIV equipment was triggered. This trigger height was approximately 2 m from the air inlet and

surrounded by a transparent Perspex box filled with water, in order to reduce image distortion

of the high definition camera.

As described in Section 2.1.3, PIV uses a vertical laser sheet created across the domain to

illuminate fluorescent particles that have been dispersed in the liquid phase. This laser sheet is

pulsed with a set time interval, and the positions of the illuminated particles are recorded by a

camera triggered at the same frequency. The resulting images are then analysed to determine

the successive positions of the individual particles in order to generate instantaneous velocity
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fields (van Hout et al., 2002; Nogueira et al., 2003). In their study, a Nd:YAG MiniLase III

PIV-15 laser was used, which produced a laser sheet of thickness 1 mm. The laser produced

a pair of 5-7 ns pulses at a wavelength of 532 nm, which is green light. The camera used to

record the images was a KODAK ES 1.0 CCD, with a resolution of 1008 × 1018 pixels. This

was operated in a double exposure mode, which allowed a pair of single frames at a short time

interval to be captured. An optical sensor along with an external synchroniser unit was used

to control the system. The optical sensor, placed just upstream of the measurement section,

triggered the camera and the laser at a specified time delay between the laser pulses. As the

fluorescent particles used emit light at 572-594 nm, which is a yellow/orange colour, a high pass

filter of >550 nm was used on the camera to filter out the laser light and only show the location of

the particles. Using this method it was possible to take a number of consecutive images, limited

only by the RAM of the computer being used. The velocity magnitudes in the flow fields of this

investigation ranged from O(10−3) ms−1 – O(1) ms−1. The time delay between the laser pulses

was chosen in such a way that the maximum displacement of a single particle did not exceed 16

pixels.

A plot of the averaged measured PIV and CFD velocity fields are presented in Figure 3.15.

An examination of these plots concludes that there is a good qualitative agreement between the

two sets of data. In particular, the flow field ahead of the bubble and the flow behaviour in the

wake are observed to be very similar, Figure 3.15.

The axial velocity profiles within the liquid film region surrounding the Taylor bubble are

shown in Figure 3.16, adjusted by position. The adjustment is such that a measurement read at

z/D = 2 with a downward velocity of 1 ms−1 would give a reading of -3 ms−1 as in van Hout

et al. (2002). The outline of the Taylor bubble is also shown here. At the entrance to the film

at the top of the bubble the velocities are small, but as the film decreases in size, the liquid is

observed to accelerate. The velocity reaches a maximum value of approximately 0.95-1 ms−1,
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Figure 3.15: Velocity vectors around a fully developed Taylor bubble. On the left, PIV results

of van Hout et al. (2002) averaged over 100 experimental runs, and on the right, instantaneous

CFD results. At the top, from 0.5 D above to 0.5 D below the nose of the bubble; in the middle,

from the tail of bubble to 2 D below it; and at the bottom, from 2 D to 4 D below the tail of the

bubble.
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close to the exit of the liquid film at the base of the bubble. This predicted maximum velocity

is 5 % below the experimental value. The liquid film thickness of the simulations at the exit are

0.0114 and 0.0113 m as compared to 0.0117 m in the experiment. In the simulation, the thicker

liquid film results in smaller velocities in the film. In the near wake region behind the tail of

the bubble there are strong similarities in the flow behaviour between the numerical solutions

and the experimental data. Within two pipe diameters of the bubble a strong vortex is observed

in which the axial velocity is positive at the centre line of the pipe. Near to the wall, the axial

velocity profiles are similar to those of a downward flowing annular jet. Behind this region the

wake reverses in direction, exhibiting a positive axial flow near the walls and a negative flow

directed towards the central region of the pipe, as can be observed in Figure 3.15. The CFD

simulations also replicate well the behaviour of the trailing wake observed experimentally behind

the Taylor bubble. Figure 3.17 shows a comparison between the velocity in the vertical, z,

direction along the centreline of the pipe in the z direction.
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Figure 3.16: Comparison of the outline of the bubble, along with velocity measurements adjusted

by position for the experimental measurements van Hout et al. (2002), filled line and filled

markers, and the CFD validation case, dashed line and empty markers. The adjustment is such

that a measurement read at z/D = 2 with a downward velocity of 1 ms−1 would give a reading

of -3 ms−1 as in van Hout et al. (2002).
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Figure 3.17: Comparison of the centreline velocity behind the tail of the bubble for the experi-

mental measurements of van Hout et al. (2002) (*), and the CFD validation case (solid line).
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3.3.5 Validation Study 3: Viana et al, 2003

The work of Viana et al. (2003) adds to and summarises a large collection of data from exper-

imental studies performed to investigate the rise velocity of Taylor bubbles in quiescent liquids

of varying viscosities. This makes it an ideal validation case study and a base case for further

investigations. A numerical model was constructed to produce simulations to match the same

non dimensional flow regimes as the experimental work. As described in Section 2.1.2, the study

of Viana et al. (2003) was restricted to fluids with a maximum viscosity of 4 Pa s and to a max-

imum pipe diameter of 0.12 m. The simulations presented in this section extend the range of

these values whilst maintaining a comparable non-dimensional range.

3.3.5.1 Variation of Buoyancy Reynolds number

The computational models were used to investigate the effect of ReB on the terminal velocity

and shape of a single Taylor bubble. It was expected that for higher viscosities, a greater buoyant

force would be required to overcome the larger viscous force (due to friction), and hence with

the same buoyant force, the velocity of the bubble would be smaller.

The viscosity of the liquid phase was varied from 5 Pa s to 200 Pa s to produce a range of

Buoyancy Reynolds numbers from 1 to 146, Morton numbers ranging from 104 − 1010 and an

Eötvös number of 104. Viana et al. (2003) collated the results of a large number of experimental

studies to produce formulations for the Froude number. These were split into 3 distinct regimes

by ReB ,

Fr =
9.494× 10−3R1.026

(1 + ( 6197
Eo3.06 ))

0.5793
, If, ReB < 10, (3.47)

Fr =
0.34

(1 + ( 3805
Eo3.05 ))

0.58
, If, ReB > 200. (3.48)
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In between these two regimes, the following correlation is used to estimate Fr.

Fr = L[R;A,B,C,G] =
A

1 + (R/B)C)G
, (3.49)

A = L[Eo; a, b, c, d], B = L[Eo; e, f, g, h], C = L[Eo; i, j, k, l], G = m/C (3.50)

and the parameters (a, b, ...,m) are

a=0.34, b=14.793, c=-3.06, d=0.58, e=31.08, f=29.868, g=-1.96, h=-0.49, i=-1.45, j=24.867,

k=-9.93, l=-0.094, m=-1.0295.

These expressions may be used to give an estimate of the terminal velocity of a single Taylor

bubble rising in a pipe of given diameter in a fluid of given properties. The experiments on which

this approximation is based upon have an upper viscosity limit of 3.9 Pa.s. Thus the terminal

velocity may be estimated by a rearrangement of these expressions, and the use of the Froude

number determined from the Buoyancy Reynolds number

vt = Fr
√

gDt(ρL − ρg)/ρL. (3.51)

An analysis of the computed CFD model simulations and the experimental data conclude that

there is a strong agreement for Fr in the low ReB range, as shown in Figure 3.18. A variation in

the pipe diameter between 0.128 m and 0.3 m for the same range of ReB showed no difference

in Fr. This was expected as a variation the pipe diameter, whilst keeping the ReB constant

produces a change only in Eo (from 1.57× 104 to 4.24× 104). This has previously been shown

not to affect the rise velocity for these flow conditions (Eo > 80). With higher ReB, and hence

higher Fr, the agreement between empirical results and simulated data was still strong but with

larger errors for the 2D axi-symmetric simulations. When simulations were conducted with a 3D

model, a much closer fit to the empirical rise rate values was observed, as shown in Figure 3.19.

The error from the predicted values to the simulated values falls within 5% of the theoretical
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value. The size of these errors increases to approximately 20% at higher Fr numbers, which has

been observed in other numerical simulations of Taylor bubbles James et al. (2008).
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Figure 3.18: Froude number varying with ReB for ReB<10. The simulated and predicted Froude

numbers match closely in this range of values.
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Figure 3.19: Froude number varying with ReB for ReB>10. The difference between the simulated

Fr and the predicted F increases with increasing ReB.
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Figure 3.20: Comparison of film thickness in CFD to the results of Llewellin et al. (2011). The

results of the CFD simulations match within 5 % of the theoretical model.

The thickness of the simulated fully developed liquid film around a rising Taylor bubble was

compared against the model of Llewellin et al. (2011). This theoretical model for film thickness

around a Taylor bubble was introduced in Section 2.1.4 and is given by

λ′ =
3
√
b2 − 3

√
12a

3
√
18b

, (3.52)

where b = 9a+
√

12a3 + 81a2. (3.53)

A comparison between the CFD values, this theoretical model of Llewellin et al. (2011) are

shown in Figure 3.20. As can be observed from an analysis of these results, the numerical results
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closely match the theoretical film thickness values for the low Fr regime, with a maximum relative

error of 5 %.

3.3.6 Conclusions

These validation studies show that the CFD model presented is capable of reproducing the quan-

titative and qualitative behaviour observed experimentally for the rise of Taylor bubbles. For

the low ReB regime defined by Viana et al. (2003) (ReB < 10), results from a laminar 2D ax-

isymmetric CFD model provide a strong agreement with published experimental and theoretical

data for both rise velocity and film thickness. For higher ReB, a 3D RANS CFD model with a

Realisable k− ε turbulence model results in good qualitative agreement with experimental data

but with larger quantitative errors.
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4
Rise of Taylor bubbles in vertical pipes - Experimental

4.1 Experimental Arrangement

This chapter presents the methodology, results and analysis of a series of laboratory experiments

performed within the laboratories of the Department of Chemical and Environmental Engineering

at the University of Nottingham in collaboration with Dr Chris Pringle. The experiments detailed

in this chapter investigate the behaviour of Taylor bubbles rising through a vertically mounted

cylindrical pipe with an internal diameter of 0.29 m. This pipe was partially filled with water that

was open to the atmosphere at the upper surface and left to become quiescent. The results from

the experiments conducted using this pipe were used in conjunction with published theoretical

work to validate the results of the simulations presented in Chapter 5.

The diameter of the pipe used in these experiments is significantly larger than those employed

in previous studies. The use of such a pipe diameter allows the investigation of a wider non-

dimensional parameter space to be explored that has not previously been possible. The results

of a number of these studies have been presented and discussed by Pringle et al. (2014).
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4.1.1 Experimental Apparatus

A series of experimental studies were performed in a vertical, cylindrical plexiglass pipe of height

9.3 m and internal diameter 0.29 m. The pipe is constructed from a series of conjoined 1 m

pipe sections which have a flat flange joint at each end. This allows the length of the pipe to be

varied, or for sections to be replaced should they become damaged.

Compressed air may be injected into the base of the pipe from a main compressed air line via

a system of twenty five inlet nozzles, with each nozzle having an internal diameter of 0.005 m.

The inlet nozzles are connected to the mains compressed air supply through a manifold. The

nozzles are formed into five groups of five nozzles. The air may be independently introduced to

each of the five batches of nozzles by a dedicated manual flow control valve.

The pipe sections are accessible to researchers at four observation levels along the length

of the pipe. Figure 4.1 shows a schematic view of the experimental apparatus. The base of

the pipe is located on the first level, which is located in a sump below the ground floor of the

laboratory. The sump permits access to the drainage valve (used to drain the fluid from the

pipe), the compressed air inlets to the pipe, and to the interconnecting gate valve. This area is

directly connected to the main water drainage system of the laboratory. As it is below ground

level, it also enables longer pipes to be studied than would otherwise be possible in a building of

this height.

The control valves regulating the air inlets are located on the second level, which are located

on the ground floor of the laboratory. The mains air supply entering the manifold feeding the

individual flow regulator valves is controlled by the mains control valve. A photograph of the air

inlet regulation system is shown in Figure 4.2.

An observation platform provides direct access to both pipes on the third level, which is

located at a height of 2.3 m above the base of the pipe. A high speed camera was positioned on
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Figure 4.1: A 2D schematic side elevation view of the experimental apparatus. Air is supplied

to the 0.29 m diameter pipe filled to a depth of 5.83 m with water via a mains air supply. The

rise of the bubble is monitored using a Phantom V9.1 video camera in one of two locations and

a Sanyo video camera.
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Figure 4.2: A photograph of the air inlet injection system used in these experimental studies.

The yellow lever at the inlet to the flow manifold is the mains compressed air control valve and

the red rotational valves allow the fine control of the flow delivered to each batch of five injection

nozzles.
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this level to record the observed rise velocity of the Taylor bubbles introduced at the base of the

pipe. The camera used was a Phantom V9.1 high speed camera (Vision Research, 2014). This

camera is capable of recording video images at a rate of 1000 frames per second with a maximum

resolution of 1632 × 1200 pixels. However, the speed of the frame rate selected was chosen

to balance the exposure time required to maintain adequate resolution images given the level

and quality of the background lighting available. In addition, the recorded viewing window was

cropped to a resolution of 400 × 900 pixels to reduce storage memory. This allows the recording

of still frame images where each pixel represents approximately 0.0008 m. Black sheeting was

mounted to a frame behind the pipe to enhance the contrast, sharpness and clarity of the images

recorded. The camera was connected via an ethernet cable to a laptop computer running the

PhantomTM video software to record the images. The software provides an interface which

allows the user to control the resolution of the image, the frame rate and exposure of the video

recordings. A double periscope mirror arrangement, shown in Figure 4.3, was used to observe

two separate locations along the length of the pipe at the same time. An example of such a dual

view frame recorded during an experiment is shown in Figure 4.4. The brightness and contrast

of this image have been increased for greater clarity. This method allowed the time at which the

nose of the bubble passed two marked heights on the pipe to be recorded within an accuracy

of 0.01 s when using a frame rate of 100 fps. The experimental uncertainty and measurement

errors introduced by the use of this method are discussed in Section 4.2.

A Sanyo Xacti AVC/H.264 camera was used to provide a video recording of a larger vertical

length of the pipe. A subsequent analysis of these images allows an estimation of the length of

the bubble for each experiment performed. This camera was mounted on a tripod approximately

2 m away from the pipe section being studied. Level markers were made on the pipe with a

vertical separation of 0.05 m to provide a reference scale against which to estimate the length

of the rising bubble. The errors introduced by using this method are discussed in Section 4.2.
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Figure 4.3: A photograph of the mirror system used in conjunction with the high speed camera

to record multiple viewing windows along the length of the pipe. This system allows two different

locations of the pipe to be monitored in a single frame of the video recording.
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Figure 4.4: An example of a still frame recorded by the Phantom. This image shows the bubble

passing the marker viewable through the upper periscope. The lower marker is 1.44 m below the

upper marker, and so the time taken and hence rise velocity of the bubble can be calculated.
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Table 4.1: The physical properties of the fluid, the subscript L refers to the liquid phase, G to

the air.

ρL ρG σ µL ν

998.1 1.184 0.074 0.001 1× 10−6

The top observation level (at a height of 4.8 m above the base of the pipe) provides access, via

a ladder, to the top section of the pipe, which is open to the atmosphere. The pipe may be

filled with water using a hose connected to the water main. The hose was securely fastened at

a number of locations to ensure a safe working environment for other users of the laboratory.

The Phantom V9.1 high speed camera was subsequently used to record images of the movements

observed at the upper surface of the fluid following a separate set of experiments. Further level

markers were placed at intervals of 0.05 m along the vertical length of the pipe above a known

height to provide a reference scale with which to determine the vertical height of the top level of

the fluid. To provide an accurate estimate, the camera must be focused on the height at which

the liquid column is expected to rise to once a bubble is injected. For the experiments conducted

and detailed in this Chapter, tap water was used as the liquid phase and compressed air from

the mains line used as the gas phase. The physical properties attributed to these fluids are given

in Table 4.1 and the computed theoretical non-dimensional properties for the flow systems are

given in Table 4.2. In Table 4.2 the Froude number is the predicted value from the empirical

relation proposed by Viana et al. (2003). However, an analysis of the results of experiments

conducted to provide an estimate of the value of this parameter are presented in Section 4.4.
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Figure 4.5: An example of a still frame recorded by the Sanyo camera to determine the length

of the rising bubbles.
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Table 4.2: Table of non–dimensional parameters determined for the rise of Taylor bubbles

D (m) ReB Eo M Fr

0.29 4.88× 105 1.11× 104 2.42× 10−11 0.351

4.2 Experimental Design

4.2.1 Objectives

From an analysis of the literature presented in Chapter 2, it was concluded that stable Taylor

bubbles should exist in the experimental apparatus used in these studies (Batchelor, 1987). The

initial objective of these experimental studies was to confirm that Taylor bubbles do exist and

can be repeatedly produced in a pipe of diameter 0.29 m. The secondary initial objective was to

quantitatively and qualitatively study the behaviour of these bubbles.

4.2.2 Preliminary studies

4.2.2.1 Introduction of liquid phase

Prior to any experimental studies being undertaken, the pipe was first filled with water to a

specified level. As the upper surface of the water was sufficiently below the top of the pipe for

the duration of the experiment, and the base of the pipe was sealed, the volume of water within

the pipe remained constant throughout the duration of the experiments. The surface level of the

water at the top of the pipe was marked by the placement of marker tape (with the top of the

tape aligned with the upper surface). This allowed for the periodic emptying and refilling of the

column with fresh water to maintain the quality of the water in the pipe during the execution of

a series of experiments. The level height of the surface of the water above the base of the pipe

was set at 5.83 m. This height was chosen so that the top surface was visible during the rise of a
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Taylor bubble through the viewing window of the Phantom V9.1 when the camera was located

on the top observation level.

4.2.2.2 Introduction of gas phase

Air is injected to the pipe through 0.005 m tubes connected to the mains line as shown in

Figure 4.2. The jets of air introduced at the base of the pipe through the nozzles produced small

diameter bubbles which mix and subsequently coalesce in a turbulent zone. This method has

previously been used to successfully create Taylor bubbles in a 0.24 m diameter pipe by Pioli

et al. (2012). As the base section of the pipe is opaque and constructed of metal (approximately

0.5 m in height), the coalescence process is not directly visible to the eye. However, above this

level, in the first acrylic section of pipe, a large, pipe–filling, bubble was observed to form. Due to

the location of the apparatus, with the base being in a sump below ground level and surrounded

by other equipment, video recording of the flow near to the base of the pipe was not possible.

During the execution of the experiments it was observed that not all of the small air bubbles

injected coalesced to form the single large Taylor bubble, but formed a cloud of smaller bubbles

which rises in the wake of the large bubble. The bubbles observed in this wake appeared to be

approximately uniform in size and have a diameter of approximately 0.005 m.

The length of the Taylor bubble formed is dependent upon the flow rate of the gas which is

injected into the pipe. A higher injection flow rate was observed to produce Taylor bubbles of

greater length. During a period of continuous flow, the bubble will rise at a rate governed by

both the flow rate of the gas being injected and the force of buoyancy. When the injection is

curtailed by the closure of the mains valve, the Taylor bubble will rise due to buoyancy alone.

The rate of this rise is determined by its Froude number, which can be estimated from empirical

correlations (Viana et al., 2003).

Due to the use of a faulty rotameter, the accurate measurement of the quantity and flow
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rate of the air injected was not possible. Varying the aperture of the individual gas supply

valves affects the flow rate at which the gas enters the pipe, which in turn affects the length of

bubble. For this reason to reproduce experiments with bubbles of approximately equal size, the

aperture of these valves was kept constant. To assist the reproducibility of the air flow injected,

alignment markers were introduced to the regulating valve wheel. The volume of gas injected

was controlled by manual adjustment of the mains valve. When the nose of the bubble passed a

level marker located approximately 1.3 m above the base of the pipe, the mains valve was closed

and the bubble allowed to rise under buoyancy alone. From an analysis of the results of these

preliminary experiments, it was concluded that the use of two of the five inlet valves would allow

the introduction of reproducible Taylor bubbles of lengths up to 0.7 m dependent on the aperture

of the valve. The use of this manual method influences the reliability of the length of the bubble

produced, and so for each experimental run the length of the bubble had to be recorded.

When the mains valve is rapidly rather than smoothly closed, the rise of the resultant Taylor

bubble is observed to be unsteady rather than smooth. In particular, the length of the bubble is

observed to oscillate from the nose forward, whilst the upward motion of the tail remains steady.

An example of this oscillatory bubble behaviour may be observed from an analysis of the images

presented in Figure 4.9, which show a series of still frames extracted at regular time intervals from

a video recording of an experiment taken with the Sanyo camera. The oscillation observed at the

nose of the rising bubble causes the surface of the water at the top of the pipe to oscillate. Thus,

the frequency and amplitude of oscillation of the rising bubble may be estimated by measuring

the oscillatory behaviour of the surface of the water at the top of the pipe. These oscillations

reduced in amplitude and were no longer noticeable when the mains valve was closed smoothly.

The mains valve is closed smoothly in the following experiments unless specified otherwise.

In addition to this, when introducing the first bubble in a set of experiments, a resetting

procedure must first be completed. The two regulation valves that were to be used in the
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experiment to introduce air to the pipe were initially opened by a quarter turn and the mains

valve was then fully opened for a period of five to ten seconds. This procedure was required as

the first bubble released was observed to be much smaller and less consistent than all following

bubbles in preliminary experiments. This could have been due to a leakage of air and subsequent

loss of pressure maintained between the mains valve and the regulation valves.

4.3 Stability of Taylor bubbles

4.3.1 Experimental Design

The first experimental objective stated in Section 4.2.1 was to confirm that stable Taylor bubbles

could be produced in a pipe of diameter 0.29 m.

Initial studies had confirmed that given a quiescent fluid, stable Taylor bubbles could be

formed. However, if a second bubble was then introduced to the pipe in the wake of the preceding

bubble, or into the de-aerated fluid following the wake, the following Taylor bubbles were observed

to break up as they rose through the pipe. Bubble break is reported to be due to the growth

of an instability past a critical size before it is washed into the film surrounding the bubble

(Batchelor, 1987). These instabilities on the surface of the bubble may be caused by turbulent

eddies present in the surrounding fluid which is not completely quiescent. A break of a bubble

was defined in this study to be one that splits any part of bubble from the main mass of the

bubble. An example of a bubble break is illustrated in Figure 4.6.

The length of the Taylor bubbles was to be recorded. However, many of the bubbles were

observed to break up in the section of the pipe in which the length of the bubble is recorded.

Consequently, as the length of bubble could not be accurately determined it was not measured

for this set of experiments. Bubbles were injected in a manner that, were it not for break up,

would have led to a bubble whose length was approximately 0.45 m had it been stable.
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Figure 4.6: Two examples of still frames taken from the Sanyo camera showing two Taylor

bubbles, the left bubble is undergoing a break while the right bubble is rising smoothly. The

instability causing the bubble on the left to break up is the result of the fluid not being completely

quiescent before the bubble was released.

132



CHAPTER 4. RISE OF TAYLOR BUBBLES IN VERTICAL PIPES - EXPERIMENTAL

To determine the likelihood of bubble break the following procedure was adopted. Once the

bubbly wake trailing a rising Taylor bubble was observed to pass a level marker approximately

4.8 m from the base of the pipe, a set period of time was allowed to elapse before the release of the

next bubble. This time period was measured using a stopwatch and so is accurate (both at the

start and the end of measurement) only to the reaction time of the user. A conservative estimate

for the error introduced to the measured time would be ± 1 s. The stability of the bubble was

determined over a test section of 2 m of pipe from 3.3 m to 5.3 m from the base. Below this

lower height, the bubble may still be developing from the initial formation, and above this upper

height was not directly viewable from the second level. As the bubble ascended through this test

section, the stability of the Taylor bubble was recorded. This length of time was varied in order

to ascertain the length of time required for the water to return to a quiescent state.

4.3.2 Results and Discussion

These experiments were repeated twenty times for each time period. From an analysis of the

results of these studies, a function of the probability of the stability of the bubble at each time

period was determined, which is plotted in Figure 4.7. For a settling period of 120 s, all of the

observed rising bubbles were determined to be stable. The settling period was then reduced

to determine the length of time at which bubbles would become unstable. The results of this

showed that there is no critical value for the settling period. Instead, there is a steady drop off

over a period of approximately 50 s in which the bubbles transition from being almost certainly

stable to certainly unstable. The probabilistic nature of this transition is due to the chaotic

nature of the decaying turbulent eddies which trigger break up. In addition to this, due to

the experimental methodology each bubble released was of slightly different length, as was the

volume of the bubbly wake behind it, causing further differences between runs.

The vertical error bars on Figure 4.7 are calculated by assuming a binomial distribution to
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Figure 4.7: The probability of a Taylor bubble breaking up within a 2 m observation window in

the 0.29 m pipe. If the settling period is below 50 s, all bubbles will break up. If the settling

period is longer than 120 s all bubbles observed will rise in a stable manner. Between these

values the bubble will break up with decreasing likelihood as the settling period increases from

50 s to 120 s.

the data’s repeated runs and represent one standard deviation. This accounts for the error due

to having a finite number of experimental runs at each settling time and could hence be reduced

by conducting more experimental runs. The horizontal errors represent the error introduced by

the measurement of the settling time. This is estimated from the error due to the reaction time

of the user at both the start and end of the measurement period along with the uncertainty in

the start time. The settling time is defined as the time from which the bubbly wake leaves the

test section to when the next bubble is released.

As the bubble was consistently stable at settling times of over 120 s, it was concluded that

given a quiescent liquid, Taylor bubbles are stable within the 0.29 m pipe. This conclusion
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is consistent with the theoretical prediction of Batchelor (1987), which concluded that Taylor

bubbles in pipes with a diameter of less than 0.46 m will be stable. This delay time was applied

between the execution of all further experiments.

4.4 Rise velocity of Taylor bubbles

4.4.1 Experimental Design

Given that stable Taylor bubbles were shown to exist in the experimental apparatus, a further

set of experiments was designed to characterise the behaviour of these Taylor bubbles. One key

characteristic of Taylor bubbles is their rise velocity, governed by the Froude number, and so this

was investigated.

In these experiments the water in the pipe was left to settle for a period of time (120 s,

determined from the results of the stability experiments) so that the fluid could be assumed

quiescent. When the top surface of the liquid is open to the atmosphere, bubble rise velocity

is known to vary with bubble length (White and Beardmore, 1962), hence bubble length was

recorded in these experiments. Figure 4.5 shows a still photograph extracted from a video

recording using the Sanyo camera that record the rise of a typical Taylor bubble in the 0.29 m

diameter pipe. From an analysis of this image, it may be concluded that the tail of the Taylor

bubble under these flow conditions is not well defined. Consequently, it was necessary to estimate

the location of the tail to determine the length of the bubble. It was concluded that the use of this

method introduces an error of ±0.025 m to the estimation of the bubble length. A measurement

error is also introduced on conversion of the still images from video recordings from pixels to

meters. However, this error is much smaller than that accrued by the estimation of the tail

length of the bubble. The average velocity of the bubble is determined from an analysis of the

consequent still frames recorded by the high speed camera and mirror arrangement, described in
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Section 4.1.1. An analysis of these images allows the determination of the time taken for the nose

of the bubble to rise between two markers along the length the pipe, spaced 1.44 m vertically

apart.

To determine the rise velocity of a single Taylor bubbles in this apparatus, measurements of

54 bubbles were taken with the high speed camera and mirror system. As the nose of the bubble

passed level markers on the pipe, the corresponding times were recorded and the rise velocity

calculated from these values and the measured distance between the markers.

4.4.2 Results and Discussion

If the top surface of the liquid is open to the atmosphere, a Taylor bubble will expand as it rises.

This expansion will cause an increase in velocity of the nose of the bubble, and hence in the

liquid directly above the bubble (Santos et al., 2008; Sousa et al., 2006). The rise rate of the

nose of the bubble is hence given as

U = Ub + L̇, (4.1)

where Ub is the rise rate of a non-expanding bubble and L is the bubble’s length. If the bubble

expands as an ideal gas, it can be concluded that

L̇ ∝ L/H, (4.2)

where H is the depth of the bubble below the surface (White and Beardmore, 1962; Pringle

et al., 2014). As discussed in Section 4.2 the tail of the bubble can be ambiguous and hence was

not used for measurement.

As the rise velocity of the bubble varies with bubble length, a number of different length

bubbles were investigated to determine an expression for the non-dimensional rise velocity. The

measurement error of the distance between the two markers on the pipe is ± 0.002 m (± 0.14%).

Images were recorded by the Phantom camera at a frame rate of 100 fps, giving a temporal
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measurement error of ± 0.01 s on the time taken for the bubble to rise between the markers. The

time taken for a Taylor bubble to rise between the markers was typically approximately 2.45 s,

which would give the error at ±0.4%. The propagated errors are then calculated individually.

As previously described, the length of the Taylor bubbles was determined using a video camera

focused on a section of the pipe between 3.5 and 4.5 m from the base of the pipe. This method

of estimating the length of the Taylor bubbles introduced an error of ± 0.025 m.

Froude numbers for 54 bubbles of varying lengths were calculated using this methodology.

Considering the measurement of bubble length was accurate only to ± 0.025 m, it was decided

to group and average the repeated results for each length. These averaged results are shown in

Figure 4.8. As expected from the theoretical work of White and Beardmore (1962), the rise rate

of the bubbles varies linearly with bubble length. Extrapolating the data to a theoretical bubble

of zero length gives the rise rate of bubble rising without the effect of expansion. This corresponds

to a Froude number of 0.342, consistent with the published experimental and theoretical values

(Dumitrescu, 1943; Taylor and Davies, 1950; Viana et al., 2003).

The rise velocity of the bubbly wake was also measured for a number of runs. This was

observed to have a slower rise velocity than that recorded for the Taylor bubble (approximately

0.21 ms−1 as opposed to approximately 0.6. ms−1 for the bubbles). These rise speeds were

estimated by determining the rise speed of the tail of the wake using the same method as was

used to determine the rise speed of the nose Taylor bubble, but with measurements taken from

the lowest point of the bubbly wake as opposed to the nose of the bubble.
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Figure 4.8: The Froude numbers of the observed Taylor bubbles in the 0.29 m pipe varying with

bubble length. The Froude numbers increase with increasing bubble length due to the effect of

the bubble expanding as it rises.
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4.5 Oscillatory behaviour

4.5.1 Experimental design

Behaviour similar to the oscillatory behaviour observed in Section 4.2.2.2 has been discussed

previously in the literature (James et al., 2004; Vergniolle et al., 1996). Vergniolle et al. (1996)

proposed a model to replicate the oscillation of a volume of gas compressed by a denser fluid

above it. This model was proposed to explain observed field readings of the pressure oscillations

thought to be caused by a rising Taylor bubble in a volcanic conduit. James et al. (2004) observed

pressure oscillations when studying the rise of a Taylor bubble in a pipe of diameter 0.038 m.

However, no physical oscillation of bubble length or detectable oscillation of the top surface level

was observed. In the present work, a further set of experiments were designed to investigate this

phenomenon.

For these experiments the mains gas injection valve was shut quickly following the injection

of a bubble, in contrast to the smooth valve shut off used during the previous sets of experiments.

This abrupt valve closure was observed to initiate an oscillatory motion in the nose of the bubble.

As the water is essentially incompressible, the oscillations induced in the bubble are transmitted

through the liquid to the top surface, where they can be observed. The position of the surface

will also undergo a mean rise due to the bubble expanding due to decompression as it ascends

the pipe. These surface oscillations were recorded by a camera which was approximately level

with the surface of the fluid (following the injection of a bubble). A constant depth of water in

the pipe was maintained at the start of each experiment. Level markers were placed at intervals

of 0.05 m along the vertical length of the pipe above a known height to provide a reference scale

against which to determine the vertical height of the top level of the fluid. These markers were

an average of 91 (±2) pixels apart which results in each pixel representing 0.00055 (±0.00001 m).

The use of these images to determine the height of the fluid therefore introduces a measurement
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error of approximately ±0.00055 m.

For these experiments the recording frame rate of the Phantom Camera was set at 20 fps.

Whilst this is sufficient to capture both the qualitative and quantitative frequency of the rising

oscillating bubble with respect to time, the combination of the observational and the calculation

errors introduced may be significant. It is recommended that to reduce these errors, a further

series of experiments should be performed that employ a significantly increased number of record-

ing frames per second. An additional potential source of error may have be introduced to the

images recorded was the flicker frequency of the background laboratory strip lighting. As the

lighting flicker frequency was determined as 50 Hz, a compromise video frame rate of 20 fps was

selected. In recordings taken with frame rates significantly above this rate, the still images were

too dark. It was not possible during the experimental programme to resource specialist lighting

sources to minimise further the measured and observational errors.

From an analysis of the literature in Section 2.4 it was concluded that the frequency of

oscillation of a Taylor bubble will theoretically vary with bubble length (Vergniolle et al., 1996).

Consequently the experiments were designed to enable an estimation of the bubble length in order

to test this hypothesis. The aforementioned uncertainty and error introduced to the measurement

of bubble length is increased when one considers that the bubble also oscillates in length. To

include this additional uncertainty, the bubbles were grouped into two average sizes, one at

0.45 m ±0.05 m and one at 0.55 m ± 0.05 m.

4.5.2 Results and Discussion

The location of the top surface of the fluid was tracked using the Phantom v9.1 high speed

camera, along with video analysis software. An example of frames taken from the video showing

the oscillation and rise of the top surface of the fluid is shown in Figure 4.9. The location of

the surface from these video data were then plotted against time as shown in Figure 4.10. This
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shows the oscillatory behaviour of the top surface, which reflects the behaviour of the bubble.

The mean rise of the top surface can also be observed by an analysis of this figure. A predicted

mean surface height is calculated assumed the bubble expands as an ideal gas and is also shown

on this figure.

The peak values of these oscillations were used to estimate the frequency of oscillation. The

frequency of the bubble oscillations were determined from the upper water surface height data

using MATLAB. The maxima were extracted using the findpeaks function and frequencies are

calculated from the inverse of the peak-to-peak time. The experimental results for the frequency

of oscillation were compared to the theoretical proposed by Vergniolle et al. (1996) and Pringle

et al. (2014). The predicted frequency from the Pringle model is

f =
1

2π

√

γ

L

[

g +
Patm

ρLHL

]

. (4.3)

The experimental results compared to these models were averaged over a number of runs for two

different length bubbles. The first set of ten bubbles had an average length of 0.45 ± 0.05 m

as they passed through the measurement window, the second set of six bubbles had an average

length of 0.55 ± 0.05 m. As described in Section 4.2, there are significant errors in both the

estimation of bubble length and the process of measurement of the surface height. These factors

introduce the resultant errors in the estimated frequency of oscillation.

Figure 4.11 shows a comparison of the experimental results plotted against the theoretical

predictions of Pringle et al. (2014); Vergniolle et al. (1996). As the bubble ascends the pipe, the

frequency of oscillation increases due to the decrease in mass of water above the bubble, which

is confirmed by these results. The predicted model behaviour compares well to the experimental

results whilst the bubble is far away from the surface. However as the bubble approaches the

surface, the relative volumes of the fluid above the bubble and that going around the bubble’s

nose become comparable. The result of this is that the differences between the predicted model
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Figure 4.9: Read row by row from left to right. Still frames taken at 0.05 s intervals showing

the variation in surface height. The surface level decreases on the first row, remains relatively

constant on the second row and increases significantly on the third row.

142



CHAPTER 4. RISE OF TAYLOR BUBBLES IN VERTICAL PIPES - EXPERIMENTAL

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Time until burst (s)

S
ur

fa
ce

 H
ei

gh
t (

m
)

(r
el

at
iv

e 
to

 b
ur

st
in

g 
he

ig
ht

)

 

 

Experimental data
Ideal Gas expansion

Figure 4.10: The evolution of the height of the water surface. The red line is taken from the rise

of a bubble initially 0.55 m long. The green line shows the predicted mean surface rise and has

been calculated by assuming the bubble expands as an ideal gas obeying pV = nRT . Time is

measure from when the bubble bursts at the surface.
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Figure 4.11: The frequency of oscillating bubbles as they rise up the pipe for two different mean

lengths of bubble (blue is 0.55 m, red is 0.45 m). The points represent the average of experimental

data taken from ten runs in the case of the longer bubble and six in the case of the shorter bubble.

The lines come from the theoretical model of Pringle et al. (2014), where the polytropic exponent

has been taken to be 1. Time is measured prior to the bubble bursting at the surface.
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behaviour and the experimental results rapidly increases. In this figure, the time given is the

time until the bubble bursts at the top surface of the liquid. The conclusion drawn from an

analysis of the results of these experiments is that the observed oscillations in the rise rate of the

Taylor bubbles are replicated by the theoretical models while the bubble is far from the surface.

While signals from pressure transducer had previously suggested at this behaviour at smaller

scales (James et al., 2004), oscillations of this kind had not been physically observed before.

These results will provide experimental data to validate a base case of the simulations presented

in Chapter 5.

4.6 Conclusions

From an analysis of the results of the experiments conducted in this chapter a number of con-

clusions may be drawn.

Firstly, Taylor bubbles rising in quiescent water, in a pipe of diameter 0.29 m, are inherently

stable. This agrees with the theoretical work of Batchelor (1987) who predicts Taylor bubbles

will be stable up to a maximum diameter of 0.46 m. Prior experimental work had never been

conducted at this scale, although unpublished work of James et al. (2011) had suggested the

existence of stable bubbles within a pipe of diameter 0.25 m. It was not possible to generate a

further Taylor bubbles with a continuous flow of gas, due to the large instabilities introduced in

the injection process and present in the wake of the preceding Taylor bubble. In order for the

fluid in the pipe to be assumed to be quiescent, a settling period of 120 s needed to be left before

the release of any further Taylor bubbles.

Taylor bubbles left to rise under the force of buoyancy (without a continuous flow of gas)

would rise at a rate which is dependent on their length. This is expected due to surface of the

liquid being open to the atmosphere and hence able to expand as it rises. The Froude numbers
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determined for the bubbles compare well to those of previous experimental and theoretical studies

(Taylor and Davies, 1950; Dumitrescu, 1943; Viana et al., 2003).

Given a sudden curtailment of the gas injection, oscillations were observed in both the rise

rate of the surface of the liquid, and in the rise rate and length of the bubble. These oscillations

display similar behaviour to that of a simple harmonic oscillator as in the models of Pringle et al.

(2014); Vergniolle et al. (1996).

The results of these experiments will provide valuable experimental data with which to vali-

date a base case of the simulations presented in Chapter 5.
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Rise of Taylor bubbles in vertical pipes - Numerical

5.1 Introduction

The model introduced in Chapter 3.1 was adapted in order to model the experimental studies

described in Chapter 4. These adaptations are required due to the scaling of the domain and

are detailed in Section 5.1.1. Once verified and validated, as was demonstrated in Sections 3.3.2

and 3.3, using a numerical model may allow a greater scope in the parametric analyses that may

be performed than in experiments. Studies which may not otherwise be feasible in the laboratory,

such as a wide ranging variation of viscosity, are able to be performed with relative ease. In this

example, many technical and logistical issues arise when attempting to vary viscosity in the

experimental studies of Chapter 4.

Previous CFD studies have successfully reproduced the observed behaviour of single rising

Taylor bubbles in pipes with diameter <25 mm, as detailed in Section 2.3. It is widely accepted

that surface tension forces do not have an effect on rise velocity when the Eotvos number is above

a critical value of around 100, and hence surface tension is assumed to be negligible. However,

with an increase of Eotvos number, CFD simulations using low viscosity fluids have been seen

to show an increase in error of rise velocity with increasing pipe diameter (James et al., 2008).
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This could be due to the more turbulent nature of the flow in these regimes, and the complexities

involved in modelling this.

5.1.1 Adaptations to Numerical Model

In order to ensure that the scaling in domain size from the simulations presented in Chapter 3

does not affect the accuracy of solutions, a further set of verification studies were undertaken

after a new mesh was created. This included a mesh independence study and a temporal in-

dependence study. As the flow in the wake of the bubble is observed to be turbulent from the

experiments of Chapter 4, a turbulence model is included in the numerical model. Various tur-

bulence models were assessed and the results were compared against those of the experimental

studies in Chapter 4 to ascertain the optimal turbulence model for this study. This is detailed

in Section 5.1.4.

The chosen numerical model was first validated against the experimental data and then a

parametric study was completed. This included varying the initial conditions, such as the initial

pressure of bubble, the length of the bubble, its starting depth and the fluid properties, such as

viscosity, as well as testing the stability of the bubble over a range of conditions.
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5.1.2 Domain and Mesh

A 3D CFD model was constructed in ANSYS FLUENT using a grid created in the meshing

software ANSYS ICEM-CFD. The domain is a vertical cylinder of height 9.5 m and internal

diameter 0.3 m, Figure 5.1a. The domain was subdivided into volume elements with a structured,

O-Grid topology as shown in Figure 5.1b and described in detail in Section 3.3.1.2. This choice

of meshing strategy permits the specification of a fine refinement close to the pipe walls whilst

retaining a relatively coarse mesh near the centre of the pipe. This allows the model to more

accurately capture the flow field behaviour in the thin liquid film between the gas bubble and

the pipe wall that is present for Taylor bubbles rising in water.

A further series of verification studies to those in Section 3.3.2 were undertaken to evaluate

the level of error introduced. To ensure minimal discretisation errors in the spatial domain, a

grid convergence study was undertaken by using the Grid Convergence Index (GCI) method of

Roache (1998). As detailed in Section 3.3.2, the GCI method uses a set of three grids, which

decrease in average spacing, to estimate the value of a solution at a grid with zero spacing.

An error can be calculated from the simulation results to estimate the zero spacing solution.

Temporal convergence was computed in a similar manner, with the time-step value replacing

mesh spacing. The rise velocity of the bubble was used to compare cases against each other.

The application of the GCI method concluded the error introduced by spatial discretisation was

found to be 0.411% for the fine gird. This had an average z grid spacing of 0.008 m, with a

spacing at the wall of 0.0023 m rising to 0.014 m in the centre. These spacings correspond to

1175 cells in the z direction, and a with spacing of D/129 at the wall rising to approximately

D/21 in the centre of the pipe. This method was also used to determine the error introduced by

temporal discretisation. This gave an error of 0.175% away from the estimated zero time spacing

solution with a time step of 0.0005 s. Simulations using this mesh took approximately 8 days
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to complete on a compute node of a parallel cluster, using 2 x 4–core 2.3 GHz Opteron processors.

Figure 5.2 shows a plot of the mesh spacing size against the simulated rise speed of a fully

developed Taylor bubble. An analysis of this figure concludes that the solution converges towards

the zero spacing prediction with decreasing mesh spacing.

5.1.3 Initial and Boundary Conditions

In the base case simulation, the model pipe was initially filled with water to a depth of 5 m with

4.5 m of air above this. A bubble of air was then introduced close to the base of the pipe by

specifying the volume fraction of air to be unity in an appropriate region. This process will be

referred to as “patching” the bubble into the domain. The initial size and shape of the bubble

was varied to represent the range of different laboratory experiments performed. Typically the

bubbles initial shape is that of a hemisphere attached to a cylinder (Taha and Cui, 2004; James

et al., 2008) both of whose radii were 0.14 m. This can be observed in Figure 5.3a.

This method of introducing the air phase is clearly significantly different to the formation of

the bubble in the experimental studies presented in Chapter 4. As described in Section 4.1.1, air

is introduced to the pipe through a series of twenty-five 5 mm nozzles at the base of the pipe.

Many small bubbles are generated during the formation of the bubble, which coalesce to form a

Taylor bubble in a turbulent mixing zone within 1.5 m from the base of the pipe. Many of these

small bubbles are left behind and do not join with the main bubble, but instead form part of the

wake behind it. These small bubbles at the base of the pipe and in the wake are estimated to

have a diameter of approximately 5 mm, and so are could not be resolved in the numerical model

without an extremely refined mesh. Grid spacings of under 2 mm would be required throughout

the domain in order to resolve these bubbles. This would give a conservative estimate of 3000

cells in each cross section in the z direction, giving a total domain of over 15 million cells. With a
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Table 5.1: Flow conditions of the base case simulation.

ReB Fr Eo M

5.1×105 0.351 1.2×104 2.4×10−11

mesh this refined, the time-step would also need to be significantly reduced in order to maintain

the same Courant number, as described in Section 3.3.1.2. This would result in the overall

computational time increasing dramatically and hence it was not feasible in the scope of this

thesis to conduct such a simulation.

The hydrostatic pressure value at the height of the nose of the bubble was set as a constant

value that defined the pressure throughout the bubble. An example of the initial conditions after

the first time step are shown in Figures 5.3a and 5.3b. Figure 5.3b shows the gauge pressure

(pressure above atmospheric) in the domain. The reference pressure was set as atmospheric

pressure (101325 Pa) and was specified at a location which was always within the gas phase

above the upper liquid surface (z =9 m).

These initial conditions for the base case scenario give the flow conditions as detailed in

Table 5.1. Note here that the Froude number is the expected value from the experimental work

of Chapter 4.

5.1.4 Turbulence model

As shown in Table 5.1 there is a high buoyancy Reynolds number associated with this flow regime.

Both the flow in the thin film surrounding the bubble and in the wake trailing the bubble may

be turbulent and hence a turbulence model should be applied to close the Reynolds Averaged

Navier-Stokes equations, as detailed in Section 3.1.2. Due to its use in applications with jets,

the realizable k − ε was hypothesised to be the most suitable model for this study.
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To confirm this hypothesis, the results produced by applying three different k−ε models, the

standard k − ε (SKE) model, a Re-Normalized Group (RNG) model and the Realizable (RKE)

model, were compared to the experimental results presented in Chapter 4. An analysis of the

results of these simulations concluded that only the RKE model gave a “stable” Taylor bubble,

with both the RNG and SKE models producing a bubble which broke up as it rose as well as

giving a deformed nose shape which did not match the experimental observations. The SKE

and RKE models both under–predicted the rise velocity of Taylor bubbles by approximately

15 % with a Fr = 0.3. However, the RNG model did produce a rise velocity slightly closer

to the observed experimental value, giving a Fr = 0.392, which is approximately 12% over the

experimental velocity. As the Realizable k−ε model was the only of the three turbulence models

to give a stable Taylor bubble comparable to those seen in the experiments, the hypothesis was

confirmed and it was decided to use this model in all subsequent modelling.

A higher order turbulence model, the Reynolds Stress Model(RSM), was also tested and

compared against the experimental results. This did result in a rise velocity slightly closer to the

experimental value, giving Fr = 0.31, approximately 12% below the experimental value, whilst

retaining the stability of the bubble. As previously described, the RSM model is a 7 equation

model (in comparison to the 2 equation RKE model). The increased computational expense for

this small increase in accuracy was not considered worthwhile. A full simulation - initialisation

to bubble burst - would take on average twice as long to perform using a RSM model than a

RKE model. This increase would mean a significant reduction in the amount of simulations that

could be performed in the time-scale of the project and hence its use was discounted.
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(a) The domain.

X

YZ

(b) The mesh.

Figure 5.1: The numerical domain and the O-grid mesh used for simulations. The domain has a

total height of 9.5 m and a diameter of 0.3 m. The mesh has a spacing of 0.0023 m at the wall

rising to 0.014 m at the centre. The mesh is uniform in the vertical, z, direction.
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Figure 5.2: Diagram showing the independence of the grid sizing in relation to rise velocity using

the GCI method. From this it was concluded that the error introduced by spatial discretisation

was 0.411% for the fine gird.
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(a) Contour plot of initial volume fraction, air

is red and liquid is blue.

(b) Contour plot of initial gauge pressure after

a hydrostatic distribution has been specified.

Figure 5.3: Initial conditions imposed on the numerical domain.
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5.2 Results

5.2.1 Bubble Rise and Oscillation

In the base case, the Taylor bubble is initialised with a pressure equal to the hydrostatic pressure

at its nose. These are the conditions used to model to a slow injection of gas at the base of

the pipe in the experiment, followed by a very gradual shut off of the delivery valve. In the

experimental study detailed in Chapter 4 this produced a Taylor bubble that was not observed

to oscillate during its ascent. The CFD model of this case replicates the expected behaviour – a

stable rising Taylor bubble is produced, the top liquid surface rises at a constant rate until there

is a rapid expansion of the bubble observed as it approaches the atmospheric-liquid surface.

This effect has been previously noted for Taylor bubbles in pipes of diameter 0.025 m in the

experimental studies of James et al. (2008).

For an ideal gas where temperature change is assumed to be negligible, the condition

p1V1 = p2V2, (5.1)

holds where p is the pressure of the bubble and V is the volume of the bubble in state 1, its

initial condition, and state 2 applies to it when close to the surface of the water. Given an initial

hydrostatic pressure distribution, for a bubble of initial volume 0.365 m3, with its nose at a

depth of 3.36 m, the surface will rise by 0.168 m due to expansion of the bubble. This closely

matches the observed upper fluid surface rise from simulation, 0.17 m, as seen in Figure 5.4. As

the pressure is specified at the nose of the bubble, this is slightly below the average pressure

in the bubble. This is due to the presence of a small pressure difference in the nose region of

the bubble above the thin film. This causes a small initial under pressure which results in the

oscillations observed. These results are also observed for an initial depth of 4.36 m, where a

surface rise of 0.218 m is expected, with simulations giving a value of 0.24 m. As the bubble
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rises, it is observed to expand; however, as it sheds smaller bubbles from its tail its length remains

approximately constant to within 5%. The upper liquid surface level is tracked in the simulation

by a User Defined Function (UDF) that determines the maximum level of the water surface at

each time-step.
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Figure 5.4: Simulated upper liquid surface rise given an initial hydrostatic pressure distribution

for a Taylor bubble of length 0.64 m in a vertical, cylindrical pipe of diameter 0.3 m initially

filled with 5 m of water.

There follows a brief description of the UDF, which is applied at the end of each time step.

The code can be found in Appendix A. In this UDF the “fill height” is defined as the maximum

vertical height of the upper liquid surface.

1. Set an initial fill height of zero and initialise the variables to be used.
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2. Identify cells which have at least one adjacent cell with a volume fraction above 0.5.1

3. Calculate the fill height of the cell, the maximum height of fluid in a cell as demonstrated in

Figure 5.5 using the z coordinates of the base and top of the cell, and the volume fraction,

α.

4. If this fill height, zfill = zmin + α(zmax − zmin), is larger than the previous maximum fill

height, store this value.

5. Step through all the cells in mesh, comparing the fill height value with the maximum fill

height.

6. If running the simulation in parallel, it is necessary to find the maximum fill height over

all of the nodes over which the domain is partitioned.

7. Write the maximum fill height for this time value to a specified file.

Due to the observed oscillatory behaviour of the bubble rise, a continuous tracking of the

bubble position is required to compute rise velocity accurately. Theoretical predictions and

experimental results suggested a non-dimensional rise rate of between Fr = 0.34−0.35. However,

the base case CFD model simulation computed a lower rise velocity of Fr ≈ 0.29. At higher

Froude numbers, previous CFD studies have also displayed a similar under–prediction of the

rise velocity (James et al., 2008). Measurements were taken at the nose of the bubble, as the

position of the base is difficult to track continuously due to the shedding of smaller bubbles.

Estimates of this base velocity have been recorded and are comparable to the nose velocity, with

the exception of the rapid expansion region at the liquid surface. Measurements were taken

at the nose of the bubble, as the position of the base is difficult to track continuously due to

1This is necessary because above the top surface of the water there are some cells with very small values of

water volume fraction due to numerical errors which can give a false indication of the top surface.
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Figure 5.5: Diagram showing the determination of the fill height in the User Defined Function.

the shedding of smaller bubbles. Estimates of this base velocity have been recorded and are

comparable to the nose velocity, with the exception of the rapid expansion region at the liquid

surface.

Figure 5.6 shows a bubble mid-way through the rise given base case conditions, along with

images showing the turbulent flow properties in the region around the bubble, turbulent kinetic

energy, k, turbulent eddy dissipation, ε and eddy viscosity, µT . As can be observed from these

images, k and ε are largest at the tail of the Taylor bubble were small bubbles are shed.

5.2.2 Pressure Oscillations

The gauge pressure is recorded in the simulations using a monitor located at a height of z0 = 1.5 m

at a cell next to the wall of the pipe. The oscillations in pressure at this location are correlated

to the top surface oscillations, with the pressure inside the gas bubble being at a maximum when

the upper air–water surface is at its lowest level. This is due to the compression of the bubble
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Figure 5.6: Images showing, top left, a bubble mid-way through the rise given base case condi-

tions, centre, the turbulent the turbulent kinetic energy, k, in the area surrounding the bubble

at the same time, and right, the turbulent eddy dissipation, ε.

which increases the pressure inside it, which in turn increases the pressure within the adjacent

thin liquid film and hence at the wall of the pipe. An example of this is shown in Figure 5.7

for an initial quiescent water level of 5 m with an initial bubble overpressure of 20 kPa. In this

simulation, the pressure has been shown to oscillate around a value of approximately 30 kPa

gauge pressure, which matches the hydrostatic value of ρg(z− zo) where z is the height of water

above the base.

5.2.3 Variation of Initial Pressure

Experimentally, the initial pressure field defined on the creation of the initial gas bubble is

influenced by the method used to turn off of the air injection tap which may result in the onset

of the oscillations, as described in Section 4.5. Using the numerical model, a sensitivity analysis

was carried out to determine the effects of varying the initial pressure condition. For example,

the specification of an initial pressure inside the bubble which is above hydrostatic means that
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Figure 5.7: Comparison between pressure oscillations and surface oscillations with an initial over

pressure of 20 kPa. The pressure is indicated by the heavy line and the location of the surface by

the lighter line. The maximum pressure in the fluid corresponds to the minimum surface height,

and hence the maximum compression of the bubble.

the bubble is effectively initially compressed, and so it will then expand before contracting again

and so on. The expansions and contractions are damped because of the decreasing height of

water above the bubble. Conversely, the setting of an initial pressure below hydrostatic means

that the bubble is larger than the size it would be at hydrostatic pressure and will hence tend to

compress. The magnitude of the difference in the pressure from the hydrostatic pressure at the

nose of the bubble is one factor that will determine the amplitude of the resultant oscillations.

A constant initial bubble size and position (a length of 0.64 m with the nose at z = 1.64 m)
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and a depth of water 5 m were used in this part of the investigation.

For an initial disturbance created by a similar magnitude over- or under-pressure, the resulting

oscillations were initially found to be approximately equal in amplitude, at approximately 0.05 m

for ± 10 kPa disturbances, 0.1 m for ± 20 kPa disturbances, and 0.15 m for ± 30 kPa disturbances,

shown in Figure 5.8. However, due to the different compression/expansion regimes, the bubbles

are observed to be out of phase with each other. Thus, the bubbles will have different sizes at

different depths below the surface, which in turn alters the dynamics of the bubble and thus only

a qualitative match in behaviour is seen.
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Figure 5.8: Variation of water surface height with time for various initial pressures in the bubble,

ranging from a 30 kPa under pressure, shown by the lowest line, to a 30 kPa over pressure,

indicated by the highest line, in increments of 10 kPa.
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Figure 5.9: (a) Surface height plot with peaks highlighted, (b) frequency of surface oscillations,

(c) mean surface height and (d) comparison against experimental data from Chapter 4, (straight

lines with error bars), and model (Vergniolle et al., 1996), (smooth curve) and current simulation

a 0.64 m long bubble, (circles).
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In Figure 5.8, the 30 kPa under–pressure bubble is observed to burst slightly earlier than the

other cases. This is due to bubble splitting into two parts which results in an acceleration in the

first 0.5 s of the simulation. The bubbles are then observed to have reformed into a full Taylor

bubble by 1 s and to follow the same rise rate as the other cases, and does not break up, for the

remainder of its rise. The frequency of the oscillation determined for the reformed bubble does

not appear to be significantly to be altered by this initial breakage and recombination phase.

This is the only case for which an instability (due to the under–pressure) causes the bubble to

break. Incidentally, had such behaviour been observed in the initial stages of bubble rise in

the experimental study, the bubble would have been regarded as stable. However, such a large

under-pressure would not be seen in the experimental studies

The frequency of the bubble oscillations were determined from the upper water surface height

data using MATLAB, as described in Section 4.5 (Figure 5.9(a)). These heights were then

compared against the experimental measurements from Chapter 4 and the theoretical model

predictions of Pringle et al. (2014). The mean surface height was also estimated as the average

height between a peak the following trough. The frequency of oscillation of the simulated Taylor

bubbles is typically 10% larger than the mean value of a similarly sized experimental bubble

throughout the rise, as seen in Figure 5.9(d). However, the upper limit of the standard error

from the experimental measurements means that the numerical predictions fall within this error

bound. The numerical error increases as the bubble approaches the surface of the liquid and

is not within the error bounds for the final 3 s of the rise. This behaviour is similar to that

produced by the models proposed by Pringle et al. (2014) and Vergniolle et al. (1996) which also

become less accurate as the bubble approaches the water surface.

The frequency of the oscillations are observed to decrease by an average of approximately

1.5% with an increase in the initial bubble pressure of 10 kPa, as shown in Figure 5.10. It was

postulated that this was due to the slight increase in the volume of the bubble produced by the
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Figure 5.10: Variation in the frequency of the bubble oscillation with time for initial bubble

pressures varying from -30 kPa to +30 kPa. Here the time is the time before the bubble breaks

the top surface. This scale will hence be used and referred to as the “Time to burst”.

larger initial gas expansion. To test this hypothesis, the effect of bubble size on the frequency of

oscillation was investigated.

5.2.4 Variation of bubble size

The initial length of the Taylor bubble in the simulation was varied across a range of values from

0.29 m to 1.04 m (1 D to 3.5 D). From the theoretical models Pringle et al. (2014); Vergniolle

et al. (1996), it is predicted that shorter bubbles would oscillate at a higher frequency. Longer

bubbles undergo a proportionally smaller change in volume when compressed. Consequently, the
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Figure 5.11: Frequency, f of the simulated surface oscillations plotted against L−1/2 for bubbles

of length, L, ranging from 0.28 m to 1.04 m. The lines correspond to various times to burst.

force required to cause this compression (or equally the force to oppose it) would therefore also

be reduced. As the oscillation rate is governed by this force, larger bubbles would be expected

to oscillate more slowly.

The theoretical models proposed by Pringle et al. (2014) and Vergniolle et al. (1996) predict

that the frequency of bubble oscillation is proportional to L−1/2, where L is bubble length. This

trend was also observed in the experimental studies detailed in Chapter 4 – where only two

bubble lengths were investigated. The simulations show good agreement with this behaviour, as

observed in Figure 5.11, where the frequency, f , is plotted against L−1/2 at set times in the rise

of the bubble. To obtain the frequency at these times, data was interpolated linearly between
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Figure 5.12: The variation in the simulated frequency of surface oscillations with time for 0.28,

0.44, 0.64, 0.84 and 1.04 m long bubbles.

the frequency values shown in Figure 5.12.

In Section 5.2.3, it was postulated that the variation in the frequency due to changes in the

initial pressure was caused by the different lengths of the bubble created. The average lengths

of the 30 kPa over– and under–pressure cases are 0.7 m and 0.44 m respectively, Figure 5.13.

An analysis of the results of experimental studies have concluded that frequency is proportional

to L−1/2. Thus, given the frequency at one bubble length, the frequency of a different length

of bubble may be estimated. Applying this principal to the 30 kPa bubble under pressure case,

delivers a set of frequencies comparable to the 30 kPa over–pressure case, as shown in Figure 5.15.

This shows that the change in frequency with initial bubble pressure is due to the initial bubble

length. Further, it has been demonstrated that the simulation model is capable of modelling a

range of bubble sizes and that any error introduced to the system does not affect the underlying

physics relating to bubble size. Again, for a large variety of bubble lengths, stable bubbles were
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able to be formed.

Figure 5.13: Taylor bubble with 30 kPa over pressure, left, and 30 kPa under pressure, right. A

clear difference in size can be seen due to the initial expansion and compression of the bubbles.

Again, the colour scale here shows the gas phase in red with the liquid phase as blue.

In Chapter 4, the effect of bubble length on rise velocity was discussed. It was concluded

that the expansion of the bubble caused longer bubbles to rise with a greater velocity. Similar

behaviour is also observed in the CFD results, shown in Figure 5.14, where an increase in bubble

length is seen to result in an increase in Fr. An extrapolation of these results gives a prediction

of the Fr of a bubble with zero length, of Fr ≈ 0.27. This is an under prediction of approximately

18% of the Fr observed in the experimental studies.
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Figure 5.14: The variation of non-dimensional rise velocity, Fr, with L. An extrapolation of

these results gives a prediction of the Fr of a bubble with zero length, of Fr = 0.27. This is an

under prediction of approximately 18% of the Fr observed in the experimental studies. As in

the experimental studies, the rise velocity increases with increasing bubble length as the bubble

expands as it rises through the pipe.
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Figure 5.15: Frequency of surface oscillations of original simulations and predicted values based

on correction for average bubble length. This shows the difference in frequency between the over

and under pressured cases is due solely to difference in average length of the bubble.

5.2.5 Variation of initial bubble depth

The initial depth of the nose of the bubble below the water surface was varied from 4.36 m to

1.36 m. This may be interpreted as the initiation of the bubble rise simulation through a given

rise height following the formation of the bubble. In this case, the frequency values should lie

on top on each other when plotted against the time taken for the bubble to break the liquid

surface and to burst. However, there are a number of issues that occur which preclude this ideal
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outcome. Firstly, the time taken for the bubble to become fully developed (to reach its final

rise velocity and shape) in comparison to the total rise time is more significant when the initial

depth is reduced. The specification of the initial bubble pressure disturbance is also not a trivial

calculation. Clearly, the adoption of a standard pressure value above the hydrostatic pressure

value at the depth would not give analogous results, as this pressure will decrease as the bubble

rises. Hence, it was decided to select a benchmark case of an over pressure of 20 kPa at a depth

of 3.36 m, and use the same fraction of the hydrostatic pressure as this for each depth.

An increase in frequency is seen with decreasing initial height, as shown in Figure 5.16. The

difference between the simulations can be mainly attributed to initialisation errors, with the

bubble reaching a fully developed state at different times with regards to the total rise time.

If the results are offset by the error from the first oscillation, a much closer agreement can be

observed, Figure 5.17.

It should be noted that for the cases analogous to the initial experimental runs, the frequency

values were, as expected, close together. From this it can be concluded that the initial depth does

not have an effect on the frequency of the bubble oscillations. However, further investigation,

both experimental and numerical may be required.

5.2.6 Variation of liquid viscosity

Vergniolle et al. (1996) reported that similar oscillatory behaviour had observed in acoustic

measurements at volcanic sites, in which the fluid would be of a much higher viscosity. For

this reason, the dependence of viscosity on the oscillatory behaviour was tested by varying the

viscosity of the liquid phase from 0.001 to 50 Pa s. This corresponds to a variation in the buoyancy

Reynolds number of ReB = 500000 to 10.

A clear damping effect can be observed with increasing viscosity, the amplitude of the oscilla-

tions are observed to reduce significantly, Figure 5.18. However, the frequency of the oscillations
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Figure 5.16: Frequency of oscillations for bubbles at different initial depths. There is a significant

difference between the frequency for bubbles released at different depths below the surface.

are not significantly affected by this increase in viscosity as shown in Figure 5.19.
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Figure 5.17: Frequency of oscillations for bubbles at different initial depths after being adjusted

for initial error. This provides a much closer agreement between the different cases.
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Figure 5.18: Oscillations of the surface for liquids of varying viscosity giving a range of Reynolds

numbers of 600 to 500000. Further simulations were conducted but are not shown in this figure

for clarity.
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Figure 5.19: Frequency of oscillations for liquids of varying viscosity. The viscosity of the liquid

phase does not significantly alter the frequency of oscillation as the bubble rises through the

pipe.
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From an analysis of the simulation results, it can be observed that an increase in viscosity

does slightly reduce the rise rate of the Taylor bubble - 4% lower at Re = 600 than at 10000.

From the predictions of Viana et al. (2003) the velocity should be constant for these values of

Reynolds number. A much sharper decrease in the rise velocity is expected when Re< 200, as

the flow enters a regime were viscous forces start to influence the bubble rise more significantly

(Viana et al., 2003). These trends are confirmed in the simulation results, in which a significant

decrease in rise velocity is observed with Re = 50 and 10 which are seen to have Fr = 0.243 and

0.122, respectively.

With higher liquid viscosities there does not appear to be a significant effect on the frequency

of oscillation, despite a reduction in the predicted bubble rise rate. However, with increasing

viscosity this frequency becomes much more difficult to determine from the simulation, as surface

oscillations become comparable in amplitude to the cell size used in the computational mesh.

Oscillations early in the rise may still be detected through the pressure monitor. As discussed

in Section 5.2.2 the pressure oscillations are correlated to the surface oscillations so even if the

surface oscillations are too small to be detected, oscillatory behaviour can still be observed. At

higher viscosities, Re < 200 these oscillations are quickly damped and could not be monitored

accurately for the duration of the bubble rise. One would expect that if the oscillation rate could

be measured, this high damping would reduce the frequency of oscillation, in the same fashion

as a damping term in a simple harmonic motion.

5.2.7 Flow fields

The flow field surrounding the rising Taylor bubbles were investigated, with focus on the different

stages during the periods of bubble oscillation. During the expansion phases of the oscillations,

the body of water ahead of the bubble is forced upwards in the pipe, causing the surface to rise.

However, some of the flow is washed down the side of the bubble as the liquid film, between the
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bubble and the pipe wall which then flows into the wake behind the rising bubble. This wake

region is open both in compression and expansion, as opposed to an attached wake region behind

the bubble observed in laminar flows (Nogueira et al., 2006b). This is shown in Figures 5.20a

and 5.20b. This phenomenon is due to the large Eo number – caused by the large pipe diameter

in relation to the low surface tension of the fluid used. When in compression there is a small

positive velocity ahead of the bubble for approximately 0.04 m, all of which gets carried into the

liquid film and wake by the fluid with a negative velocity further ahead of the bubble, as shown

in Figures 5.21a to 5.21b. The qualitative behaviour observed is similar to experimental PIV

(Particle Image Velocimetry) results in the literature (Nogueira et al., 2006b; van Hout et al.,

2002), with clear variations observed due to the oscillatory behaviour and differing rise velocity

of the bubble.
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(a) Streamlines and velocity vectors around the

wake of a Taylor bubble whilst in compression.

(b) Streamlines and velocity vectors around the

wake of a Taylor bubble whilst expanding.

Figure 5.20: Streamlines and velocity vectors in the wake of the Taylor bubble. There is little

difference in the behaviour of the wake of the Taylor bubble for bubbles which are expanding

and those which are in compression.
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(a) Streamlines and velocity vectors around the

nose of a Taylor bubble whilst in compression.

(b) Streamlines and velocity vectors around the

nose of a Taylor bubble whilst expanding.

Figure 5.21: Streamlines and velocity vectors around the nose of the Taylor bubble. When in

compression, the flow far ahead of the bubble has a negative velocity in the vertical direction,

whereas the flow far ahead of the bubble has a positive velocity when the bubble is expanding.
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5.2.8 Variation of Pipe Diameter

A parametric study of the effect of varying pipe diameter on the behaviour of a rising Taylor

bubble was conducted. An increase in the diameter of the pipe will lead to an increase in the

Eötvös number, which may be regarded as the ratio of buoyant forces to surface tension forces.

Above a value of 80 WhiteBeardmore1962, changes to this have little to no effect on the Froude

number, which governs bubble rise rate. This may lead one to assume there is no value in

exploring the parameter space above this value. One area that is of interest at larger Eötvös

values is the stability of Taylor bubbles, which lead to the experiments described in Section 4.3.

Theoretical work of (Batchelor, 1987) concluded that a single Taylor bubble would break up in

a pipe with a diameter of more than 0.46 m, however no experimental work has been conducted

at this diameter to verify this theory.

The base case presented in Section 5.2.1 showed a Taylor bubble rising in a stable manner in

a 0.3 m pipe, in accordance with the experimental observations. The pipe diameter was then

increased in order to find a critical pipe diameter at which a rising Taylor bubble ceases to be

stable.

The diameter of the pipe was first doubled to 0.6 m, giving an Eötvös number of 1.19 ×104. As

with the scaling of the mesh from the simulations presented in Section 3.3.4 to 5.2.1 the solution

was checked for mesh independence. A slightly finer mesh was required to give a similar number

of cells in the thin film between the pipe wall and Taylor bubble. This gave a wall distance of

0.002 with a maximum cell size of 0.01 in the centre of the domain. This gave the total of number

of cells to be approximately 1.3 million.

Bubbles had the same non dimensional length, L′ = L/D = 2.1, as the base case simulations

and were released from a depth of 10.7 m below the surface at a pressure equal to the expected
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hydrostatic pressure at the nose of the bubble as shown in Figure 5.22. Upon release, the bubble

is observed to break down the centre as shown in Figure 5.23 at a simulation time of 1 s, in

contrast to the stable behaviour seen in the base case. As the bubble rises it reforms and does

not break again before it bursts. A further simulation at this pipe diameter was conducted, with

the bubble being released from the same depth as the base case 0.3 m pipe and hence same

pressure. This was conducted to ensure that the initial breakage was caused by the diameter of

the pipe and not the increased pressure exerted on the bubble at the initial depth.

However, increasing viscosity is thought to have a damping effect on the stability of the

bubble. Therefore, a more appropriate non dimensional group to use in this case may be the

Weber Number, a measure of effect of the inertial forces acting on a fluid in comparison to the

effects of surface forces. This includes both a term for velocity, which will be affected by changes

in viscosity, and terms for pipe diameter and surface tension. This is defined as,

We =
ρu2D

σ
. (5.2)

The Weber number associated with the base case is 1.47 ×103, and that associated with the

0.6 m diameter case is 5.87 ×103, while the Weber number of the theoretical limit for stability

of Batchelor (1987) would be 3.45 ×103.

An intermediate case, just above the theoretically critical diameter was tested in order to

determine if the unstable behaviour observed at a diameter of 0.6 m was observed at this diameter.

This diameter was chosen as 0.4 m, giving an Eo of 2.11 ×104 and a We of 2.61 ×103. A further

case was also carried out with a diameter of 0.35 m, between the stable 0.3 m case and the

unstable 0.4 m case, with an Eo of 1.62 ×104 and a We of 2.00 ×103.

The 0.4 m pipe diameter case showed similar behaviour to that of the 0.6 m pipe diameter

case, breaking initially before reforming to rise at a constant rate in a more stable manner.
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This initial breakage is shown in Figure 5.26. This contrasts to the behaviour observed in the

0.35 m pipe, which shows behaviour similar to that seen in the base case, with the bubble rising

in a stable manner throughout its rise. Whilst this may not be indicative of a fully unstable

regime, there is clearly a difference in stability between the 0.35 m pipe diameter case and the

0.4 m pipe diameter case so the critical diameter in the simulations is between 350-0.4 m. This

difference between this critical diameter and the predicted critical diameter of Batchelor (1987)

is approximately 15-20 %. This error is comparable in magnitude to the error in the velocity of

the bubble. As the stability of the bubble is proposed to be determined by the speed at which

disturbances are washed into the liquid film, a slower rising bubble would be more likely to break

given the same pipe diameter (provided there is no damping from a higher viscosity liquid).

Further investigation is required to determine if this is a function of the Weber number, i.e.

if increasing the viscosity in such a way that the Weber number for a case with a 0.4 m pipe is

equal to that of the case with water in a pipe of diameter 0.35 m.

5.2.9 Stability of Bubbles in non– quiescent fluids

One key result of the experimental work presented in Chapter 4 was that Taylor bubbles were

observed rise in a stable manner provided that the fluid in the pipe was quiescent in the 0.3 m

pipe. When this was not the case, and remnants of the wake of a previous bubble were still

present, bubbles were observed to break up. The CFD model has been shown to be able to

replicate the stability of bubbles rising into a quiescent fluid in Section 5.2.1 and so it was

decided to use the model to investigate the effect of a flow field has on a following rising bubble.

To study this, a second Taylor bubble was added to the domain, in the same fashion as the

first as detailed in Section 5.1.3, after 8 s of the simulation, just after the burst of the first Taylor

bubble. The pressure throughout the bubble is specified to be the pressure at the location of
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the nose, in a similar fashion to that in the base case. These initial conditions are shown in

Figure 5.27.

When initialised in this way the second Taylor bubble is observed to break up as it begins

to rise, as shown in Figure 5.28. It is thought that this break up is caused by the turbulent

velocity field left behind by the trailing wake of the leading bubble which creates an instability

in the nose of the second bubble which grows and then splits the bubble down the centre. As the

second bubble continues to rise, the interactions between the surface of the second bubble and

the wake of the first bubble continue causing further deformation and breakage of the bubble.

This does qualitatively replicate the behaviour observed in the experiments described in Section

4.3, however the breakage of the simulated bubble is less severe.

This difference between the simulation results and the experimental observations may be due

to the treatment of the turbulent eddies at the interface between the liquid and gas phases.

Consequently, this could cause smaller instabilities which are able to be washed into the thin

film before they are able to grow enough to cause a the bubble to break. Another reason for

this difference between the model and the experimental observations is the presence of a large

volume of bubbles in the wake of the first bubble in the experiments. These are generated during

the formation of the bubble as described in Section 5.1.3. These bubbles are estimated to have

a diameter of under 5 mm, and so are could not be resolved in the numerical model without an

extremely highly refined mesh. A mesh capable of resolving these bubbles would result in the

overall computational time increasing dramatically and hence it was not feasible in the scope of

this thesis to conduct such a simulation. This is described in detail previously in Section 5.1.3.
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Figure 5.22: Initial conditions imposed on the numerical domain of a 0.6 m pipe. The pressure

conditions are shown on the left hand side and the volume fraction on the right hand side.

185



CHAPTER 5. RISE OF TAYLOR BUBBLES IN VERTICAL PIPES - NUMERICAL

Figure 5.23: Contour plot of volume fraction of air showing the breaking of the Taylor bubble

after 1 s of simulated rise.
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Figure 5.24: The altered initial conditions imposed on the numerical domain of a 0.6 m pipe,

with the same depth of water and hence initial bubble pressure as the base case which had a

pipe diameter of 0.3 m.
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Figure 5.25: Contour plot of volume fraction of air showing the breaking of the Taylor bubble

subjected to the altered initial conditions after 1 s of simulated rise.
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Figure 5.26: A bubble breaking in a pipe of diameter 0.4 m after 1 s of simulation. This break is

noticeably different to the break observed for the 0.6 m pipe as the break is not axisymmetric.
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Figure 5.27: Initial volume fraction conditions for a bubble rising into the wake of a previous

bubble in a 0.3 m diameter pipe.
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Figure 5.28: 3D iso-surface images of the breaking of a Taylor bubble when rising into the wake

of a previous bubble, breaking on the left, and deforming on the right.
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5.3 Conclusions

The behaviour of the rising bubbles observed during laboratory experiments was reproducible

using the compressible CFD model described in Section 3.1. A stable Taylor bubble can be pro-

duced with a rise rate of the bubble was within 15% of the experimental value. The surface rise

level is within 5% of the theoretically predicted value and the frequency of oscillation is approxi-

mately 10% above the experimental values. A variation in the pressure away from the hydrostatic

during the creation of the bubble was shown to give oscillations with varying amplitudes but that

were independent of frequency. The initial pressure disturbance produces a change in the bubble

length that is dependent on the initial compression or expansion of the bubble. As the resultant

oscillation frequency is dependent on this length, there is also a small change in the frequency of

oscillation. This is in accordance with both the results from the experimental studies presented

in Chapter 4 and the theoretical models of (Vergniolle et al., 1996) and (Pringle et al., 2014).

An increase in liquid viscosity, giving a reduction in Reynolds number reduced the amplitude

of oscillations significantly. However, the effect on the frequency of the bubble was minimal up

to the point at which oscillations could no longer be detected accurately. The increased viscosity

has a damping effect on the oscillations and hence one would expect the frequency to decrease

with increasing viscosity, if the amplitude was such that it could be measured, due to it exhibiting

the same behaviour as a simple harmonic oscillator.

The stability of the bubble with increasing pipe diameter was investigated using the numerical

model and shown to be comparable with the theoretical prediction of Batchelor (1987). The

stability of bubbles rising into the wake of a previous bubble was also investigated. The results

of the simulations showed an qualitative agreement with the observations of Section 4.3.

Further to this study the effect of using a polytropic gas law, with γ = 1.1 as suggested by

Pringle et al. (2014) and Vergniolle et al. (1996) should be investigated. This would require the

192



CHAPTER 5. RISE OF TAYLOR BUBBLES IN VERTICAL PIPES - NUMERICAL

development of a User Defined Function to define the density of the gas at a specified pressure.

Studies of inclined pipes have shown an increased rise velocity, and the effect of changing the

angle of inclination of the pipe has on the frequency and amplitude of oscillations could also be

studied. Experimental studies with fluids of higher viscosity are planned to take place in future

years at the University of Nottingham in the 0.29 m pipe and the results will hopefully validate

this numerical study further.

It is also recommended that simulations using a LES or DES approach to model the turbulent

flow be conducted and the results compared with the results of the simulations presented here.

This was not able to be conducted as part of this work due to computational limitations.
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6
Rise of a Taylor bubble through a change in geometry

6.1 Introduction

The rise of Taylor bubbles is a well–documented and well–studied phenomenon in many applied

fields, from chemical reactions in micro scale systems to the eruption of volcanoes. Despite

this large volume of work, there is a paucity of published experimental or numerical work that

have been reported on the rise of Taylor bubbles through a pipe section of changing diameter.

James et al. (2006) reported the results of an experimental investigation into the rise single

Taylor bubbles through a variety of pipe expansions and contractions (using 0.038 m, 0.05 m

and 0.08 m diameter pipe sections). Sugar syrup solutions of different concentrations, with

viscosities of 0.001, 0.1 and 30 Pa s, were used to compare the rise behaviour across a range of

Froude numbers. They observed that when a Taylor bubble encountered an expansion in pipe

diameter, it rapidly expanded both vertically and laterally from the nose. This resulted in an

increase in the flow in the liquid film surrounding the bubble which caused a necking or pinching

of the bubble. For bubbles of sufficient length, this necking will split the bubble and generate

oscillations in the measured pressure signals. The objective of this work was to compare the

experimental pressure signals measured against the long period seismic data recorded at active

volcanic sites. The hypothesis being that the source of pressure oscillations observed in seismic
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data are caused by a gas slug rising through an expansion in the diameter of the conduit. They

concluded that the pressure changes measured during in their experiments exhibited similar

behaviour to those recorded in the field. Consequently, it was proposed that the expansion in

conduit diameter was the source of the observed pressure changes. A more detailed analysis and

discussion of the results of this study are presented in Section 6.2.

The only other study that has reported this behaviour is the conference proceeding of Kondo

et al. (2002). Although the primary focus of this study was on co-current liquid gas flow, a number

of experiments using single Taylor bubbles with no liquid flow were also described. In these, a

Taylor bubble rises through a pipe of diameter 0.02 m which undergoes a sudden expansion into

a pipe of 0.05 m. Figure 6.1 shows a still video image taken from Kondo et al. (2002) showing

the bubble during the necking process. After the neck of the bubble closes, it bursts through the

nose of the bubble. This process can be observed in the still video images shown in Figure 6.2.

These images have been taken after the sudden expansion but are cropped to the central 0.02 m

of the pipe.

A number of unpublished complementary experimental studies have recently been undertaken

at the Universities of Nottingham and Bristol. The focus of these studies were to investigate the

flow of Taylor bubbles through expansions in diameter of a vertical pipes.

The first of these studies was the work of Danabalan (2012). These experiments investigated

the rise of Taylor bubbles through a glass pipe which expands into either a rounded glass bowl or

cubic box. Two different viscous fluids were used, with viscosities of approximately 3 and 68 Pa s,

which results in the non-dimensional parameters presented in Table 6.1. A known volume of air

was smoothly injected into the lower section of the pipe via a syringe through a rubber bung in

the base of the pipe. The bubble ascended the 0.038 m diameter pipe before rising into one of

the expansion sections. The bowl had a maximum diameter of 0.162 m and the box was a cube

of height 0.245 m. Both of these expansion sections were centred on the axis of rotation of the

195



CHAPTER 6. RISE OF A TAYLOR BUBBLE THROUGH A CHANGE IN GEOMETRY

Figure 6.1: A still video image extracted from Kondo et al. (2002) which shows a Taylor bubble

during the necking process while passing through a sudden expansion from a pipe of diameter

0.02 m to 0.05 m in water.

Figure 6.2: A series of still video images extracted from Kondo et al. (2002) which show a Taylor

bubble which has passed through a sudden expansion from a pipe of diameter 0.02 m to 0.05 m

in water (Kondo et al., 2002).

196



CHAPTER 6. RISE OF A TAYLOR BUBBLE THROUGH A CHANGE IN GEOMETRY

Table 6.1: Table of non–dimensional parameters determined for the rise of Taylor bubbles in the

experiments of Danabalan (2012).

µ (Pa s) ReB Eo M Fr

3 7.7 191 2 ×103 0.077

68 0.3 191 5.2 ×108 0.003

pipe. The rise behaviour of the Taylor bubble was tracked by a stationary video camera adjacent

to the pipe section.

A red dye was added to the glucose syrup in the lower pipe section to provide contrast to the

undyed syrup initially contained within the expansion section, which can be seen in Figure 6.3

(a). As the bubble rises into the expansion section it is observed to entrain dyed fluid from the

lower section of the pipe into its trailing wake, shown in Figures 6.3 (d)-(f). The motivation

for this study was to replicate the behaviour of gas bubbles rising through volcanic conduits

which expand into lava lakes at the surface, introduced in Section 2.2.2.4. The pipe expansions

employed in the experiments were representative of the expansions in conduit diameter which

result in lava lakes. The conclusion of this study was that in volcanoes, the rising Taylor bubble

would entrain hot magma from a large depth and bring this in the bubble’s trailing wake to the

surface.

The volume of gas injected into the lower pipe was varied in 10 cm3 increments from be-

tween 10 cm3 to 60 cm3 to determine the critical volume of bubble that can pass through each

expansion section without the bubble splitting into two separate bubbles. An analysis of the

results of these experiments showed that the critical volume is dependent on the geometry of

the expansion section. From an examination of the experimental results presented in Figure 6.4

it is observed that as the diameter of the bowl expansion gradually increases, the greater the
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volume of bubble that could pass through the expansion without being split than in the sud-

denly expanding, box section. This trend was observed in replicate experiments conducted using

fluids having viscosities of 3 Pa s and 68 Pa s. For this change in viscosity, the critical volume

for the box expansion remained constant; however, the critical volume for the bowl expansion

is one decrement (10 cm3) smaller. As the increments in volume are relatively large, there is a

degree of uncertainty as to whether this decrease in critical volume would also be seen in the box

expansion. Due to the increase in viscosity, there would be an increase in film thickness around

the bubble

Further experiments were conducted which tracked particles dispersed in the syrup. An

analysis of these results suggested that bubbles drive a convection process in the expanded section.

Further work involving thermal gradients was suggested by the author to fully investigate this

process and compare it to possible scenarios in lava lakes Danabalan (2012).

A further experimental study recently conducted by Soldati (2013) at the University of Bris-

tol employed a quasi two dimensional Hele-Shaw cell to investigate the effect of the angle of

expansion, fluid viscosity and volume of bubble may have on the observed rise characteristics. A

Hele-Shaw cell is made up of two parallel plates a distance, H, apart which are sealed at the sides.

A 3D CAD model of the experimental apparatus can be seen in Figure 6.5. A Hele-Shaw cell

was used due to the high viscosity of the fluid and the comparatively small pipe diameter which

result in a low Reynolds number flow. The use of the cell also allows the user to quickly and ac-

curately create different angles of expansion, which would not have been possible if a traditional

pipe had been used. This difficulty in producing a number of different angles of expansion in the

experiments is one of the motivations behind using CFD to model this problem.

By varying the volume of air injected into the base of the apparatus, different sized Taylor

bubbles were generated in the pipes. By injecting different lengths of bubbles into the pipes it

was possible to find the critical volume of bubble which can pass through the expansion without
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Figure 6.3: Photographic sequence in 68 Pa s viscosity glucose with a 60 cm3 bubble injected

into the bowl apparatus of Danabalan (2012). The upper bowl is filled with clear glucose syrup

and the lower pipe is filled with glucose syrup mixed with red dye. Images (a) to (f) show the

passage of the first bubble while (g) to (l) shows secondary bubble rise (Danabalan, 2012).
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Figure 6.4: A flow regime diagram mapping the patterns of bubble breakage tendencies observed

in the expansion section for different fluid viscosities and original bubble volume. The blue

diamonds represent cases whereby the bubble remained intact, the red squares where the original

single bubble breaks into two separate bubbles in the cubic reservoir but did not break in the

bowl-shaped reservoir, the and green circles where the original single bubble broke into two

separate bubbles as it entered both of the expansion geometries (Danabalan, 2012).

200



CHAPTER 6. RISE OF A TAYLOR BUBBLE THROUGH A CHANGE IN GEOMETRY

Figure 6.5: A 3D CAD image of the experimental apparatus used in the Hele-Shaw experiments

conducted at the University of Bristol to study the rise of a Taylor bubble though an expansion

in geometry (Soldati, 2013).
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Table 6.2: Table of non–dimensional parameters determined for the rise of Taylor bubbles in the

experiments of Soldati (2013).

µ (Pa s) ReB Eo M Fr

17 0.96 119 2 ×106 0.01

47 0.35 119 2 ×108 0.003

splitting by the necking of the bubble. Two fluids of different viscosity (17 and 47 Pa s) were used

in the experiments resulting in the non-dimensional parameters shown in Table 6.2. Similar to

the experiments of Danabalan (2012), an exact value for the critical length could not be found,

but only upper and lower bounds for it. As the volume of air injected could only be determined

to the nearest millilitre, the value of the critical volume was determined to lie between two

consecutive values at which the bubble passed through the expansion without breaking at the

lower, but which does break at the upper.

The experiments were designed to investigate the effect of two different distance settings, H ,

between the parallel plates in the Hele-Shaw cell (where H=0.005 m and 0.01 m). An analysis

of the results of these experiments shows that the upper and lower bounds of the critical volume

are directly proportional to H . For example, the upper and lower bounds of the critical volumes

given a 30◦ expansion are 14-15 ml and 7-8 ml for H values of 0.01 m and 0.005 m respectively.

As the accuracy of the volume of air is hence greater for H=0.01 m, these results will be used for

any future comparisons. This relationship suggests that the bubble length, and not the volume,

is the critical factor which determines the breakup of the bubble.

An analysis of the results of the experiments of Soldati (2013) concludes that the critical

length of a bubble increases as the slope of the expansion becomes steeper. This is consistent

with the findings of Danabalan (2012), in which a sudden expansion gave a smaller critical length
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Figure 6.6: A flow regime diagram mapping the patterns of Taylor bubble breakage observed

for different angles of expansion (Soldati, 2013). This shows a increase in the maximum size of

bubble which could pass through the expansion given a more gradually expanding section.

than a gradual increase in pipe diameter. This result is illustrated in the flow regime diagram

of Figure 6.6. The solid line indicates the expected value of the critical volume of a bubble for a

given angle of expansion. The filled circles indicate the bubbles which did not split into two or

more bubbles as they rose through the expansion, whilst the unfilled circles indicate those which

did split.

A Sony HDR-SR5 video camera could be used record the breakup mechanism of low Reynolds

number Taylor bubbles when passing through these expansions in pipe geometry. Figure 6.7,

taken from Soldati (2013), shows a series of diagrams based on still photographs that clearly

illustrate the different stages of this breakup mechanism. As the nose of the bubble enters the

expansion section of the pipe, the nose of the bubble expands to fill the widening diameter as it

is no longer constrained by the channel walls of the lower pipe section, shown in Figure 6.7 (c).
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Figure 6.7: Diagrams based upon still images taken from a video recording of a Taylor bubble

rising through a 75◦ expansion, from undisturbed rise (a) through the necking process to breakup

(e) (Soldati, 2013).

As the nose of the bubble expands, the middle of the bubble thins out. If the bubble is longer

than the critical length, it will break into two parts, as shown in Figures 6.7 (d) and (e).

Soldati (2013) analysed the still frames extracted from the video footage to track the position

of the nose and tail of the bubble. Unlike the results of the experiments presented in Chapter 4,

the tail of the bubble is distinct due to the low Reynolds number used for the design of these

experiments, and the tail can hence be tracked accurately. Figure 6.8 is representative of the

behaviour of a typical bubble which does not break up as it passes through the expansion section.

The acceleration of the nose can be observed as the bubble passes through the expansion, as can

the very rapid acceleration of the tail of the bubble as it passes through this section. The length

of the bubble decreases in the upper section due to the larger confining diameter.

The work of Soldati (2013) identifies the change in flow regime as a rising bubble passes

through different expansion sections. This aspect will be studied in more depth using CFD

modelling later in this chapter.

A research student at University of Nottingham recently studied the acoustic signals produced

by the breakup of a Taylor bubble as it rises through an expansion in the pipe diameter. The

experimental apparatus used in this study consisted of a 0.01 m diameter pipe inside a longer
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Figure 6.8: The nose and tail positions of a typical non-breaking Taylor bubble whilst rising

though an expansion in pipe diameter (Soldati, 2013).

0.025 m diameter pipe. Both of these are filled with water and a specified volume of air is injected

into the inner pipe via a syringe though a rubber bung located at the base of the pipe. These

pipes are contained within a 0.25 m concentric pipe which can be filled with water to perform

additional experiments. A high speed camera was used to record the physical behaviour of the

bubbles. A high sensitivity microphone was located above the surface of the water to record the

acoustic signals generated. Although no significant conclusions could be drawn from an analysis

of the acoustic signals, an analysis of the high speed camera images gave further qualitative insight

into the process of the breakup mechanism of a Taylor bubble passing through an expansion.

A further conclusion drawn from these experiments was that the breakup mechanism is still

observed to occur when the bubble is too short to be split. After the neck has thinned, the

tail still bursts through the neck given a bubble length shorter than the critical length. Due to

similar limitations in the experimental measurement methodology as discussed in Section 4.2,

the frame rate of the recording was limited to 50 fps (with natural daylight) for the majority of

the experimental runs. However, one of the experiments was recorded at a frame rate of 250 fps

which enabled a more detailed analysis to be performed.
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Figure 6.9: Still frames extracted from a high speed video recording of a Taylor bubble rising in

water through an expansion, which show the sequential the breakup mechanism. Images (a)-(d)

show the Taylor bubble approaching the top of the inner tube. The next sequence of images,

(e)-(j), show the bubble starting to neck as a larger volume of water begins to enter the inner pipe

at a high velocity. As the bubble continues to neck a fine central film of air is maintained, shown

on images (k)-(m). Between images (m) and (n), this film breaks and is catapulted through the

centre of the upper bubble. This instantaneously penetrates the nose of the bubble and water

jets through this opening, which is shown in the images (n) and (o).
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Still images of the progression of stages involved in a bubble breaking as it rises into the larger

diameter pipe are shown in Figure 6.9. Images (a)-(d) show the Taylor bubble approaching the

top of the inner tube. The next sequence of images, (e)-(j), show the bubble starting to neck

as a larger volume of water begins to enter the inner pipe at a high velocity. As the bubble

continues to neck a fine central film of air is maintained, shown on images (k)-(m). Between

images (m) and (n), this film breaks and is catapulted through the centre of the upper bubble.

This instantaneously penetrates the nose of the bubble and water jets through this opening,

which is shown in the images (n) and (o). As the bubble continues to rise it is observed to reform

into a spherical cap type bubble. This is not shown in these images as the 250 fps recording was

curtailed before the bubble reformed.

The aim of this chapter is to demonstrate that the use CFD models can give a better under-

standing of the behaviour of Taylor bubbles as they rise through changes in geometry. The CFD

models, introduced in Chapter 3.1, are first validated using the published experimental results

of James et al. (2006). These models are subsequently used to perform a series of parametric

studies to investigate the behaviour of bubbles ascending through various expansions under a

range of initial conditions.

6.2 Validation

6.2.1 Experimental Apparatus

In order to have confidence in the results generated by any numerical model, the model must first

be validated. To validate the model, the results of a set of simulations were compared against

the experimental results of James et al. (2006). In this experimental study a single Taylor bubble

rises through a vertical pipe before entering an expansion in pipe diameter. As the Taylor bubble

passed through this expansion it was observed that, dependent on its length, it may split into
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multiple smaller bubbles. This process was monitored in the experimental rig by a number of

pressure sensors, an accelerometer, a force sensor and recorded by video camera. A diagram

of the experimental apparatus used is shown in Figure 6.10, taken from James et al. (2006).

Although a number of different configurations were explored in the experimental studies, the

model was validated against the results of the experiments that employed the 0.038 to 0.08 m

expansion in pipe diameter.

6.2.2 Experimental Results - 0.038 to 0.08 m expansion

As the bubble is observed to enter the expanding section, it rapidly expands, both vertically

and laterally. James et al. (2006), hypothesised that this causes an increase in the liquid flux

flowing downwards within the liquid annulus surrounding the part of the bubble still remaining

in the smaller pipe. This increased flow creates a narrowing in the neck of the bubble (or pinch

in the bubble), which continues until the liquid annulus closes. For bubbles of sufficient length,

the neck will close before the bubble has risen through the expanding section and the bubble

will hence break into two parts. However, due to a low frame rate of the video recordings and

the structural elements of the apparatus shown in Figure 6.11, this could not be verified. James

et al. (2006) reported that Taylor bubbles with an average length of L′ = LB/D = 3.3 or longer,

where LB is the length of the bubble and D is the inner diameter of the pipe, were observed

to consistently break up. Bubbles that were shorter than this (having average lengths of L′ =

1.1 or 2.2 in these experiments) were able to rise through the expanding section before the neck

closed. The critical length, which was introduced in Section 6.1 would hence have a lower bound

of 2.2L′ and an upper bound of 3.3L′.

An analysis of the pressure and force meter readings detected a number of different frequencies

that were generated by the bubble passing through the expansion. Of these, there were three

dominant components. For example, when L′ = 4.4,there was a high frequency component of
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Figure 6.10: The experimental apparatus used by James et al. (2006) to study the rise of Taylor

bubbles through changes in pipe diameter. The full experimental set up is shown on the left

hand side and the profiles of different expansion sections are shown on the right hand side.
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Figure 6.11: Photographs of the expansion section of the pipe showing the structural supports

surrounding the pipe which obscure the video recording in the study of James et al. (2006). On

the left without a bubble present (a) and on the right, (b), as a bubble has passed through the

expansion.
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approximately 60 Hz given and two lower frequency components one at 13 HZ and one at 6 Hz.

James et al. (2006) attribute the high frequency oscillations to resonance within the fluid column

caused by the deceleration of the liquid in the annulus as this closes and splits the bubble. They

also hypothesise that the lower frequency oscillations are linked to the oscillation of the bubble

left behind in the lower tube, in a similar fashion to those seen in Chapters 4 and 5. They also

compare these to the theoretical frequency predicted by the model proposed by Vergniolle et al.

(1996). The rise rates of the bubble throughout the ascent were also determined from an analysis

of the video stills. In the lower pipe these velocities were constant at approximately 0.21 ms−1

for all bubble lengths. The average rise rate during the period of acceleration at the expansion

ranges from 1 to 2.4 ms−1 for differing bubble lengths. The rise rate in the upper pipe varied

with bubble length. This was due to the different length of bubbles formed after the expansion,

with shorter initial bubbles not forming full Taylor bubbles but rather spherical cap bubbles.

6.2.3 Simulation Set-up

The CFD modelling approach which was introduced in Chapter 3 was used to simulate the

experiments of James et al. (2006). The main alteration required to model the expansion was

a different meshing strategy employed to account for the more complex geometry. James (by

private correspondence) kindly provided additional photographs not presented in the original

journal paper. These images were subsequently used to determine the geometry of the expanding

section, one of these is shown in Figure 6.12. However, the thickness of the glass used to form

the pipe expansion varies throughout the section, making it difficult to accurately determine the

location of the inside surface of the pipe. An image analysis program, Digitizer, was used to

estimate the location of a number of points on the inner surface of the pipe. A spline curve was

then interpolated between these points using ANSYS ICEM software. This curve was used to

define the wall boundaries of expansion section and was then connected to curves representing
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Figure 6.12: A photograph of the expanding glass section used in the study of James et al. (2006)

which was provided via private correspondence. This photograph was used to estimate the shape

of the internal shape of the expanding section.

the upper and lower pipe sections to form a 2D axisymmetric section. This section was then

swept through a rotation of 90◦ to generate a 3D volume. A schematic showing the stages of this

process is illustrated in Figure 6.13. The figure shows, (a) the imported point data in image,(b)

the 2D slice in image and (c) the 3D body in image. Subsequently, assuming a symmetrical flow

regime a quarter pipe model was used to ensure mesh resolution was adequate whilst retaining

important 3D effects expected when a bubble breaks as it rises through the expansion. This is

discussed in more detail in Section 6.2.4.

When an internal mesh was created for a straight section of pipe, as in Section 3.3.1.2, a
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Figure 6.13: Images illustrating the model generation process. (a) The point data for the ex-

panding section. (b) A 2D plane joining the expanding section with the rest of the domain. (c)

The 3D section created by rotating the 2D plane.
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surface mesh on the base of the pipe was extruded throughout the domain. When modelling

a pipe which undergoes an expansion in diameter, this strategy must be altered to capture the

important flow features that may be generated. Firstly, the pipe is split into three sections, the

lower pipe, the upper pipe and the expanding section. The lower pipe section is meshed in the

same manner as described in Section 3.3.1.2, using a quadrilateral O-grid topology. The cells at

the interface between the top of the lower pipe and the bottom of the expanding section must

align. If the expanding section is meshed in the same way, the shape of the expansion will result

in a large number of poor quality, skewed cells. To avoid this problem, the expanding section

is subdivided into four sections. Within each of these sections the spacing of the cells may be

individually specified to control the shape of the mesh, to generate a higher quality mesh with

fewer skewed cells. It should be noted that although the radial spacing of the cells can be altered

within subdivisions of the domain, additional cells should not be added, as this would lead to the

mesh becoming non-conformal. Cells can however be added in the axial direction, although this

may have adverse effects on the aspect ratio of cells, and hence the quality of the cell. There is

again a conformal interface between the top of the expanding section and the base of the upper

pipe, from which the mesh is mapped throughout the flow volume of upper pipe.

6.2.4 Results of Validation Simulations

The vertical position of the nose of the rising bubble was recorded during the simulations. Pres-

sure values were also recorded at each time-step of the simulations at two measurement points

in the domain. These corresponded to the locations of the sensors PZ4 and PZ6 from James et

al’s experiments, which were located at the wall at approximately 0.65 m and 0.36 m below the

top surface of the liquid. These data were then analysed using a Fast Fourier Transform (FFT)

algorithm to create a power spectral density graph, from which the dominant frequencies could

be determined.
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Figure 6.14: Image showing the mesh on (a) the symmetry plane (b) the outlet.
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A set of simulations were conducted on grids of 3 different sizes in order to test mesh inde-

pendence. In these simulations the terminal velocity in the lower pipe and frequencies generated

were recorded. The GCI method, previously described in Section 3.2.2, was used to determine

an estimate of the error introduced by spatial discretisation. Meshes of approximately 950000,

485000 and 250000 cells were used which gave a GCI error of 0.37% for the finest mesh and

0.57% for the intermediate mesh based on the rise velocity in the lower pipe. It was concluded

that the intermediate mesh provided a satisfactory level of accuracy.

A bubble of length 4.4L′ was introduced to the domain in the same manner as previously

described. The nose of this bubble is initially 0.843 m below the top surface of the liquid, and

hence 0.243 m below the start of the expanding section. The height of the expanding section was

an order of magnitude smaller than the height of water above it. As the bubble ascends the lower

tube, a steady rise velocity is maintained. This is followed by a rapid acceleration as the bubble

enters the expanding section. The non-dimensional value of the rise velocity in the lower pipe is

within 1.5% of the experimental measurements of James et al. (2006), with a Froude number of

0.355, in comparison to the experimental value of approximately 0.35.

An examination of the results of a frequency analysis show dominant frequencies at approxi-

mately 13 Hz and 56 Hz, which are comparable to the frequencies determined in the experiments

of James et al. (2006) (13 Hz and 60 Hz) when the rise of a bubble of a similar length is studied.

However, the low frequency component at 6 Hz which is observed in the experimental study is

not replicated in the simulations.

In the experiments reported by James et al. (2006), the critical length of the bubble, intro-

duced in Section 6.1 was bounded by 2.2L′ and 3.3L′. Simulations were conducted with bubble

lengths of 2.2L′ and 3.3L′, and the results of these agreed with the behaviour observed in the

experiments. A bubble of length 2.2L′ successfully passed through the expansion before the neck

closed, whereas a bubble of length 3.3L′ was split by the pinching at the neck, which results in
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a smaller bubble to be left behind in the lower pipe.

The preceding simulations were carried out using a 3D quarter pipe model with planes of

symmetry. To retain the same level of spatial resolution, a full pipe 3D model would have

required approximately 2 million cells. This mesh was created and used in a simulation which

showed comparable results to the quarter pipe simulations with a Froude number of 0.352 in the

lower pipe and dominant frequencies of 12 and 54 Hz. However, the computing power required

was too great to consider this a viable option for all simulations and so the quarter pipe model

was used for all following simulations.

6.3 Results

6.3.1 Variation of curvature of expansion

The expanding section used by James et al. (2006) was made of blown glass, giving a curved

expansion profile. This curved profile was not used as it modelled the physical situation more

accurately than a simple straight sided expanding section, but rather because it was an off

the shelf part and hence readily available. As previously detailed in Section 6.2.3, the curved

expansion creates additional difficulties when creating a mesh to model this domain. It also

introduces difficulty when comparing sections which expand at different rates. A comparison

between this curved expansion, based on the experimental blown glass pipe, and a straight sided

expansion (expanding over the same height) was conducted to ascertain if the same conclusions

could be drawn.

The dominant frequencies found by applying the power spectral density to the pressure read-

ings for the straight sided expansion are very similar to those for the curved expansion. These

were 13 Hz and 56 Hz for the curved expansion and 14 Hz and 59 Hz for the straight sided

expansion and are shown in Figure 6.15. This suggests that the sources of oscillation are not

217



CHAPTER 6. RISE OF A TAYLOR BUBBLE THROUGH A CHANGE IN GEOMETRY

1.3 1.35 1.4 1.45
1000

2000

3000

4000

5000

6000

Time (s)

G
au

ge
 P

re
ss

ur
e 

(P
a)

Pz6

 

 

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Frequency (Hz)

A
m

pl
itu

de

 

 

Curved expansion
Straight angled expansion

Figure 6.15: A comparison of the frequencies produced the bubbles passing through the (a)

curved and (b) straight sided expansions. The dominant frequencies are similar for both the

curved and straight expansion profiles indicating the sources of oscillation are not greatly by the

curvature of the expansion.

affected greatly by the curvature of the expansion. This hypothesis was tested, and proven to

hold, for two fluid viscosities of 0.001 and 0.1 Pa s.

The bubbles rise at approximately the same velocity throughout the lower tube, although the

bubble with in the curved expansion is approximately 1% faster. The bubbles also accelerate

through the expansion at a similar rate. After the bubble passes through the expanding section

the liquid film caused by the closure of the neck is observed to burst through the nose of the

bubble. This happens at approximately 1.3 s after the release of the bubble and leads to the
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Figure 6.16: A comparison of the simulated positions of the nose of the bubbles whilst rising

through pipes containing a straight sided or curved expansion. The bubbles rise through the lower

pipe with rise rates within 1% of each other and exhibit similar behaviour as they encounter the

expansion in pipe diameter.

large acceleration observed to occur at this time. This is shown by analysing the position of the

nose of the bubbles with respect to time in Figure 6.16.

In both the experiments and simulations that involved a curved expansion profile, the critical

length of bubble which could pass through the expansion before the neck closed was bounded by

2.2L′ and 3.3L′. Simulations were also conducted using a straight sided expansion and bubbles

of length 2.2L′ and 3.3L′. An analysis of the results of these simulations shows that critical

length of bubble is also bounded by these lengths in the straight sided expansion, and is shown
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in Figure 6.17. It should be noted that although there are some small bubbles left in the lower

tube for the bubble of length 2.2L′, these are bubbles which have been shed from the tail, rather

than being formed during passage through the expansion.

The major conclusion drawn from this study is that the flow behaviour of bubbles passing

through straight sided and curved expansion profiles is comparable. All of the main flow features

present in the original simulations remain and consequently it was decided to employ straight

sided expansions as the basis of the simulation results presented for the remainder of this chapter.

Straight sided expansions were used so that a systematic variation of the angle of expansion could

be conducted.

6.3.2 Variation of angle of expansion

6.3.2.1 Base case

An analysis of the results of the studies of Danabalan (2012) and Soldati (2013) shows that a

more gradual expansion between two pipes of differing diameter will change the behaviour of the

rising bubble. A computational parametric study was conducted to assess the effect of varying

the angle of expansion,θ, between 15◦ and 90◦. This angle is defined as shown in Figure 6.26,

and is equal to 90◦ when the direction of expansion is perpendicular to the lower pipe wall and

0◦ when the pipe undergoes no expansion in diameter. The length of the expansion, Lexp, is the

distance in the z direction over which the diameter of the pipe is expanding. This increases as

the angle θ decreases.

In order to model higher angles of expansion (45◦ and over), a further change needed to be

applied to the meshing strategy. An extra block was added to the topology of the mesh for

the expanding section upwards. This requires the addition of extra cells in the radial direction

to maintain resolution and quality of the cells in the expanding section. Figure 6.19 shows this
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Figure 6.17: Images indicating that the critical length of bubble is bounded by lengths of 2.2L′

(left) and 3.3L′ (right). On the left, the only gas left in the lower pipe is that which has been

shed from the tail of the bubble during the rise. On the right, the necking process has broken

the longer bubble into two distinct bubbles, leaving one in the lower section of the pipe.221
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Figure 6.18: A schematic illustrating how the of angle of expansion, θ, along with other quantities,

are defined. Here, r1 is the radius of the lower pipe, r2 is the radius of the upper pipe, rb is the

radius of the bubble, L1 is the height of the water surface above the base of the lower pipe, L2

is the height of the start of the expansion section above the base of the lower pipe and Lb is the

length of the bubble.
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change in topology at the expanding section and at the outlet to the domain for the 90◦ expansion

in diameter.

An initial set of simulations were conducted to investigate the effect of varying the angle of

expansion whilst keeping all other parameters constant. Bubbles with an initial length of 4.4L′

(0.167 m) were introduced, such that the nose is located at a depth of 0.843 m below the surface

(0.233 m below the start of the expanding section) using the method described in Section 3.3.1.3.

Figure 6.20 shows a bubble during passage through the 90◦ expanding section, along with

images showing the turbulent flow properties in the region around the bubble, turbulent kinetic

energy, k, turbulent eddy dissipation, ε and eddy viscosity, µT . As can be observed from these

images, k and ε are largest at the points where the bubble is pinching off and in the wake of the

bubble where smaller bubbles had been shed.

Large qualitative differences are observed when the angle of expansion is varied. As the angle

of expansion decreases, an increased volume of air is able to pass through the expansion in a

single bubble, and hence the size of the bubble remaining in the lower pipe is reduced. Depending

on the angle and length of bubble, the whole bubble may pass through at the same time. This

length of bubble will be referred to henceforth as the critical bubble length. Figures 6.21 and

6.22 illustrate the qualitative differences in bubble behaviour when the angle of expansion is

varied. A bubble passing through the 90◦ expands more quickly in both the lateral and vertical

directions. A smaller bubble in the upper pipe is also formed given the 90◦ section and this hence

leaves a larger volume of gas in the lower pipe than the more gradual expansions. This is most

clearly observed when comparing the expansions with angles of 15◦ and 90◦. A bubble that rises

through the 15◦ expansion is observed to expand less quickly than the more severe 90◦ expansion.

After a simulation time of approximately 1.1 s, the nose of bubbles in both the 90◦ and 15◦ cases

enter the expanding section (at a height of 0.5 m above the base of the pipe). However, at a

time of 1.3 s, the nose of the bubble in the 15◦ case has risen to a height of 0.55 m, whereas the
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Figure 6.19: A schematic illustrating the block topology used at expanding section (above) and

at the outlet (below) for the 90◦ expansion. An extra block was added to the topology of the

mesh for the expanding section upwards. This requires the addition of extra cells in the radial

direction to maintain resolution and quality of the cells in the expanding section.
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Figure 6.20: Images showing, top left, a bubble during passage through the 90◦ expanding

section, centre, the turbulent the turbulent kinetic energy, k, in the area surrounding the bubble

at the same time, and right, the turbulent eddy dissipation, ε.

nose of the bubble in the pipe with a 90◦ expansion is at a height of 0.568 m. This amounts to

an increase of 20% in the distance travelled by the nose of the bubble over this period.

Figure 6.24 shows a comparison of the power spectral density of the signals generated by

initially identical bubbles passing through expansions with angles of θ = 90◦ , 75◦, 60◦, 45◦,

30◦ and 15◦. An analysis of the frequency data generated by the different simulations confirms

that the lower dominant frequency remains approximately constant regardless of the angle of

expansion. There is an increase in the higher frequencies as the angle of expansion increases.

However, the higher frequencies are not as significant as the lower ones, exhibiting much shallower

peaks. It is therefore harder to identify the cause of these oscillations. However, it is noted that

in the case with a 15◦ expansion, no dominant higher frequency is observed. This is also the only

case in which none of the bubble is left in the lower pipe after the necking. One explanation could

be that the higher frequency oscillations are caused by the oscillation of the portion of bubble

remaining in the lower pipe, once the nose section has passed through the expansion. The

lower frequency of approximately 14 Hz remains constant regardless of the angle of expansion.
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Figure 6.21: Iso-surface images indicating the location of initially identical bubbles passing

through expansions with angle of expansion, θ = 90◦, 75◦, 60◦, 45◦, 30◦and 15◦ at t=1.3 s.
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Figure 6.22: A comparison between the (a) 90◦ and (b) 15◦ cases. Each iso-surface indicates the

location of the surface of the bubble after the neck has closed.

Figure 6.23: A comparison between the (a) 90◦ and (b) 15◦ cases. For each, the iso-surface

indicates the location of the surface of the bubble and the vectors represent the velocity.
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Figure 6.24: Plots showing the frequency of the signals generated by initially identical bubbles as

they pass through expansions with an angle of expansion of θ = 90◦, 75◦, 60◦, 45◦, 30◦ and 15◦.

The lower dominant frequency remains constant throughout while there is an increase in the

higher frequencies as the angle of expansion increases.

This is consistent with the conclusion that this frequency oscillation is generated by the natural

oscillation of the bubble similar to that discussed in Chapters 4 and 5. The source of any

higher frequency signals from these simulations cannot be identified with any certainty. It is

recommended that further work be conducted to confirm the source of these signals.

6.3.2.2 Critical Length

The qualitative conclusions drawn from both the experimental work conducted by Soldati (2013)

and Danabalan (2012) and the simulations presented in Section 6.3.2.1 show that given a more

228



CHAPTER 6. RISE OF A TAYLOR BUBBLE THROUGH A CHANGE IN GEOMETRY

gradual expanding section, longer bubbles are able to pass through before the neck closes causing

the bubble to be split into two parts.

A series of simulations were conducted to determine the critical length of a Taylor bubble

in a 0.038 m pipe expanding into a 0.08 m pipe for different angles of expansion. The results

of the simulations reported in Section 6.3.2.1 were used to determine initial estimates of the

critical length of bubble for each angle of expansion. The initial bubble length was then refined

to determine the value of the critical bubble length, Lc. The exact value of this critical length

lies between an upper bound, a length at which part of the bubble is split into two parts by the

closing neck, and a lower bound, a length at which the bubble was observed to pass fully through

the expansion before the neck closed. Figure 6.25 shows an example of the simulated upper and

lower bounds of the critical length for the 90◦ expansion case.

Figure 6.26 shows a plot of the results of these simulations. An analysis of these results

confirms that longer bubbles are able to successfully pass through the smaller angles of expansion.

However, the relationship between the angle of expansion, θ, and the critical bubble length, Lc

is not linear, but increases rapidly as the angle of expansion approaches 0. Figure 6.27 shows

a replot of the same data as presented in Figure 6.26, but with the cosecθ (1/sinθ) plotted

against the critical bubble length. A linear regression analysis of these data concludes that a

linear relationship exists between cosecθ and critical length (with R2 values of 0.998 for the lower

bound and 0.997 for the upper bound).

This confirms that the angle of expansion directly influences the flow behaviour. To investi-

gate this finding further, the flow field around the bubble was studied. As shown in Figure 6.23,

the fluid velocity fields in the film surrounding the bubble are significantly different between the

extreme cases of 90◦ and 15◦ expanding sections.

To quantify this difference, the angle of the velocity relative to the vertical, z axis, were
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Figure 6.25: 3D iso-surfaces showing an example of the bubble at or above the upper bound of

the critical length(left), and at or below the lower bound of the critical length (right) as they

pass through a 90◦ expansion.
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Figure 6.26: A plot of the upper and lower bounds of the critical length of bubble which can

fully pass through the expansion before the neck closes against the angle of expanding section.
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Figure 6.27: A plot of the upper and lower bounds of the critical length of bubble which can

fully pass through the expansion before the neck closes against the cosec of angle of expanding

section. This shows a linear relationship between L’ and cosecθ.
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Figure 6.28: Schematic illustrating the definition of the angle φ.

averaged over the radius of the film. These are given by

φ = tan−1 ur

uz
(6.1)

where ur and uz are the radial and axial components of the velocity, as indicated in Figure 6.28.

These were taken at the level of the base of the expansion, at a height of 0.5 m from the base of

the pipe. Figure 6.29 illustrates the results of this investigation, where the angle φ is observed

to vary in a linear fashion with θ.

One possible explanation for the relationship between the critical length of bubble and cosecθ
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Figure 6.29: Plot showing the linear relationship between φ and theta.
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Figure 6.30: Plot showing the relationship between vr and theta.
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is to consider the time taken for the bubble to rise through the expansion. Assuming the bubbles

with length, L′ are all rising with the same velocity, u, the time, T , taken for the bubble to pass

through the expansion is

T = L′/u. (6.2)

While it passes through the expansion, it is being affected the radial component of a jet of

strength, vr, which is assumed to be constant (as it is shown to be approximately constant in

Figure 6.30. The radial component of the jet is vrsinφ. Assuming that jet works its way into the

bubble at a constant rate, it will take

T = D/(2vrsinφ), (6.3)

where D is the diameter of the lower tube, to pinch off the bubble. Equating these two times

and rearranging gives

L′ = (uD/2vr)
1

sinφ
. (6.4)

As shown in Figure 6.29, φ is linearly related to θ, and so

L′ ∝ cosecθ. (6.5)

The experimental results of Soldati (2013) were also analysed in the same manner for compar-

ison, and are shown in Figure 6.31. From this it can be observed that whilst a linear relationship

may exist between cosecθ and Lc, its fit within experimental error is not as good as that pre-

dicted by the simulated data. In this case, a linear regression analysis leads to a coefficient of

determination, R2 of 0.95. This discrepancy may in part be due to the relatively large discrete

increments between the different volumes of gas injected during the experiments.

From an analysis of the results of these simulations it was concluded that the angle of the ex-

panding section can significantly affect the flow field around the Taylor bubble as it rises through

the expansion. The variation in the direction of flow affects the necking process, which may in-

fluence the critical length of bubble which may pass through the expansion without splitting into
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Figure 6.31: The upper and lower bounds of the critical volume of bubbles which can fully

pass through the expansion before the neck closes against cosecθ for the experiments performed

by Soldati (2013). This also shows a linear relationship between bubble volume and cosecθ

supporting the results of the simulations.
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two parts. The variations in the critical bubble lengths for both the simulations presented and

the experiments of Soldati (2013) were confirmed to have a linear relationship to cosecθ.

6.3.3 Variation of viscosity

A set of simulations was conducted in which the viscosity of the liquid phase was varied. The

experiments of James et al. (2006) and Soldati (2013); Danabalan (2012) suggest that the necking

process is governed mainly by the geometry of the expanding section, rather than the viscosity

of the fluid.

In the simulations presented, the viscosity of the liquid phase was varied over 3 orders of

magnitude (from 0.001 Pa s, 0.1 Pa s and 1 Pa s) to verify if the behaviour observed in Section 6.3.1

is still observed in more viscous liquids. Due to the higher viscosity, there will be an increase in

the thickness of the liquid film (Llewellin et al., 2011). For this reason, bubbles were initialised

with a thicker liquid film, but equivalent lengths to those in Section 6.3.2.2. These bubbles

therefore had a smaller volume of air, but all other initial conditions were kept constant. This

gave a set of non–dimensional parameters as described in Table 6.3. From an analysis of the

theoretical Reynolds number based on buoyancy, ReB , and the simulated Reynolds number based

on the liquid film thickness and film velocity, Ref , it was determined that for cases with viscosity

0.1 and 1 Pa s, the flow may be considered to be laminar (Nogueira et al., 2006a; Llewellin et al.,

2011).

Simulations were initially run with an expansion angle of 90◦ and initial length of 4.4L′, as in

Section 6.3.1. The frequencies of the oscillations generated by the Taylor bubbles were analysed.

Taylor bubbles rising in a higher viscosity liquid were observed to produce similar frequencies

to the lower viscosity cases. Figure 6.32 shows the oscillations in pressure and the subsequent

frequencies of these oscillations. From an analysis of this figure, a damping effect can be observed

on the amplitude of the oscillations. The resulting low frequency component remains constant;
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Table 6.3: Table of non–dimensional parameters determined for the rise of Taylor bubbles within

fluids of viscosity 0.001, 0.1 and 1 Pa s.

µ (Pa s) ReB Ref Eo M Fr

0.001 23143 4867 191 2.4 ×10−11 0.351

0.1 231 56 191 2.4 ×10−3 0.331

1 23 2.9 191 2.4 ×101 0.175

however, the higher frequency component is seen to decrease slightly with this damping. Further

increasing the viscosity by an order of magnitude to 1 Pa s again reduces the higher frequency,

while the lower frequency remains constant.

One qualitative change that can be noticed given an increased liquid viscosity is the decrease

in bubbles shed from the tail of the Taylor bubble. Bubbles which are shed in the µ = 0.1 Pa s

case are seen to coalesce more readily than the µ = 0.001 Pa s case. This is due to the closed wake

structure observed behind the Taylor bubble rising in the more viscous fluid at these Reynolds

numbers (Nogueira et al., 2006a). Figure 6.33 shows a comparison of streamline plots of the

wake regions behind rising Taylor bubbles in liquids of 0.001, 0.1 and 1 Pa s. One consequence

of this is that any parts of the bubble shed in the 0.001 Pa s case will reduce the length of the

bubble, and hence bubbles may have a different length when reaching the expanding section

given a different viscosity. This may account for the decrease in the higher frequency given an

increase in viscosity. Another qualitative difference which can be observed is that when viscosity

is increased to a level of 1 Pa s (Ref= 2.9), the splitting of the bubble as it passes through the

expansion does not result in the film of gas penetrating the nose of the bubble. This can be

attributed to a damping effect caused by the increased viscosity.

The results of these simulations are in agreement with the conclusions of the experimental
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Figure 6.32: Plots of the Power Spectral Density of the signals generated by bubbles of identical

initial length as they pass through a 90◦ expansion section for viscosities of 1, 0.1 and 0.001 Pa s

respectively.

studies of James et al. (2006); Danabalan (2012); Soldati (2013). These suggest that while

some damping effects may be observed, viscosity does not play a critical role in the breaking

mechanism. Similar behaviour is observed in the simulations conducted at 0.001 Pa s as is

observed in the experiments of Soldati (2013) at a viscosity of 70 Pa s, an increase of almost six

orders of magnitude.

6.3.4 Variation of pipe diameter ratio

A set of simulations was conducted in which the diameter of the upper pipe was varied. The

angle of expansion was maintained at 90◦ and the diameter of the lower pipe was maintained at

0.038 m during these simulations. The purpose of these simulations was to determine the effects

of varying the ratio between the diameters of the upper and lower pipes on the critical length of

the bubble. It was hypothesised that there would be a critical ratio at which the effect of the
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Figure 6.33: Plots of the streamlines in the wake of a Taylor bubble rising in fluids of viscosity (a)

0.001 Pa s, (b) 0.1 Pa s, (c) 1 Pa s. Image (a) demonstrates the open wake structure associated

with turbulent flow regime given ReB >1500 (Nogueira et al., 2006a) and images (b) and (c)

demonstrate the closed wake structure associated with the laminar flow regime with ReB <500,

.

240



CHAPTER 6. RISE OF A TAYLOR BUBBLE THROUGH A CHANGE IN GEOMETRY

walls of the upper pipe played no role in the necking process of the bubble.

In these simulations, the diameter of the upper pipe was varied from 0.06 m to 0.14 m in

increments of 0.02 m. This corresponds to a variation in upper to lower pipe diameter ratios of

approximately 1.5 to 3.7. For the cases with upper pipe diameters of 0.06 m, 0.08 m and 0.1 m,

the critical length of bubble was seen to decrease with increasing upper pipe diameter. However,

the critical length of bubble does not vary with further increases in upper pipe diameter, which

can be observed in Figure 6.34.

Although the Taylor bubbles rising through the pipes with upper diameter 0.1 m, 0.12 and

0.14 m have the same critical length, an analysis of Figures 6.36 and 6.35 shows some slight

qualitative differences. Figure 6.35 shows bubbles of initial length 1.5L′, at a time of 1.3 s from

the start of the simulation, having risen into pipes of 0.1, 0.12 and 0.14 m respectively. In

the cases with an upper pipe diameters of 0.1 m and 0.12 m, there is a small difference in the

shape of the bubble as the tail penetrates the nose. This is not observed when comparing the

bubbles in the 0.12 and 0.14 m cases. Similar conclusions can be drawn from an analysis of

Figure 6.36 which shows bubbles with an initial length of 1.75L′, which is the upper bound of

the critical length. Although the bubble shapes in all three cases are similar, there are some

minor discrepancies between the bubbles rising into pipes of diameter 0.1 m and 0.12 m which

are not seen between the bubbles rising into pipes of diameter 0.12 m and 0.14 m.

From an analysis of the results of these simulations, it can be concluded in this case that

a ratio of upper to lower pipe diameters of approximately 2.5 to 3 is required for the walls of

the upper pipe to have a negligible effect on the process of Taylor bubbles passing through this

expansion section.
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Figure 6.34: A plot of the upper and lower bounds of the critical length of bubble against the

ratio of the diameter of the upper pipe to the diameter of the lower pipe. This shows that a ratio

of upper to lower pipe diameters of approximately 2.5 to 3 is required for the walls of the upper

pipe to have a negligible effect on the process of Taylor bubbles passing through this expansion

section.

242



CHAPTER 6. RISE OF A TAYLOR BUBBLE THROUGH A CHANGE IN GEOMETRY

Figure 6.35: 3D iso-surfaces showing the simulated behaviour of the bubbles at the lower bound

of the critical length as they pass through a 90◦ expansion with upper diameter 0.1 m (left),

0.12 m (centre) and 0.14 m (right). In the cases with an upper pipe diameters of 0.1 m and

0.12 m, there is a small difference in the shape of the bubble as the tail penetrates the nose. This

is not observed when comparing the bubbles in the 0.12 and 0.14 m cases
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Figure 6.36: 3D iso-surfaces showing the simulated behaviour of the bubbles at the upper bound

of the critical length as they pass through a 90◦ expansion with upper diameter 0.1 m (left),

0.12 m (centre) and 0.14 m (right). Although the bubble shapes in all three cases are similar,

there are some minor discrepancies between the bubbles rising into pipes of diameter 0.1 m and

0.12 m which are not seen between the bubbles rising into pipes of diameter 0.12 m and 0.14 m.
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6.4 Conclusions

The qualitative and quantitative behaviour of Taylor bubbles rising through expansions in pipe

diameter observed during the laboratory experiments reported by James et al. (2006) was mod-

elled using CFD. A frequency analysis of the results of the CFD simulations showed comparable

dominant frequencies to the experimental results. The use of a CFD model also confirmed the

qualitative mechanism proposed by James et al. (2006) for the breaking of a Taylor bubble as it

passes through an expansion section.

A variation in the angle of the expansion, given constant upper and lower pipes of diameters

0.038 m and 0.08 m respectively, resulted in significantly different behaviour of a Taylor bubble

as it passed through the expansion section. Much longer bubbles could pass through a more

gradually expanding section than could pass through a sudden expansion before the neck closed.

This resulted in very different flow regimes in the upper pipe given different angles of expansion.

A Taylor bubble could split into numerous smaller bubbles given a sudden expansion, or remain

as one bubble given a more gradually expanding section. A linear variation was found between

the critical length of bubble which could pass through the expansion section before the neck

closed and the cosec of the angle of expansion. When analysed in the same fashion, the results

of Soldati (2013) also exhibited this trend.

Similar to the results presented in Chapter 5, an increase in liquid viscosity, giving a reduction

in Reynolds number, reduced the amplitude of oscillations significantly. However, the effect on

the frequency of the bubble was minimal, with a small damping effect reducing the frequency

of oscillation given an increase in viscosity. A significant increase in viscosity did influence the

breaking mechanism, with the film of gas from the neck of the bubble no longer penetrating the

nose of the bubble

Results obtained by varying the diameter of the upper pipe suggest that the effects of the
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wall on the behaviour of a Taylor bubble passing through an expansion section become negligible

at a ratio of upper to lower pipe diameters of approximately 2.5 to 3.

Further investigations into the results of a variation of Eötvös number should be conducted

to determine the roles of surface tension and pipe diameter on the behaviour of Taylor bubbles

passing through expansions in pipe diameter. Investigations into the effect of contractions of

pipe diameter are also recommended.
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7
Conclusions and Recommendations

This chapter summarises the conclusions drawn from this study together with proposed recom-

mendations for future work in this field.

7.1 Conclusions

The work presented in Chapter 2 details a critical review of the background literature on gas-

liquid flows, in particular the rise of Taylor bubbles. Previous studies have shown that the

rise of Taylor bubbles may be described by a number of non-dimensional parameters, namely

the Froude, Eötvös, Morton and buoyancy Reynolds numbers. Furthermore, the rise rate, film

thickness and wake behaviour can all be estimated using theoretical or empirical models if these

parameters are known.

From an analysis of the background literature it is concluded that there are a number of

areas upon which insufficient experimental work has been published. Notably, there is a lack of

experimental work in both large diameter pipes (over 0.12 m) and in high viscosity fluids (over

5 Pa.s). This conclusion was used as the motivation for the work presented in Chapters 4 and

5, which presents a summary of investigations that study the flow of Taylor bubbles in larger

diameter pipes.
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Many studies have shown that Taylor bubbles are not only commonplace in the oil and gas

industry, but also prevalent in the natural world, where they are, in particular the driving force

behind the eruption of Strombolian volcanoes. These bubbles of gas rise through the magma

and burst at the surface. Magmas in these systems have viscosities which can be in the order of

hundreds of Pa.s (O(100)Pa.s). Although conduits are normally modelled as vertical, cylindrical

pipes, this is often not the case and conduit inclinations and changes in conduit diameter often

occur. The rise of Taylor bubbles through changes in pipe diameter were the focus of the

numerical studies presented in Chapter 6.

A number of conclusions were drawn from previous work conducted using numerical models

to study the rise of Taylor bubbles which influenced the choice of the models adopted for the

numerical studies presented in this thesis. To account for the presence of two fluids, the VOF

model has been shown to be capable of simulating the rise of Taylor bubbles in vertical pipes. This

method is investigated in more detail in Chapter 3. Although many studies have used shortened

domains with either moving walls or periodic boundary conditions, it was concluded that the

whole domain was required to be modelled in the studies presented in this thesis. Although this

is computationally expensive, the behaviour of the atmospheric liquid–air surface or expansion

of the bubble would not have been able to modelled otherwise.

An analysis of the theoretical Reynolds numbers (based on buoyancy of the bubble) showed

that in many scenarios, turbulent flow would have to be modelled. The k−ε turbulence model has

been shown in previous studies to adequately model the turbulent wake and thin film behaviour

(Taha and Cui, 2004).

An analysis of the results of published numerical studies of Taylor bubbles show that few

previous investigations considered either compressible Taylor bubbles or ones possessing a high

Eötvös number (≥ 500). There were also no published numerical studies that have considered

changes to the cross section of the pipe geometry. These model and parameter changes provided
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the motivation behind the numerical studies presented in Chapters 5 and 6.

Chapter 3 discusses the model created using the commercial CFD solver ANSYS Fluent 12.1

to study the rise of a Taylor bubble. This solver computes a numerical solution to the momentum

and continuity equations using a finite volume method.

For turbulent flow regimes (ReB >1500, (Nogueira et al., 2006b)) the realisable k − ε model

was applied to close the RANS equations. This closure model has been shown to produce high

quality results in situations which involve jets, such as those seen in the thin film and wake

trailing a rising Taylor bubble.

A critical analysis of the literature concludes that the use of the Volume of Fluid (VOF)

method coupled with the Piecewise Linear Interface Construction (PLIC) scheme is capable of

modelling the rise of Taylor bubbles. The use of these schemes have been shown to produce

higher quality results when used in conjunction with an O–grid structured hexahedral mesh

(Abdulkadir et al., 2011).

A review of potential models gave rise to the conclusion that the Quadrilateral Upwind

Interpolation for Convective Kinematics (QUICK) scheme was to be used to spatially discretize

the solution and the transient Non Iterative Time Advancement (NITA) scheme to temporally

advance the model.

A series of verification and validation studies were also conducted and presented in Chapter 3.

A quantitative method of verification, the GCI method, was used to compute error values for both

the spatial and temporal discretisation stages. An analysis of the results of the CFD simulations

showed a strong agreement with the empirical correlations published for rise velocity. In addition,

the simulated film thickness measurements were in close agreement with the theoretical model

of Llewellin et al. (2011). The results from this study also suggest that the theoretical values for

rise rate are valid over a wider range of pipe diameters and fluid viscosities than stated in the
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literature. These increased ranges correspond with flow regimes which have high Morton and

Eötvös numbers, similar to those which govern the flow of magma and magmatic gases within

volcanoes.

The experiments detailed in Chapter 4 investigated the behaviour of a Taylor bubble rising

in water within a pipe of internal diameter 0.29 m. Here the Eötvös number is significantly

higher than had previously been reported in the literature. From an analysis of the results of

these experiments, a number of conclusions may be drawn. Firstly, Taylor bubbles rising in

quiescent water, in a pipe of diameter 0.29 m, are inherently stable. This finding agrees with

the theoretical work of Batchelor (1987) who predicted that Taylor bubbles will be stable up

to a maximum diameter of 0.46 m, assuming quiescent conditions. Previous experimental work

had never been conducted at this scale, although unpublished work of James et al. (2011) had

suggested the existence of stable bubbles at a diameter of 0.25 m. In order for the fluid in the

pipe to be assumed to be quiescent, a settling period of 120 s needed to be left before the release

of any further Taylor bubbles.

Taylor bubbles left to rise under the force of buoyancy (without a continuous flow of gas) will

rise at a rate which is dependent on their length. This was expected due to surface of the liquid

being open to the atmosphere and hence able to expand as it rises. The Froude numbers for the

bubbles compare well to previous experimental and theoretical studies (Taylor and Davies, 1950;

Dumitrescu, 1943; Viana et al., 2003).

Due to the injection method described in Section 4.2, a sudden curtailment of the gas injection

resulted in oscillations of both the rise rate of the surface of the liquid, and in the rise rate and

length of the bubble. The observed oscillations display a similar behaviour to that of a simple

harmonic oscillator. Consequently, Pringle et al. (2014) and Vergniolle et al. (1996) propose the

use of such a model to describe the oscillatory behaviour of such bubbles, which was shown to
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closely agree with the observed behaviour.

The results of these experiments also provided data with which to validate the results of the

CFD simulations which are presented in Chapter 5. These simulations successfully replicate the

behaviour of the rising bubbles observed during laboratory experiments using the compressible

CFD model described in Chapter 3.1.

The use of this model was able to reproduce the observed rise behaviour of a stable Taylor

bubble within 15% of the measured experimental values. The simulated rise of the upper surface

level was shown to be within 5% of the predicted theoretical value and the simulated frequency

of oscillation is approximately 10% above the observed experimental values.

In a base case simulation, the Taylor bubble is initialised with a pressure equal to the expected

hydrostatic pressure at the nose of the bubble. A variation in this initial pressure away from the

hydrostatic value was shown to give oscillations with varying amplitudes but that were of the

same frequency. The initial pressure disturbance produces a change in the bubble length that

is dependent on the initial compression or expansion of the bubble. As the resultant oscillation

frequency is dependent on this length, there is also a small change in the frequency of oscillation.

This is in accordance with both the results from the experimental studies presented in Chapter

4 and the theoretical models of Vergniolle et al. (1996) and Pringle et al. (2014).

A set of parametric studies were also conducted to study the effects of a change in the liquid

viscosity on the oscillatory behaviour of the bubble. Given an increase liquid viscosity, giving a

reduction in Reynolds number, the amplitude of oscillations reduced significantly. However, the

effect on the frequency of the bubble was minimal up to the point at which oscillations could no

longer be detected accurately. The increased viscosity has a damping effect on the oscillations

and hence one would expect the frequency to decrease with increasing viscosity, if the amplitude

was such that it could be measured, due to it exhibiting the same behaviour as a simple harmonic

oscillator.
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The stability of the bubble given an increase in pipe diameter was investigated using the

numerical model. The limiting value of stability was shown to be comparable with the theoretical

prediction of Batchelor (1987). The stability of bubbles rising into the wake of a previous bubble

was also investigated. The results of these simulations showed an qualitative agreement with the

experimental observations presented in Section 4.3.

A numerical study investigating the rise of Taylor bubbles through an expansion in pipe diam-

eter was detailed in Chapter 6. The qualitative and quantitative behaviour observed during the

laboratory experiments reported by James et al. (2006) was replicated using the compressible

CFD model previously described in Chapter 3.1. The results of the CFD model replicated the

qualitative mechanism proposed by James et al. (2006) for the breaking of a Taylor bubble as it

passes through an expansion section. James et al. (2006) observed that when a Taylor bubble

encountered an expansion in pipe diameter, it rapidly expanded both vertically and laterally

from the nose. This resulted in an increase in the flow in the liquid film surrounding the bubble

which caused a necking or pinching of the bubble. For bubbles of sufficient length, this necking

will split the bubble and generate oscillations in the measured pressure signals. Conducting a fre-

quency analysis on the results of the CFD simulations showed comparable dominant frequencies

to the experimental results.

A parametric study was conducted to assess the effect of varying the angle of the expansion,

given upper and lower pipes of diameter 0.038 m and 0.08 m respectively. A variation in the angle

of the expansion resulted in significantly different qualitative behaviour of a Taylor bubble as it

passed through the expansion section. Much longer bubbles could pass through a more gradually

expanding section than could pass through a sudden expansion before the neck closed. This

could result in very different flow regimes in the upper pipe given different angles of expansion.

A Taylor bubble could split into numerous smaller bubbles given a sudden expansion, or remain
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as one bubble given a more gradually expanding section. A linear variation was found between

the critical length of bubble which could pass through the expansion section before the neck

closed and the cosec of the angle of expansion. When analysed in the same fashion, the results

of Soldati (2013) also exhibited this relationship.

Similar to the results presented in Chapter 5, an increase in liquid viscosity, giving a reduction

in Reynolds number, reduced the amplitude of oscillations. Again, the effect on the frequency

of the bubble was minimal. A small damping effect was observed, reducing the frequency of

oscillation given an increase in viscosity. A significant increase in viscosity (3 orders of magnitude)

did influence the breaking mechanism, with the film of gas from the neck of the bubble no longer

penetrating the nose of the bubble.

A set of simulations were conducted in which the effects of a systematic variation in the

diameter of the upper pipe were investigated. An analysis of the results of these simulations

suggest that the effects of the wall on the behaviour of a Taylor bubble passing through an

expansion section become negligible at a ratio of upper to lower pipe diameters of approximately

2.5-3.

In conclusion, the objectives set in Section 1.2 have been met to fulfil the aim of gaining

a better understanding of the rise of single Taylor bubbles in flow conditions which had not

previously been studied.

7.2 Recommendations

A number of areas exist for further experimental and numerical investigations into the rise of

single Taylor bubbles.

Firstly, a number of improvements to experimental method described in Section 4.2 are

recommended to reduce the magnitude of the errors. The repair of the faulty rotameters would
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allow more repeatable experiments, as would the introduction of an automated injection system,

such as that seen in the work of Nogueira et al. (2006b). The use of pressure sensors to monitor

the oscillatory behaviour, such as in the work of James et al. (2004, 2006) is also recommended

to reduce the magnitude of the errors incurred in the calculation of the frequency of oscillation.

The use of specialist lighting equipment would allow high speed video recording at higher frame

rates than was possible, which again could reduce the magnitude error values for the frequency

calculations as well as the rise rate calculations.

Future experimental work to test the theoretical limit on the stability of rising Taylor bubbles

proposed by Batchelor (1987) could be conducted. For this, a vertical pipes with diameters in

the region of 0.4 m 0.45 m and 0.5 m would be required. However, it is likely to be prohibitively

expensive to carry out a range of experiments at this range.

Further experiments at an increased liquid viscosity using this experimental apparatus are

recommended, and are due to be conducted in future projects at the University of Nottingham.

Further numerical research is also recommended in this field, in particular the use of LES

(Large Eddy Simulation) or DES (Detached Eddy Simulation) to resolve the turbulent flow

behaviour in finer detail. These models are significantly more computationally expensive than

the RANS approach used in this work. The method of Sawko and Thompson (2010) for treating

turbulence at the interface between the two phases should also be applied to the model and

tested for the rise of Taylor bubbles as this has shown excellent results in stratified flows.

Further to the work presented in Chapter 5, the effect of using a polytropic gas law, with

γ = 1.1 as suggested by Pringle et al. (2014) and Vergniolle et al. (1996) should be investigated.

This would require the development of a User Defined Function to define the density of the gas

at a specified pressure. Studies of inclined pipes have shown an increased rise velocity, and the

effect of changing the angle of inclination of the pipe has on the frequency and amplitude of

oscillations could also be studied.
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When considering the rise of Taylor bubbles through expansions in pipe diameter, it is rec-

ommended that further investigations into the results of a variation of Eötvös number should be

conducted. This study would determine the roles of surface tension and pipe diameter on the

behaviour of Taylor bubbles passing through expansions in pipe diameter. Investigations into

the effect of contractions of pipe diameter are also recommended.
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A
UDF Source Code

The source code for the UDF to determine the level of the top surface in the simulations of

Chapter 5 is provided below.

/∗ UDF to c a l c u l a t e the l e v e l o f the water s u r f a c e ∗/

#inc lude "udf . h"

/∗ This type o f UDF get s executed at the end o f each time step ∗/

DEFINE_EXECUTE_AT_END( sur fa c eHe ightCa l c )

{

/∗ The su r f a c e he ight that we ’ r e a f t e r ∗/

r e a l su r fa c eHe ight = 0 . 0 ;

#i f !RP_NODE

FILE ∗ f i l e ; /∗ F i l e po in te r ∗/

/∗ Get the cur r ent time ∗/

r e a l currentTime = CURRENT_TIME;

#end i f /∗ !RP_NODE ∗/

#i f !RP_HOST
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Domain ∗mixture = Get_Domain ( 1 ) ; /∗ Mixture domain∗/

/∗ The f i r s t ( i e index 0) phase should be water here ∗/

Domain ∗water = DOMAIN_SUB_DOMAIN( mixture , 0 ) ;

Thread ∗ ct ; /∗ Ce l l thread ∗/

i n t n ; /∗ Node/ f a c e counter ∗/

/∗ Nodes need t h i s v a r i a b l e ∗/

r e a l f i l lHe ightMax ;

/∗ Set maximum f i l l H e i g h t to a l a r g e nega t iv e number ∗/

f i l lHe ightMax = −1.0E+06;

/∗ Step through the c e l l threads ∗/

thread_loop_c( ct , water )

{

c e l l_ t c ;

/∗ Step through the c e l l s in each thread ∗/

begin_c_loop( c , c t )

{

/∗ Set the maximum and minimum extent s o f t h i s c e l l ∗/

r e a l zMin = 1 .0E+06;

r e a l zMax = −1.0E+06;

r e a l dz ; /∗ Ce l l extend in z−d i r e c t i o n ∗/

r e a l f i l l H e i g h t = 0 . 0 ;

i n t f u l lAd j a c en t = 0 ;

/∗ Loop over the f a c e s o f the c e l l , check ing that at l e a s t

one adjacent c e l l has a volume f r a c t i o n above 0 .5 ∗/
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c_face_loop ( c , ct , n)

{

face_t f = C_FACE( c , ct , n ) ;

Thread ∗ f t = C_FACE_THREAD( c , ct , n ) ;

/∗ Find the outer c e l l and thread ∗/

c e l l_ t c1 = F_C1( f , f t ) ;

Thread ∗ ct1 = THREAD_T1( f t ) ;

i f ( c1 != 0 && ct1 != NULL && C_VOF( c1 , c t1 ) > 0 .5 )

f u l lAd j a c en t = 1 ;

}

/∗ Loop over the nodes in the c e l l ∗/

c_node_loop( c , ct , n)

{

Node ∗node ; /∗ Node po in te r ∗/

r e a l zNode ; /∗ Node z coord ∗/

node = C_NODE( c , ct , n ) ;

zNode = NODE_Z( node ) ;

i f ( zNode > zMax )

zMax = zNode ;

i f ( zNode < zMin )

zMin = zNode ;

}

dz = zMax − zMin ;
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/∗ Ca lcu la t e the " f i l l he ight " f o r t h i s c e l l ∗/

i f ( f u l lAd j a c en t == 1)

f i l l H e i g h t = zMin + C_VOF( c , c t )∗ dz ;

/∗ Check aga in s t the running maximum ∗/

i f ( f i l l H e i g h t > f i l lHe ightMax )

f i l lHe ightMax = f i l l H e i g h t ;

}

end_c_loop( c , c t ) ;

}

/∗ Can probably comment t h i s out ∗/

Message ("Node : %6d , Max. he ight : %12.5 e\n" , myid , f i l lHe i ghtMax ) ;

#i f RP_NODE

/∗ In p a r a l l e l , work out the max o f f i l lHe ightMax a c r o s s a l l nodes ∗/

sur fa c eHe ight = PRF_GRHIGH1( f i l lHe ightMax ) ;

#end i f /∗ RP_NODE ∗/

#end i f /∗ !RP_HOST ∗/

/∗ Pass maximum from the nodes to the host ∗/

node_to_host_real_1( sur fa c eHe ight ) ;

#i f !RP_NODE

/∗ Write the cur r ent time and su r f a c e he ight to f i l e ∗/

f i l e = fopen (" sur faceHe ight62899 . l o g " ," a " ) ;

f p r i n t f ( f i l e ,"%15.8 e%15.8 e\n" , currentTime , su r fa c eHe ight ) ;

f c l o s e ( f i l e ) ;
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#end i f /∗ !RP_NODE ∗/

}
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