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Abstract 
 
This thesis is concerned with automated personnel scheduling in healthcare 

organisations; in particular, nurse rostering. Over the past forty years the nurse 

rostering problem has received a large amount of research. This can be mostly 

attributed to its practical applications and the scientific challenges of solving such 

a complex problem. The benefits of automating the rostering process include 

reducing the planner’s workload and associated costs and being able to create 

higher quality and more flexible schedules. This has become more important 

recently in order to retain nurses and attract more people into the profession. 

Better quality rosters also reduce fatigue and stress due to overwork and poor 

scheduling and help to maximise the use of leisure time by satisfying more 

requests. A more contented workforce will lead to higher productivity, increased 

quality of patient service and a better level of healthcare. 

Basically stated, the nurse rostering problem requires the assignment of shifts to 

personnel to ensure that sufficient employees are present to perform the duties 

required. There are usually a number of constraints such as working regulations 

and legal requirements and a number of objectives such as maximising the nurses 

working preferences. When formulated mathematically this problem can be 

shown to belong to a class of problems which are considered intractable. The 

work presented in this thesis expands upon the research that has already been 

conducted to try and provide higher quality solutions to these challenging 

problems in shorter computation times.  

The thesis is broadly structured into three sections. 

1) An investigation into a nurse rostering problem provided by an industrial 

collaborator (ORTEC): A hybrid heuristic ordering and variable neighbourhood 
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search is developed and tested using commercial nurse rostering data. The 

efficiency and strength of the approach is demonstrated through experimental 

comparisons with an existing commercially implemented genetic algorithm. The 

genetic algorithm is part of ORTEC’s Harmony software package and it operates 

successfully in a number of real world scenarios. The results of the research 

presented in this thesis are now incorporated in the latest product versions of 

Harmony. 

2) A framework to aid research in nurse rostering: A number of research tools 

have been created and are presented in this thesis. They have been made publicly 

available (including source code) in order to facilitate the establishing of 

benchmark nurse rostering instances and results. Practically oriented benchmark 

instances have been requested by the nurse rostering research community for 

some time. This work fills the void and provides a solid foundation for future 

research. 

3) The development of a number of advanced algorithms for solving highly 

complex, real world problems. A number of search neighbourhoods previously 

used in local search and metaheuristic approaches to nurse rostering are examined 

and tested using the benchmark data sets. The results of this investigation are then 

used to create a variable depth search which effectively chains together moves 

and swaps from the most successful neighbourhoods. A variety of heuristics were 

developed to efficiently find improving chains. The algorithm also accepts a 

predefined computational time limit and dynamically adjusts in order to use its 

time more effectively. When compared against previously published algorithms 

(even when dynamically adjusting to their run times), the variable depth search is 

shown to be very successful. 
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In an attempt to produce even higher quality solutions, the variable depth search 

was incorporated as the improvement method into an evolutionary algorithm: 

scatter search. The scatter search was found to be competitive with other 

evolutionary approaches and particularly strong on some problem instances. 
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1 Introduction 

Personnel scheduling belongs to a wide class of timetabling problems which 

includes educational timetabling [67, 68, 212], sports timetabling [95] and 

transport timetabling [154]. Personnel timetabling problems are found in a wide 

variety of industries and environments. The employees can range from airline 

crew [19] to ambulance officers [97], from factory [38] to fast food restaurant 

workers [121], from police [230] to call centre staff [108] and many more. This 

thesis is concerned with personnel scheduling in healthcare, in particular, nurse 

rostering. The nurse rostering problem is not only one of the more commonly 

occurring problems (the UK’s NHS alone currently employs approximately 

400,000 nurses [236])  but it is also one of the most complex. This high 

complexity is due to a number of factors, some of which (but rarely all) may be 

found in other employee scheduling problems. These factors include: 

 
 Hospitals operate for twenty four hours a day, seven days a week. This 

introduces a number of legal constraints and working preferences relating to 

night shifts, minimum rest times, working on weekends and national holidays 

and so on. 

 

 The workforces consist of nurses with varying skills and grades which need to 

be considered when constructing rosters.  

 

 A variety of shifts. Even the more basic problems usually have a minimum of 

three shift types (e.g. early, late and night). More frequently, there are a 
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number of other shift types to assign, each with varying durations and 

associated constraints.  

 

 Large numbers of employees. 

 

 Cover requirements may not be uniform but vary from day to day. 

 

 Long planning horizons. They can range up to twelve weeks or even a year 

for some instances. 

 

 Many, often conflicting constraints and objectives. For example, constraints 

or objectives relating to: 

− Cover requirements. 

− Day on/off and shift on/off requests. 

− Minimum and maximum length stretches of days on, off, or specific 

shifts. 

− Minimum and maximum hours and/or shifts worked during certain 

periods. 

− Shift rotations. 

− Desirable and undesirable work patterns. 

− Minimum and maximum numbers of specific shift types (possibly during 

certain periods). 

− Minimum and maximum ratios of shift types worked. 

− Tutorship or oppositely ensuring certain employees do not work at the 

same time. 
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These features make the problem not only hard to solve but also to model. The 

effort required is worthwhile though when high quality rosters are produced, as 

these provide a number of significant benefits which can be outlined as follows: 

 
 Reduced hospital expenditure. Nurse salaries are a significant proportion of 

a hospital’s running costs. Better scheduling can reduce this expense in a 

number of ways:  

 

− Through minimising over coverage (not assigning more nurses than are 

required for a shift).  

− Via cutting the reliance on expensive agency nurses to fill gaps in 

schedules when it may appear to be the only solution.  

− Through increased work performance due to reduced fatigue and stress 

amongst nurses caused by poor scheduling (e.g. overwork, insufficient 

rest, bad shift combinations etc). 

 

 Higher staff retention and a recruiting aid. A number of countries have 

experienced a reduction in the number of people training to become nurses 

and/or an increase in the number of nurses leaving the profession. As the 

populations of these countries age, the demand for healthcare will increase 

and these nurse shortage problems will become more acute. In order to 

encourage more people to become nurses and to reduce the number of people 

leaving the nursing profession, various initiatives have been proposed. One of 

these is to allow more part time contracts and to provide the nurses with more 
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flexibility and input on when they work. This allows, for example, more 

parents with young children to remain in nursing.  

 

 Reduction in absenteeism and tardiness. Many organisations incur a 

reduction in productivity due to staff absenteeism and tardiness. Hospitals are 

no exception. The reasons for nurses arriving late or taking days off are 

various. This can partly be attributed, though, to dissatisfaction with their 

schedules or fatigue due to bad scheduling. This can be reduced through better 

rostering and giving the nurses more say in their work patterns. For example, 

a nurse is less likely to be absent for a shift which they actually requested. 

 

 Personal preferences: Increasing the nurses’ satisfaction with their schedules 

by providing them with more choice and allowing them to better plan and use 

their leisure time can also increase general morale levels. This, in turn, can 

lead to benefits such as higher productivity and lower staff turnover with its 

associated costs. 

 

 Increased patient safety and quality of service. Nurses are able to spend 

more time with patients if they are not overworked or the ward is not 

understaffed as a result of poor scheduling. In the worst case, fatigue and 

stress can result in medical error endangering the patient’s health and safety 

and damaging the hospital’s reputation. 

  
Constructing high quality rosters, however, is a challenging process which is 

made more difficult by providing increased flexibility and a variety of work 

contracts. In many hospitals though the schedules are still produced by hand. This 
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unwelcome and time consuming assignment typically falls to senior nurses and 

can distract them from their primary duty of looking after patients. Often they end 

up reluctantly taking the work home. The task can also be stressful and 

frustrating. The planner is presented with a number of requests and scheduling 

requirements which can rarely be fully satisfied. They are required to ensure that 

all legal and binding rules are obeyed whilst trying to grant as many requests as 

possible. Often, unfavourable shifts must be assigned and requests denied whilst 

trying to maintain fairness and impartiality.  

 

By using a computer to automatically create schedules, it is possible not only to 

remove this chore and the associated costs but also to create much higher quality 

rosters. The scheduling is performed with a fraction of the effort and the 

schedules are usually better than expert human planners can achieve. Legal 

requirements can be checked, which a planner may miss, and more requests and 

working preferences are satisfied. The nurse that was previously assigned this 

work now has more time to care for patients. This is especially noticeable when 

regular rescheduling is required due to staff sickness and unpredicted absences. 

As the schedules are computer generated, the nurses also feel less victimised if 

they believe that their schedule is worse than a colleague’s. 

 
Using a computer in the scheduling process provides a number of additional 

benefits other than reduced labour and better rosters. These include:  

 

 Collecting management statistics and report generation (e.g. average hours 

worked per week, the number of sick days etc).  

 Linking the schedules to payroll and accounting systems.  
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 Publishing the schedules on the web or sending them to the nurses via email.  

 Allowing the nurses to make their requests via web interfaces.  

 

Nurse scheduling software is also often used as a decision support tool, allowing 

planners to test different scenarios. For example, how would the quality of the 

schedules change if nurses were assigned to or removed from wards? 

1.1 Research Objectives 

The research presented in this thesis focuses on algorithms used to automatically 

construct nurse rosters. Most published models of the nurse rostering problem are 

NP-hard. For the interested, most nurse rostering problems can be shown to be 

NP-hard through a polynomial-time reduction of the set covering problem or 

3SAT [157]. It is likely (although not proven) that P and NP are not the same. 

This actually means that there are instances of the problem for which no 

algorithm can guarantee to produce the very best (whatever definition of best we 

might employ) solution within a practical time limit. For example, it is possible to 

produce an instance of the nurse rostering problem which, even if the best known 

algorithm for solving it used the computing power of every computer on Earth, it 

may still take many millions of years to produce the best solution. In practice, we 

need to heuristically produce solutions to the problem. This means that optimality 

cannot be guaranteed. However, for many real world instances, very high quality 

solutions can be produced within feasible time limits. This thesis is concerned 

with analysing existing approaches and developing improved methods of 

achieving this. The main objectives of this PhD programme can be summarised as 

follows: 
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 Review and critically examine the development of nurse rostering problem 

solvers from initial related work in the 1950’s to the state of the art in 2007. 

 

 Collaborate with our commercial partner, ORTEC, and focus on solving real 

world problems. ORTEC is a supplier of software products and consulting in 

the field of advanced planning and scheduling. They have direct experience of 

working with (and have provided) practical and challenging nurse rostering 

problems. 

 

 Develop improved, powerful and robust search methodologies to address real 

world problems. 

 

 Thoroughly and fairly analyse these new methods and evaluate against the 

state of the art and commercial strength algorithms through structured and 

well designed experimentation.  

 

 Create a variety of benchmark nurse rostering problems based on real world 

scenarios. This includes developing a format for describing complex nurse 

rostering problems in order to share and make publicly available the 

benchmark data sets. 

 

 Provide research tools and source code for working with the nurse rostering 

problems. For example, parsers, data structures, user interfaces, visualisations. 

This will provide a foundation for future research and encourage more 

research into highly practical nurse rostering problems. 
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 Investigate and test a variety of heuristics and search neighbourhoods, with a 

focus on the balance between intensification and diversification during 

computational search. 

 

 Examine trade offs between computation time/solution quality and develop 

methods which adapt to predefined, maximum run time parameters. These 

algorithms will more accurately meet user requirements and scale with future 

increases in technology. For example, algorithms which, as recently as a few 

years ago, took minutes can now be performed in seconds on today’s average 

PCs. However, there is no easily accessible mechanism provided for 

extending these searches when a longer computation time is acceptable in 

order to produce better solutions. 

 

These objectives were defined in order to answer the main research question of 

the thesis: To what extent can the state of the art metaheuristic approaches to 

nurse rostering be improved upon, particularly to meet today’s real world needs in 

complex operating environments?  In order to answer this question the following 

hypotheses will be tested: 

 

Hypothesis 1: Based on recent advances in metaheuristic approaches to nurse 

rostering, improvements can be made on the genetic algorithm in ORTEC’s 

software Harmony. The genetic algorithm is a commercial strength algorithm that 

has operated successfully for a number of years. However, since its development 

a large amount of research on metaheuristics has been conducted. It may be 
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possible to use some of this knowledge to develop a better algorithm. The new 

algorithm will be compared against the genetic algorithm using statistically 

evaluated tests. 

 

Hypothesis 2: The research community will significantly benefit from the 

development of a collection of real world benchmark data sets. It will not be 

possible to completely test this hypothesis as it would have to be tested over a 

long time frame. The data sets and related software will be developed though in 

order to initiate this test. 

 

Hypothesis 3: Very large scale neighbourhood search techniques can be 

successfully applied to nurse rostering. These methods have been very effective 

in other problem domains (see [9] for a recent survey) and although their 

application to nurse rostering has been limited, there is no obvious reason why 

they should not succeed here. The approach will be compared against previously 

published algorithms and the results statistically analysed. 

 

Hypothesis 4: A successful time predefined algorithm can be developed for the 

nurse rostering problem. Again, these algorithms have been useful and effective 

on other problems [47, 48]. An investigation will be conducted to see if a similar 

approach be developed for nurse rostering. 

 

Hypothesis 5: A class of search neighbourhoods that are known to be very 

effective for the nurse rostering problem but are computationally intensive to use, 

can now be applied equally successfully but with much shorter computation 
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times. A number of search neighbourhoods have been identified recently which 

can be used to produce very high quality rosters. The disadvantage of these 

neighbourhood operators is the large computation times they require. An 

investigation will be conducted to discover whether recent increases in computing 

power have made it possible to use these neighbourhoods more intensively within 

practical execution times. The efficacy of these neighbourhoods will also be 

analysed. 

 

Hypothesis 6: If a successful very large scale neighbourhood search algorithm 

can be developed, it will be possible to incorporate it in a novel evolutionary 

algorithm for increased robustness. A number of evolutionary algorithms have 

previously been developed for nurse rostering. Scatter search is an evolutionary 

algorithm which has worked well on other problems but had little application to 

nurse rostering. A scatter search which uses a very large scale neighbourhood 

search technique as the improvement method between generations could be very 

effective. The scatter search will be compared against other metaheuristic and 

evolutionary approaches to test this hypothesis. 

 

1.2 Thesis Structure 

Chapter 2 examines different categories of nurse scheduling problems. Terms and 

expressions that are frequently used in nurse scheduling contexts are also defined. 

The majority of the publications concerning automated nurse rostering that have 

appeared over the past forty years or so are then reviewed. The papers are 

grouped according to the methodologies used.  
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Chapter 3 presents a nurse rostering algorithm developed to solve a commercial 

problem provided by ORTEC. The approach hybridises heuristic ordering with 

variable neighbourhood search. When compared with the genetic algorithm of 

ORTEC’s Harmony software, the method proved to be much more effective. The 

results of this research are incorporated in the latest product versions of Harmony. 

Chapter 4 describes a software framework developed to provide benchmark nurse 

rostering problems and reduce the gap between research and practice in nurse 

rostering. A number of tools have been created to help, encourage and strengthen 

research in automated nurse rostering. This work provides a solid platform for 

future research. 

Chapter 5 begins by testing and analysing the efficiency of a variety of 

neighbourhood operators that have been used in local search and metaheuristic 

approaches to solving nurse rostering problems. The analysis is performed using 

the real world, benchmark problems introduced in chapter 4. A variable depth 

search is then developed based on the results of the investigation. The algorithm 

heuristically chains together moves and swaps which define the more effective 

search neighbourhoods. A number of heuristics for creating these chains were 

developed and the results of experiments (conducted to identify the best ones) are 

presented. As end users vary in how long they are willing to wait for solutions, a 

particular goal of this research was to create an algorithm that accepts a user 

specified computational time limit and uses it effectively. When compared against 

previously published approaches the results show that the algorithm is very 

successful. 

Chapter 6 presents an investigation into combining the variable depth search into 

an evolutionary algorithm in order to provide higher quality solutions and a more 
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robust approach. Scatter search is investigated due to its success in other problem 

domains and its potential promise despite the scarcity of any previous 

applications to personnel scheduling. A number of different parameters and 

settings are tested and the best setup compared to the variable depth search on its 

own and the successful, hybrid memetic algorithm of Burke et al. [49]. 

Chapter 7 concludes the thesis. The contributions of the research are summarised 

and possible future directions discussed. 
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2 Literature Review 

Personnel scheduling has received a large amount of research coverage. A recent 

annotated bibliography of employee scheduling compiled by Ernst et al. [98] 

contains roughly seven hundred references dating from as early as 1954 [83, 96]. 

The size of the bibliography gives an indication of the breadth of study that has 

been conducted in this area, especially when noting that it is far from exhaustive. 

A large proportion of the studied personnel scheduling problems come from 

healthcare organisations such as hospitals and clinics and require the scheduling 

of nurses. The significant presence of nurse scheduling problems is due to their 

importance, scientific challenge and complexity (as discussed in chapter 1). The 

most commonly researched nurse scheduling problems can be broadly placed into 

one of two categories: staffing and rostering. In the first section of this chapter 

these two general problems are introduced and discussed. The second section of 

this chapter reviews the models and methods that have been used to solve nurse 

rostering problems of varying complexity, in a number of environments around 

the world. As this thesis is primarily concerned with the nurse rostering problem, 

this is where we will focus most of our attention in this chapter. 

The publications reviewed and discussed in the second section of the chapter are 

categorised according to solution methodology in a similar manner to the 

literature review of Burke et al. [60] although with the addition of two new 

categories (hyperheuristics and case-based reasoning). Many of the papers 

reviewed here are also reviewed in [60] and [98]. To provide a new contribution 

to the research community though, an effort has been made to highlight key and 

interesting points which have not been previously mentioned. Although this was 
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not always possible, on the whole there is a large number amount of additional 

information. In the years following the publication of [60] and [98] a number of 

related publications have appeared. These have also been reviewed here. The 

conclusions drawn in [60] are also shared by the author here. In fact much of the 

research presented in this thesis was directed by and based upon these 

conclusions. For example, Burke et al. conclude that parameter-less or time-

predefined algorithms would have significant benefits as would the development 

of benchmark data sets. 

2.1 Vocabulary 

Before continuing it is necessary to provide a very short glossary of  some of the 

key terms and expressions that are frequently used in the nurse scheduling 

literature (but which are often assumed to be known). Many specialist subjects 

develop a vocabulary or jargon which can make them unintelligible to outsiders 

and nurse scheduling is no exception. There is one distinction though which is 

non-standard and which will be used throughout this thesis. That is, the difference 

between schedule and roster. In practice, the two words are often used 

interchangeably. However, a schedule is sometimes also used to describe an 

individual work pattern for a single employee as well as to describe an entire 

roster. To avoid confusion, in this thesis, the term schedule will only be used to 

represent a single employee’s work pattern whereas roster will be used to 

represent a set of employees’ work patterns. 

 

Agency and bank nurses are temporary staff that may be employed to cover gaps 

due to absences in the permanent employees. 
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Cover requirements represent the number of nurses required at work each day or 

at specific times (i.e. during shifts) each day. This may also be called shift or 

coverage demand. 

 

Float nurses move between units and departments to cover gaps in staff cover 

due to absences e.g. sick, vacation leave etc. 

 

Hard constraints are rules which must be satisfied for the roster to be feasible. 

They may also be called binding constraints or imperative planning rules. 

 

Scheduling horizon is the time period over which the roster is provided. It may 

also be called the planning period. 

 

Shift rotation is the situation when an employee works a different shift to the one 

they worked previously. Depending on whether the start time is earlier or later 

than before, it is called backward or forward rotation. 

 

Soft constraints are rules which should ideally be satisfied but in order to 

provide a feasible solution may be broken. They may also be called non binding 

constraints, floppy constraints, preference planning rules or aversion costs. 

Soft constraints are often given priorities which are relative to each other. If the 

priorities are assigned using weights then a higher priority constraint may be 

violated if it means a number of lower priority constraints will be satisfied. 
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Split weekend is the situation where an employee works on only one day of the 

weekend (i.e. Saturday or Sunday). A complete weekend is the opposite (i.e. the 

employee works on neither or both days of the weekend). 

 

A stand alone shift or stand alone day is an off-on-off work pattern. It may also 

be called an isolated work day. 

 

A work pattern is an individual’s schedule over a planning period. That is, the 

days they have on and off and possibly also the shifts they have on the days on. 

Predefined patterns may also be called stints. 

2.2 Staffing, Demand Modelling and Workforce Scheduling 

One of the first steps in the entire employee scheduling process is to determine 

the required workforce size and structure. That is, to identify how many 

employees are required and which skills are needed over a specific period in order 

to achieve certain goals. This is generally known as the staffing, demand 

modelling or workforce scheduling problem. In most scenarios the goals tend to 

be to minimise costs (wages) and to maximise service levels. In the healthcare 

organisation context, for example, the standard of service may be measured by 

nurse to patient ratios or whether certain requirements can be satisfied. To model 

and solve these problems, a number of predictions may have to be made (possibly 

based on past data). For example, the expected number of patients and the 

severity of their illnesses, the availability and cost of bank/agency nurses, 

predicted absenteeism, sick and annual leave and the available budget. Employee 

productivity may also need to be estimated for various workforce sizes (if there is 
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understaffing, then individual productivity may increase but may be 

unsustainable). 

Although workforce scheduling problems do occur in hospitals they tend to be 

solved less frequently due to the preference for longer term contracts and the 

adverse effects of a constantly changing workforce. They are more common in 

environments with rapidly changing service requirements such as call centres (see 

[98, 99]). 

2.3 Rostering 

In comparison to the staffing problem, rostering is required in hospitals more 

frequently. Like the staffing problem though, many different methods have been 

used to solve it. There are two general approaches to nurse rostering: cyclical and 

non cyclical scheduling. Each method has its advantages and disadvantages and is 

suitable for different situations. 

2.3.1 Cyclical Scheduling 

In cyclical scheduling (sometimes called rotational scheduling) a single 

schedule for a fixed planning period is created that can be assigned to all 

employees. The schedule is designed so that it restarts once the end of the 

planning period is reached (hence, the term cyclical). The schedule is offset (e.g. 

by a week) before assigning to each employee. This ensures that the cover 

requirements, which need to be considered when creating the schedule, are 

satisfied. Cyclical scheduling has a number of advantages. As everyone has the 

same schedule, nurses cannot feel their schedule is worse than anyone else’s. 

Secondly, once a good cyclical schedule is produced, it can be reused until the 

scheduling requirements change. In theory, this means the nurses can know their 
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schedule a long time in advance and therefore plan holidays and other events for 

days off. Cyclical scheduling does have disadvantages though. For example, it 

becomes a more challenging problem when cover requirements are less uniform 

or fluctuate from week to week. The largest drawback with this approach, 

however, is the fact that individual requests and preferences are very difficult to 

take into consideration and satisfy. As such, cyclical scheduling is less popular 

with nurses and planners. Examples of cyclical scheduling approaches include [8, 

168, 192, 216]. 

2.3.2 Non Cyclical Scheduling 

Non cyclical scheduling (sometimes called preference scheduling), as the name 

suggests, is the opposite to cyclical scheduling. In theory, each nurse can have a 

unique schedule which satisfies as many of their personal preferences and 

requests as possible. Due to its flexibility, preference scheduling is more popular 

with nurses. However, it is generally a much more complex problem to solve and 

needs to be addressed each new scheduling period (which is not necessarily the 

case with cyclical scheduling). The problems examined in this thesis are all non 

cyclical. Therefore, the publications reviewed in this chapter are all related to non 

cyclical nurse rostering. 

 

Rostering problems can be further categorised by whether they require the 

assignment of just days on and off for a given planning period or whether they 

also require the decision of which shift to assign for the days on. The latter are 

generally more difficult. If the shifts are not defined beforehand, that is, the days 

on/off for each employee and the start, end and rest times for the days on need to 

be determined, this is commonly called the (labour) tour scheduling problem. 
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The term tour scheduling is also sometimes applied even if the shift types are 

fixed and known beforehand. This definition is less frequently used however and 

therefore appears less in the nurse rostering literature as the shift types are 

normally predefined. A review of publications post 1990 which specifically 

address tour scheduling can be found in [17]. Tour scheduling is not necessarily 

cyclical and is more often used in situations where service demand fluctuates and 

minimising employee costs is important.  

2.4 Personnel Rostering Methods 

This section collects and reviews the majority of publications that have addressed 

non-cyclic nurse rostering problems. The methods used to solve the problems can 

be placed in one of two broad categories: exact and heuristic optimisation 

methods. Exact methods (e.g. mathematical programming [43] and constraint 

programming [106]) have the advantage that they will guarantee to produce 

optimal solutions. The disadvantage, however, is that for many real world nurse 

rostering problems the time required to produce these solutions is unfeasible. As a 

result, most exact optimisation methods applied to real world nurse rostering 

problems do one or more of the following: 

 

1. Solve a relaxation of the problem. 

2. Use a number of heuristics (such as how to branch in the search trees). 

3. Terminate before the optimal solution is found. 

 

Exact optimisation techniques are still very successful, however, and have other 

advantages. For example, often it is only necessary to model the problem and then 

use a highly developed system such as CPLEX [136] to solve it. On the other 
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hand, designing the model or formulation is not always trivial and can have a 

critical effect on the success of the algorithms. Also, CPLEX licences can be 

expensive and possibly beyond the budget of a hospital’s IT department. 

 

Approaches which do not guarantee to produce optimal solutions are broadly 

categorised as heuristic methods. Included in this category are some methods 

which under certain conditions will promise optimal solutions e.g. simulated 

annealing [147] but obviously these too have exponential worst case time 

complexity. Heuristic approaches are commonly applied to and are particularly 

suited to nurse rostering problems for a number of reasons. Firstly, it is actually 

very difficult to define what would be an optimal solution. The problem 

formulations are often based on subjective decisions and vague preferences so 

that an “optimal” solution may not actually be the best or most preferable 

solution. For example, an employee might say “I would quite like a day off on…” 

or “I don’t really want a night shift on…”. These sort of statements are difficult to 

translate into exact mathematical expressions. Secondly, users are often impatient 

and want short waiting times for solutions. As such they are willing to trade “high 

quality” solutions for lower quality solutions in order to reduce running times. 

This is particularly the case for nurse rostering which may need new solutions at 

short notice due to absences and sick leave. The other advantage of heuristics is 

that they are successful at exploiting problem specific information or structure to 

obtain higher quality solutions (the importance of this is highlighted by the no 

free lunch theorem [246]). One criticism of heuristic approaches, however, is that 

they can be inconsistent between problem instances and may require more 

programming. Another major criticism is, of course, that you cannot, in general, 
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guarantee optimality. On the other hand, complicated objective functions may be 

easier to handle with higher level programming languages. 

2.4.1 Mathematical Programming 

Included in this section are publications which use linear programming and 

integer linear programming methods [43]. The most well known algorithm for 

linear programming problems is Dantzig’s simplex method [84]. If the linear 

program has too many variables to define explicitly then column generation may 

be used. If all the variables are required to be integers (integrality constraint) then 

the problem is known as an integer programming problem. If only some of the 

variables are required to be integer then the term mixed integer programming is 

used. If they must be 0 or 1 then the term 0-1 integer programming is employed. 

Integer programming problems are usually solved using branch and bound or 

branch and cut approaches. The design of the model or formulation and how to 

branch in the tree are often critical to success. For further reading on 

mathematical programming, one of the most frequently cited references is [194]. 

 

One of the first nurse rostering problems to be approached with an exact 

optimisation method was that presented by Warner and Prawda [243]. The 

authors formulate a staffing problem as a mixed integer quadratic programming 

problem. A solution to the problem represents a staffing pattern which specifies 

the number of nurses with specific skills to cover the shifts for six wards. The 

goal is to minimize shortage costs while satisfying constraints which cover the  

total number of skilled nurses in employment and shift coverage. The model 

allows for some substitution of tasks among skill classes.  
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Warner [242] later develops a mathematical programming approach for solving 

shift allocation problems at other U.S. hospitals. Solutions to this problem 

allocate preferable working patterns to wards of up to 47 nurses over planning 

periods of 4 or 6 weeks (the problem is decomposed into 14 day periods during 

solving though). The nurses are first asked to allocate all, or a portion, of a fixed 

number of points to a small set of schedule properties to describe their 

preferences for these different properties (the number of points a nurse has to 

allocate is related to the number of hours they work and points not used may be 

carried over to the next planning period). For example, a nurse may specify a 

stronger preference for non-isolated working days to a 7 day work stretch by 

allocating 10 points to the former and 5 points to the latter. These point 

allocations (and also day off requests) are then used to allocate a score for 

different working patterns for each nurse. The objective is to maximise the sum of 

the scores for each assigned pattern whilst meeting coverage demands and so 

increase the quality of the overall schedule. The number of possible working 

patterns is reduced by using fixed shift rotations. The overall system was 

welcomed by the nursing administration, especially the head nurses. The software 

later evolved into a system called ANSOS (Automated Nurse Scheduling Office 

System) which provided additional features such as staffing, management 

reporting and short term scheduling [244]. 

 

Miller et al. [182] use mathematical programming to define a nurse rostering 

problem but actually solve it using a cyclic descent (local search) algorithm. The 

solutions, although not guaranteed to be optimal, are found quickly and are close 

to the optimal solutions produced by a branch and bound method. The system 
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only takes one shift type into consideration and does not consider part time 

employees. However, feasible extensions are suggested which could allow the 

system to include shift rotations and other work contracts. 

Hard constraints such as the maximum number of working days and the 

maximum and minimum numbers of consecutive working days are used to reduce 

the number of 14 day work patterns to examine during the search. However, these 

hard constraints can be overruled if they conflict with a requested day off. Soft 

constraints with weights or aversion coefficients are used along with desired 

staffing levels to formulate the objective function. The quality of a nurse’s 

previous schedules is also considered to try and maintain a level of fairness over 

longer time periods. The soft constraints that are employed include maximum 

weekends worked, split weekends and maximum consecutive free days.  

 

Bailey and Field [23] propose an alternative to the traditional, fixed start time, 8-

hour shifts for meeting personnel demands in any 24-hour work environment (not 

just hospitals). 6, 8 and 10-hour shifts are used with variable start times to define 

a problem which is then relaxed and solved using linear programming. If the 

solutions are non-integer then another algorithm is used to convert them into 

optimal integer solutions to the general problem. The authors found that their 

‘flexshift’ model outperformed the fixed 8 hour shift model with a reduction in 

staff size, overstaffing and idle time. They also suggest that this model provides 

more choice to employees in their work patterns. A self-scheduling method for 

assigning the shifts is suggested but not implemented or tested.  

In another paper, Bailey [22] presents an approach which combines the problem 

of shift planning (where hourly demand fluctuates) and the assignment of those 
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shifts to employees whilst considering some basic work pattern constraints. The 

objective is to minimise understaffing subject to a fixed workforce size and 

overtime restrictions. Linear programming is sufficient to identify the optimal 

shifts and on-off patterns. The shifts are then matched to the patterns 

heuristically, aiming to minimise the difference in a nurse’s shift start times over 

the period. Ozkarahan and Bailey [203] later extended this model using goal 

programming. The new approach allows users to set their own priorities for goals 

related to understaffing, overstaffing and total workforce utilisation.  

 

Thornton and Sattar [232] use branch and bound integer programming to solve a 

nurse rostering problem in an Australian hospital. The model requires nurse to 

feasible schedule assignments for full time employees and nurse to shift 

assignments for part time employees. As part time employees have fewer and 

simpler constraints, they have too many feasible schedules to enumerate them all. 

The problem can be decomposed by not differentiating between late and early 

shift assignments until a final phase which is solved separately. The objective is 

to minimise undesirable consecutive day on/off stretches and optionally 

under/over coverage also. 

 

Mason and Smith [169] describe column generation methods for efficiently 

solving a nurse rostering problem using linear and integer programming 

techniques. Columns are generated by solving dynamic programming shortest 

path problems concerning the nurse’s preferences for different shifts, consecutive 

on/off patterns and the transition between different work start times each 

consecutive day. The cover demands are fixed and the approach was able to 
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satisfactorily solve problems with 86 nurses, 7 skill types and 5 shift types over 

planning periods of 28 days. 

 

Jaumard et al. [142] solve a nurse rostering problem with the objective of 

reducing salary costs, improving nurse preference satisfaction and improving the 

ratio of experienced to less experienced staff in teams. Again, column generation 

techniques are used with the columns corresponding to individual schedules for 

each nurse but this time they are generated by solving a resource constrained 

shortest path problem. The constraints for this auxillary problem are related to the 

individual nurse’s requirements. For example, the maximum and minimum hours 

worked per week, the number of consecutive weekends on and then off, shift 

rotation constraints, the minimum and maximum number of consecutive days 

worked and the ratios of shift types worked. Nodes in the branch and bound tree 

are linear relaxations of the master problem which are solved using the column 

generation (i.e. branch and price). Branching in the tree is performed by 

progressively fixing or not allowing shift assignments to nurses. Preliminary tests 

showed that good solutions could be found within acceptable time limits after 

partially completing the branch and bound. 

 

Millar and Kiragu [181] model a cyclic and non-cyclic nurse rostering problem 

using networks. Instead of using single shift assignments for each day as nodes in 

the network, the nodes are actually short patterns of consecutive shifts or days off 

(called stints). The problem is decomposed by then allowing each node to be one 

of only seventeen unique stints. The number of stints can be reduced as there are 

only two, 12 hour shifts and the stints can be no longer than four days. Arcs 
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between these nodes are then assigned penalty costs to model certain soft 

constraints or the arcs may be removed if they violate hard constraints, e.g. a 

nurse requesting not to work on a specific day. The objective of the non-cyclic 

problem is to minimise the sum of the soft constraint related penalties and the 

imbalance of day and night shifts worked by each nurse. The network based 

formulation of the problem is solved using the CPLEX mixed integer solver 

(branch and bound). Although optimal solutions could not be found in a feasible 

time period, acceptable solutions could be produced quickly. 

 

Eveborn and Rönnqvist [100] combine integer programming techniques (in the 

form of branch and price) with heuristics to solve non-cyclical tour scheduling 

problems. The algorithms are part of a commercial staff scheduling software 

package. The problem objective is to minimise schedule costs (a combination of 

total schedule hours and the violation of staff preferences) and the deficit or 

excess of staff covering each task. Particularly bad individual schedules can 

optionally be minimised too, to increase perceived overall fairness. The results of 

using the system to solve the scheduling needs of call centres and a zoo are 

provided. 

 

Bard and Purnomo [26] combine heuristic and integer programming methods to 

solve a nurse rostering problem with up to 100 nurses and approximately 13 hard 

and soft constraints. The objective of the problem is to minimise the costs 

incurred through employing outside nurses and to maximise the satisfaction of 

nurses’ working preferences. High quality individual nurse schedules are created 

using a single or double shift swapping heuristic on a base schedule. These 
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columns are then used to form a set covering-type problem which is solved using 

branch and bound. The authors found that, for most of the instances the algorithm 

was tested on, the majority of the computation time was being spent on 

generating the columns (executing swaps, checking for constraint violations and 

duplicate schedules) rather than the branch and bound. The overall rosters 

produced were of high enough quality for the initiation of system deployment in a 

number of U.S. hospitals. The authors elaborate with methods and results for 

including downgrading in this model in [25]. More recently, Bard and Purnomo 

proposed a nurse rostering model which combines cyclic and preference 

scheduling. They solved it in [27] using (amongst other mathematical 

programming techniques) Lagrangian relaxation  and branch and price in [210]. 

 

As can be seen from the publications discussed above, column generation is often 

and increasingly being used in mathematical programming approaches to nurse 

rostering. The columns in nurse rostering problems represent possible work 

patterns for individual nurses. Due to computational limitations, in the earlier 

publications, a restricted set of columns is predefined for assignment e.g. [242]. 

More recently, for example in [26], the columns are generated heuristically by 

modifying other columns via swapping assignments. The alternative approach is 

to generate columns using an exact approach, such as a shortest path algorithm, 

and incorporate the column generation in a more sophisticated method such as 

branch and price e.g. [142, 169, 210]. 

2.4.2 Constraint Programming 

The word ‘programming’ in linear programming is related to the planning and 

scheduling problems it was originally used on (i.e. to create a program or 
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schedule for a specific task). In contrast, ‘programming’ in constraint 

programming is from the more familiar definition relating to computational 

methods and computer languages. Constraint programming problems are usually 

defined in terms of variables, domains (possible values) for these variables and 

constraints which restrict the simultaneous values that the variables can take. A 

solution is an assignment to each variable from its domain such that all the 

constraints are satisfied. Most of the searches used to solve these problems make 

use of constraint propagation and domain reduction. That is, assigning values to 

the variables and then using the constraints to reduce the domains for unassigned 

variables. For the more difficult problems, it is often necessary to develop 

efficient heuristics for navigating the search tree, e.g. which variables to assign 

first. [28, 106] provide nice introductions to constraint programming and list 

references for further reading. 

 

Darmoni et al. [85] use constraint programming to solve scheduling problems in a 

French hospital. The system allows a wide range of constraints and rules to be 

imposed. The search strategy (that is, how to branch) is based on trying to ensure 

equally fair schedules among nurses. For example, they each work similar 

numbers of Sunday mornings and have similar numbers of requests satisfied. 

Branching is also guided by trying to ensure complete weekends and avoiding too 

frequent a shift rotation. The approach was able to produce satisfactory schedules 

over planning horizons of up to 6 weeks. The authors also found that using an 

automated interactive system was able to save significant labour time for the head 

nurses who previously had the burden of producing the schedules. 
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Weil et al. [245] use ILOG’s constraint programming engine [137] to solve a 

nurse scheduling problem with a number of typical constraints such as minimum 

rest time/days off and shift type successions. Although employees with different 

skills and part time employees are not considered, example instances of the 

problem were solved very quickly. The search uses the smallest domain heuristic. 

 

Meisels et al. [172] present a number of rules and heuristics for processing 

constraint networks in order to solve nurse scheduling problems. The algorithm is 

part of a commercial employee timetabling software package and is tested on data 

from an Israeli hospital. The heuristics and knowledge-based rules are mostly 

either inspired by manual scheduling methods, designed to produce more fair and 

balanced schedules or interactively specified by head nurses to reflect scheduling 

preferences and priorites. More information on the design of the software from 

the user’s perspective is provided in  [173].  

Using the same model, Meisels and Lusternik [174] developed a random test bed 

of problem instances to investigate how various parameters affect the difficulty of 

solving them using constraint processing methods. They found that it is not only 

the size of the instance that appears to affect its difficulty but also the structure, 

especially if it is close to the border between the solvable/insolvable instances. 

The results are similar to the phase transition investigations for other 

combinatorial optimisation problems [74, 131, 183]. 

 

Cheng et al. [76, 77] present a constraint programming method for solving a week 

long nurse scheduling problem in a Hong Kong hospital. A redundant modelling 

idea is described which involves formulating the same problem in two distinct 
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ways (shift to nurse and nurse to shift-type assignments). As the search 

progresses, both formulations are simultaneously updated and fedback into each 

other. The authors found that this approach, although slightly increasing memory 

overheads, can provide significant computation time improvements in finding 

solutions for some instances. The problem contains some common, but also a few 

unusual, constraints. For example, the nurses prefer frequent shift rotation, that is, 

alternating consecutive A.M. and P.M. shifts (in most other problems, nurses 

prefer minimal shift rotation). Branching decisions are made in the search tree 

based on the relative priorities of the soft constraints. 

 

Meyer auf’m Hofe [178] combines heuristic local search ideas with constraint 

programming techniques to create an automated nurse rostering system tested in a 

German hospital. Hard constraints in the model are based on legal regulations and 

working time restrictions. Soft constraints are organised into hierarchies of 

different priorities to reflect their importance. For example, providing a minimal 

coverage is a higher priority than providing a preferred number of staff which in 

turn is a higher priority than guaranteeing a nurse’s requests. A higher priority 

constraint may not be violated even if its violation allowed all constraints of 

lower priority to be satisfied. This is the key difference between weights and 

priorities. A constraint with a high weight may be violated if it permits a number 

of constraints with smaller weights to be satisfied. Weights are assigned to each 

constraint within the hierarchies. 

The constraints are used to define a constraint satisfaction optimisation problem 

which is addressed using branch and bound. However, problem instances of any 

magnitude cannot be solved solely by using this exact approach. So, heuristics are 
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added to help produce high quality schedules in acceptable time limits. The 

heuristics are based on identifying and repairing violations. For example, they 

assign more or less shifts to improve coverage constraint satisfaction. 

In [179], Meyer auf’m Hofe extends the previous work to provide a more flexible, 

powerful and robust system. A new constraint hierarchy is defined which allows 

better interaction with the end-user and fuzzy constraints (i.e. constraints which 

may be partially satisfied and partially violated) are introduced. The paper also 

highlights the disadvantages of some of the basic local search algorithms (which 

change one variable or assignment at a time) and how this hybrid heuristic 

approach overcomes this problem, effectively by simultaneously making multiple 

changes. 

 

Abdennadher and Schlenker  [3, 4] present a system which is used interactively 

for the semi-automatic creation of nurse rosters. A partial constraint satisfaction 

problem is formulated and a multi step method combined with standard constraint 

programming techniques is used to solve it. At each phase or step only certain 

shift types (e.g. night, morning, day, free shifts) are assigned, mimicking a 

manual approach. The problem is further decomposed by using the assignment of 

good sequences of shifts rather than single assignments. The software is designed 

to allow the user to interrupt the search and make any modifications to the current 

partial schedule and then allow it to continue again with these manual 

assignments in place. This sometimes helps create more satisfactory rosters 

and/or reduce computation times. 
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Chun et al.[79] developed a nurse rostering system which was deployed in 250 

wards in multiple hospitals in Hong Kong. Although the authors do not provide 

full details on the algorithms developed, heuristics are combined with constraint 

programming. The software is flexible enough to accommodate a variety of hard 

and soft constraint and the number of wards in which the system is used  suggests 

a successful approach. Wong and Chun [247] solve a simplified week long nurse 

rostering problem using constraint programming methods. Tsang et al. [235] 

model a nurse rostering problem using constraint programming and solve it using 

guided local search. The approach is able to solve tightly constrained instances of 

the test problem used. 

2.4.3 Goal Programming and Multiobjective Optimisation 

Most nurse rostering problems have a number of objectives. However, as many of 

these objectives conflict with each other, a feasible solution which simultaneously 

satisfies all of them rarely exists. Instead, the objectives are often treated as goals 

or soft constraints with user specified priorities or weights. The objectives are 

then often combined into a single (often weighted) sum. 

An alternative approach is Pareto optimisation, which aims to return the Pareto 

optimal front for a multiobjective problem. The Pareto optimal front consists of 

all the non-dominated solutions (a solution is non-dominated if there is no other 

solution which is better than it for all objectives). The user can then select a 

solution from this front which best represents their trade-off preference for the 

objectives. A good introduction to Pareto optimisation approaches to scheduling 

and timetabling can be found in [87, 156].  
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Arthur and Ravindran [20] solve a nurse rostering problem using goal 

programming followed by heuristic assignment. In the first phase, a goal 

programming model is used to assign days on/off to nurses over weekly periods. 

One of three shift types is then assigned to each nurse for the on days using 

heuristics based on minimising under-cover. Although the approach does not 

permit the substitution of different grade/class nurses for each other or consider 

part time workers, feasible extensions are suggested to accommodate these 

requirements. 

 

Musa and Saxena [191] use a zero-one integer goal programming method to solve 

a very basic nurse rostering problem. Although the problem includes full and part 

time nurses of different grades, the only instance tested had eleven nurses, a two 

week scheduling horizon and one shift type. Seven goals are defined relating to 

cover requirements, weekends and consecutive days off and minimum/maximum 

number of days worked. 

 

Franz et al. [105] use integer goal programming to solve a slightly different health 

personnel scheduling problem. In this scenario, nurses can be assigned to a 

number of different clinics with different geographical locations. This 

complicates the problem as travel costs and nurse preferences for working in 

different locations have to be considered.  The problem is simpler in another 

respect though as cover only has to be provided at each clinic Monday-Friday, 

8:00am-9:00pm. Each clinic has a varying skill mix and staff number 

requirements to provide a satisfactory service for the predicted patient numbers. 

The objectives or goals of the problem are to maximise staff to patient ratios in 
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order to reduce waiting times, minimise travel costs for the staff and maximise 

staff preferences for working in specific clinics at certain times. Although integer 

solutions to the problem could not be produced in acceptable computation times, 

a number of modifications to the problem are considered, one of which enables 

the fast production of solutions which are comparable to the manually created 

ones.  

 

Berrada et al. [39] test three techniques for solving a nurse scheduling problem 

with multiple objectives. Although the problem is simplified by not considering 

shift rotations, a number of common soft constraints or objectives are included.  

For example, no isolated working days, a maximum length of consecutive 

working days, grouping days off together and personal shift and day off requests. 

The objectives are assigned a priority ordering to reflect scheduling preferences. 

Two mathematical programming techniques are tested to produce (loosely) non-

dominated solutions with respect to the objectives used. A tabu search with a 

neighbourhood based on swapping a working and non-working day for an 

individual nurse is also applied (this swap is possible as cover requirements for a 

specific day do not represent a strict hard constraint). All three techniques 

produced schedules of a similar satisfactory quality although the tabu search 

required more computation time. Further experiments with tabu search on a very 

similar problem formulation can be found in [102]. 

 

Jaszkiewicz [141] uses a metaheuristic approach to solve a multiple objective 

nurse scheduling problem for a surgery unit in a Polish hospital. The five 

objectives defined are similar to those discussed in other nurse rostering problems 
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in the form of constraints or objectives. For example, preferred lengths of 

consecutive working days, non-working days, shift rotations, balance of shift 

types worked and equal assignments of surplus nurses over the week. A 

population of initial solutions is created using a constraint programming method 

and then a simulated annealing approach is employed to identify the Pareto 

optimal front, or at least a good approximation to it. The algorithm uses 

dynamically altered weights for each objective to guide the search over the trade 

off surface. A randomly selected move (from three) may be applied to a solution 

and the move accepted probabilistically. The approach was able to fairly quickly 

produce solutions that dominated those produced manually. 

 

Gascon et al. [109] developed a goal programming model to solve a problem 

requiring the scheduling of flying squad nurses. Rather than always working in 

the same care unit, a flying squad nurse can be assigned to one of a number of 

units in order to meet cover demand. Working in different care units helps the 

nurses maintain the skills required to operate in that unit but frequent movement 

between units is undesirable as it lessens the quality of service provided. 

Solutions to the problem must allocate days on and off to the nurses as well as 

specifying which unit they are stationed at on their working days. Although the 

model assumes that the nurses work the same shift type, there are a number of 

objectives and constraints to satisfy. A combined priority ordering and weighted 

method for the objectives is used in solving the problem. 

 

Through surveys, feedback from head nurses, hospital regulations and analysing 

published recommended work practices for nurses, Azaiez and Al Sharif [21] 
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formulate a goal programming model for a nurse scheduling problem in a Saudi 

Arabian hospital. Initially, the problem was too large to solve, so a heuristic was 

introduced to decompose the problem. The nurses were split into groups 

(ensuring a balance of skills), schedules for these groups were found separately 

and then the overall schedule was formed by recombining the individual group 

schedules. The authors found that for the majority of instances, this method was 

able to produce optimal schedules (all goals completely satisfied). After the 

system was tried and the diverse workforce typical in Saudi Arabian hospitals 

was surveyed for a second time, an improvement in the rosters was generally 

noticed. Cost savings through reduced overtime (one of the goals) was also 

introduced but a few of the nurses did not appreciate this achievement as it 

prevented them from having the opportunity of earning more money. 

2.4.4 Decision Support and Expert Systems 

Smith and Wiggins [226, 227] created an interactive system to simplify the 

rostering process and to reduce its burden. The devised methodology consists of 

three phases. In the first phase staff deficiencies due to holidays and vacations are 

highlighted to encourage reassignment of nurses to understaffed units. Next, 

preliminary schedules are generated using some simple heuristics based on 

reducing assignment conflicts and nurse dissatisfaction. Finally, the schedules are 

improved manually with the aid of the system revealing violations, under 

coverage and over coverage. The authors found that the system reduced the time 

spent producing schedules and the staffing clerks had little trouble using it. 

 

Bell et al. [36] produced a decision support system that constructed basic cyclical 

schedules and which enabled the head nurse to modify the rosters as required 
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through a user interface which was quite sophisticated at the time. They selected 

this approach as they felt that the real world problem they were examining 

contained several “complexities which would be difficult to incorporate into a 

formal algorithm” such as varying cover requirements and work contracts. 

 

Ozkarahan [202] describes a support system for formulating nurse scheduling 

problems which can then be solved using goal programming. The system allows a 

number of factors to be incorporated into the problems including fluctuating 

cover demand, nurse preferences, skill substitution and the movement of nurses 

between units. 

 

Chen and Yeung [75] created a nurse scheduling system which uses zero-one goal 

programming and an expert system to aid the creation of rosters. Firstly a 

working pattern (i.e. days on and off) is generated using the goal programming by 

only considering constraints which are relevant to the working pattern e.g. 

minimizing overtime, preventing stand-alone shifts, satisfying vacation and day 

off requests and providing sufficient daily coverage. Fixed 8 hour shifts are then 

assigned to these work patterns using an expert system consisting of 37 rules. The 

rules are designed to improve schedule quality and are based on constraints and 

preferences such as limiting the lengths of consecutive night shifts, forward 

rotation and providing supervision for inexperienced nurses. By comparing the 

rosters created using this approach to the ones produced manually by the head 

nurse, the authors found that the computerised system was able to significantly 

reduce the time needed to create the rosters as well as being able to satisfy more 

constraints, requests and working preferences. 
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Begur et al. [34] successfully developed a spatial decision support system to help 

schedule and route home-health-care nurses (who visit a number of different 

patients at their homes each day). The nurse to patient assignments and routes are 

improved by using heuristic methods. 

2.4.5 Case-based Reasoning 

The basic idea behind case-based reasoning is to use past experiences in solving 

new problems. Previous solutions to problems and related information are stored 

as cases. When a new problem is encountered, relevant cases are retrieved and 

used to provide solutions to the problem by making any required adaptations. 

When the new solution is found, a new case describing the problem and solution 

is created for future use. 

Case-based reasoning has been applied to other scheduling problems such as 

university exam and course timetabling [65, 69, 206] but its application to 

personnel rostering is quite novel and so there are fewer relevant publications. 

 

Scott and Simpson [222] use a case-based reasoning method for the automated 

construction of nurse rosters. The case-base contains good, week long, patterns of 

shift assignments. The number and type of employees and personal requests in 

the current instance are used to heuristically select the patterns and to assign 

them. Under or over coverage is then repaired by removing and/or making extra 

assignments and this final solution may then be used to update the case-base for 

later use. 
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Petrovic et al. [204, 205] have written a number of papers which explore the use 

of case-based reasoning for solving nurse rostering problems in a UK hospital. 

The approach is novel in that no objective function, search space or search 

mechanism is employed. Instead, the aim is to capture the knowledge and 

experience of expert schedulers in a case-base and reuse it to repair, improve and 

solve new problem instances. Initially, a partially complete and infeasible 

schedule is created by the nurses after a self rostering process (see [224] for more 

information on self rostering). Violations in this schedule are identified and the 

case-base consulted to find the best way of repairing the violation by analysing 

similar violations which were previously identified and repaired. Once the best 

repair is selected, adapted and executed this is recorded as a new case and the 

case-base is updated for future reference. The case-base is initially populated by 

analysing past partial rosters and the corresponding final roster produced by the 

human expert. 

Repairing one violation may generate one or more new violations and so it is 

possible to enter a non-terminating loop or cycle of violation repairing. To avoid 

this, Beddoe and Petrovic [31, 33] experimented with combining tabu list 

mechanisms with the case-based reasoning methodology and found that it made 

the approach more robust. They also experimented with adding an objective 

function (the number of violations) to the case-based reasoning approach and 

found that it further improved the quality of the rosters produced. In [32], they 

also successfully developed a genetic algorithm to identify the best subset of 

violation features and their relative importance to use in classifying violations. 

This led to an improvement in the accuracy of the case retrieval and subsequently 

an increase in the quality of the schedules produced. 
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More recently, Le and Landa Silva [158] also solved a multiobjective formulation 

of this problem using an evolutionary algorithm.  

2.4.6 Heuristic and Local Search 

The largest proportion of approaches in the literature can be categorised as 

heuristic, local search or metaheuristic methods. Heuristics may be constructive 

and build solutions from scratch or be improving, for example, repairing 

violations in rosters. Local search and metaheuristics draw upon the idea of 

neighbourhood searches. Identifying efficient neighbourhood operators can often 

have a significant impact on the performance of these algorithms. This is 

discussed further in the context of nurse rostering in chapter 5. For more 

information on local search and metaheuristics see [2, 62, 123, 199, 241]. 

 

Blau and Sear [41] use Miller et al’s [182] local search approach to solve a 

similar problem which also considers only one shift type and a scheduling period 

of 14 days. The objective is to minimise a weighted sum of under coverage, over 

coverage, requested days off not granted, excessively long work stretches, on-off-

on and off-on-off work patterns. 

 

Anzai and Miura [18] use heuristic methods which involve swapping shifts 

between nurses to repair violations in rosters. The model used takes into 

consideration constraints such as maximum working days per month, individual 

requests for specific shifts and days off, minimum cover requirements and 

maximum consecutive night shifts. A constraint which prevents inexperienced 

nurses from being unsupervised during night shifts by more experienced nurses is 

also included. The system is limited, however, by assuming all the nurses have 
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the same work contracts and constraints other than their shift on and day off 

requests. 

 

Okada and Okada [198] developed a system using Prolog and heuristic ordering 

which automatically follows general rules to manually construct rosters. As some 

of the rules are quite complex, the system relieved the manual scheduler’s 

workload considerably. One of the more complicated objectives is to try and 

ensure each nurse works with as many different colleagues as possible. Okada 

[197] later extended this approach to give users flexibility in defining and 

modifying some of the rules/constraints so the system could be used in a variety 

of departments with different requirements. 

 

Kostreva and Jennings [148] describe a two phase algorithm for solving a nurse 

scheduling problem. In the first step, a set of feasible schedules that ensure 

minimum shift coverage is satisfied, is constructed by assigning blocks of 

consecutive shifts. In the next step, each nurse’s aversion to working each of 

these fortnight long schedules is calculated as a cost based on the nurse’s 

previously specified preferences for different schedule characteristics. The 

schedules are then optimally assigned to minimise total aversion costs using the 

Hungarian method. These two steps can be repeated as many times as required by 

generating a different set of schedules at the first step each time. The type of 

schedule characteristics considered when calculating aversion costs include types 

of shifts assigned before days off,  lengths of consecutive work stretches, single 

days on/off and types of shifts assigned at weekends. 
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Randhawa and Sitompul [213] present a two step algorithm for solving a nurse 

rostering problem. In the first phase day on/off working patterns are generated for 

the scheduling period. Each pattern is assigned a score corresponding to soft 

constraint violations such as exceeding maximum lengths of  consecutive days on 

and off. Shifts are then assigned to a set of the best working patterns trying to 

match cover requirements as closely as possible. The shift assignments are such 

that every nurse works the same type of shift in a seven day period The system 

also provides a user interface for entering parameters such as the soft constraint 

penalties and cover requirements. 

 

Khoong et al. [146] use heuristic and exact search techniques to provide an 

automated rostering system which is suitable for a variety of workforces. The 

software (called ROMAN) can produce both cyclic and non-cyclic schedules and 

allows for the consideration of many of the common constraints (e.g. 

minimum/maximum length work stretches for on and off days, shift rotation etc) 

and objectives (e.g. reducing costs, improving cover provided). 

 

Liao and Kao [162] present a heuristic constructive approach for solving a month 

long nurse rostering problem in a Taiwanese hospital. The problem requires the 

consideration of full and part-time employees, two skill levels and 8 hour and 12 

hour shifts. Soft constraints include satisfying cover, preferred lengths of 

consecutive work days, sufficient rest time between shifts, avoiding stand alone 

shifts and granting requested days, holidays and weekends off. Some decisions in 

the schedule construction phase may be made randomly. This allows the 

algorithm to be executed a number of times and the best schedule from all the 
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executions is the one returned. The method is able to quickly produce higher 

quality schedules than those which took approximately 4 hours to create 

manually. 

 

Burke et al. [54, 56] present a variable neighbourhood search which uses a small 

neighbourhood defined by reassigning single shifts between nurses and larger 

neighbourhoods (called shuffling) defined by swapping blocks of adjacent shifts 

between nurses (See chapter 5 for more details). A number of heuristics and 

methods for introducing diversification into the search are also used. Best results 

were all produced when the ‘shuffle’ neighbourhoods were included. However, it 

was more efficient to use these larger neighbourhoods towards the end of the 

algorithm on higher quality solutions. This was because they are time consuming 

to search and produce less improving moves on better solutions. The problem 

addressed and the methods described in this paper are discussed further in 

chapters 4 and 5. 

 

Schaerf and Meisels [176, 221] performed a number of experiments using local 

search and constraint programming methods on employee timetabling problems 

including nurse rostering. A basic hill climber which uses a neighbourhood 

defined by reassigning single shifts is compared to a more advanced method. In 

addition to including moves which add or remove single shifts at a time (and so 

allowing partial solutions), the more advanced method allows certain constraints 

to, in effect, be relaxed by dynamically adjusting associated violation weights. 

The search is further guided by a heuristic which estimates how difficult it will be 

to complete a partial solution. The constraint programming method adequately 
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solves easier instances but the local searches (particularly the simpler method) are 

more effective on the larger and more difficult instances. 

 

Ikegami and Niwa [135] use a heuristic decomposition method to solve nurse 

rostering problems in Japanese hospitals. The instances feature a number of 

typical constraints such as minimum/maximum numbers of shift types, day off 

requests, minimum/maximum length work and non-work stretches etc. Atypically 

though, frequent shift rotation during a week appears to be acceptable and 

common in practice. The approach is successfully applied to a 2-shift and a 3-

shift problem. For the more complex 3-shift problem it was necessary to extend 

the search with a branch and bound procedure. Experiments were performed to 

compare the algorithm against Millar and Kiragu’s [181] and Nonobe and 

Ibaraki’s [195] solvers. Although it is difficult to make exact comparisons due to 

differences in machines used for the tests, the results suggest their approach is 

competitive. 

 

Aickelin and Li [14, 160, 161] test a Bayesian optimisation approach on the nurse 

rostering problem examined in [12, 91]. Working patterns for assigning to nurses 

are selected according to one of four rules. The algorithm aims to find the best 

rule to use for each different nurse (a rule string) to construct the highest quality 

overall schedule. A population of rule strings is used to construct a Bayesian 

network which reflects the frequency of the application of each rule to each nurse. 

A new set of rule strings is created using this network and the current population 

of rule strings is updated with these new ‘solutions’ according to the quality of 

the schedules they create. The population is used to create a new Bayesian 
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network and so on until a termination condition is satisfied such as a maximum 

number of generations. The rules for selecting a pattern to assign are designed to 

either avoid local optima, increase the quality of the schedule in terms of nurse 

preferences and/or increase cover satisfaction and feasibility. This is the first 

application of Bayesian networks to personnel scheduling. Aickelin et al. [11] 

later improved this approach by adding two more rules and using an ant colony 

optimisation algorithm to improve rule strings between generations. 

2.4.7 Tabu Search 

Tabu search is often used as a label for any algorithm which escapes local optima 

in a neighbourhood search by moving to a worse solution and then uses a list of 

“tabu” moves to reduce the chance of returning to the local optimum. Tabu search 

as proposed by Glover [112, 113, 116] however includes a number of other 

features which may also be used: 

 

• Intensification (concentrating on good areas of a search space). 

• Diversification (ensuring a wide cover of the search space). 

• Aspiration criteria (accepting moves to solutions currently in the tabu list 

if the solution displays a particular quality). 

• Candidate lists (not examining all solutions in the current neighbourhood). 

• Strategic oscillation (moving between feasible and infeasible solutions). 

• Path relinking (exploring paths between two or more solutions in a search 

space). 

• Compound moves (chaining moves for a particular neighbourhood 

together to escape local optima with respect to that neighbourhood). 
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Nonobe and Ibaraki [195] use tabu search to solve a number of problems 

modelled as a constraint satisfaction problem. The problems tested range from 

graph colouring to set covering to timetabling and also include a nurse scheduling 

problem. The length of the tabu list is dynamically altered during the search to try 

to improve its performance. Although it is designed as a general problem solver, 

the results across the variety of problems are competitive. Feasible solutions are 

also produced for the Japanese nurse rostering problem tested. The problem 

features a number of common constraints such as maximum lengths of 

consecutive shift type assignments and no isolated shifts. Two skill levels or 

grades are also considered. 

 

Dowsland [91] developed a tabu search method for solving a nurse rostering 

problem in a major UK hospital. The problem required the production of weekly 

schedules consisting of only day or night shifts. The complexity of the problem is 

increased by the inclusion of different qualification levels for the nurses and the 

cover requirements and part time nurses. Although the approach is based on the 

tabu search framework, tabu lists play a minor role in the algorithm. Instead,  a 

key feature of the algorithm is strategic oscillations between two phases of trying 

to minimise cover violation and then minimising penalty costs corresponding to 

the quality of the schedules from the nurses’ perspectives. In both phases, ejection 

chains of moves are used. The chains consist of either single on/off day swaps or 

the exchange of whole weekly patterns between nurses. The schedules produced 

by this method were able to match the quality of those produced by a human 

expert. 
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Dowsland and Thompson [92] later improved the model to provide a number of 

extra rostering requirements. Two major changes needed the addition of new pre- 

and post-processing phases to the tabu search. The pre-processing phase examines 

whether there are sufficient nurses to satisfy the cover requirements and, if not, 

outputs the number of bank nurses that are needed. The problem is modelled as a 

knapsack problem which can be efficiently solved using a branch and bound 

method. The post-processing phase optimally allocates early and late shifts on the 

day shift assignments according to nurse working preferences and cover 

requirements. It is possible to perform this after the tabu search as its overall 

effect on the solution quality is relatively low. Network flow models are used to 

represent this problem which again can be solved quickly. The vast majority of 

the solutions produced by the tabu search were also proven to be optimal after 

modelling and solving the problem using integer programming. 

 

Burke et al. [58] present a tabu search which uses a neighbourhood of reassigning 

single shifts. This is combined with a diversification step based on repairing 

complete weekend constraint violations and schedule improvements using the 

large shuffle neighbourhoods (see chapter 5 for a discussion of this 

neighbourhood). The basic tabu search outperforms a steepest descent method 

and when extended using shuffle neighbourhoods, the results improve further 

although at the expense of extra computation time. This approach is later 

extended in [57] to allow coverage constraints to be specified in time intervals 

rather than fixed shift types. Although this increases the size of the search space, 

the quality of the nurses’ schedules can be improved. This approach has been 
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implemented in over 40 hospitals in Belgium. An overview of this research is 

provided in [59]. 

 

Valouxis and Housos [237] modelled a nurse rostering problem using integer 

programming but found the problem instances too large and intractable. The 

model was therefore simplified to make it easily solvable using integer 

programming techniques. These solutions for the approximate model are then 

used as initial solutions to the complete problem for subsequent improvement 

using local search and tabu search techniques. The searches are based on 

swapping blocks of shifts and/or days off between nurses. The approach 

successfully solved instances with 16 nurses, 3 shift types and a planning horizon 

of 28 days and also compared favourably to a constraint programming method. 

 

Li et al. [159] present a hybrid approach for solving a nurse rostering problem 

with a smaller number of hard and soft constraints. In the first phase of the 

algorithm, constraint programming techniques are used to find a solution to a 

relaxation of the problem. The problem is relaxed by removing personal requests 

that would cause coverage (a hard constraint) to be violated if they were granted. 

This ensures that it is not over-constrained and a feasible initial solution can be 

found. In the second phase the solution is improved with regard to the satisfaction 

of soft constraints by a tabu search using a neighbourhood based on swapping 

shifts between nurses on single days. The method was successful when tested on 

a case study. 
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Bellanti et al. [37] use a heuristic local search approach to solve a rostering 

problem in an Italian hospital. The authors found that the integer programming 

model of the problem contained too many variables and constraints even for a 

small instance and the linear relaxation could not provide satisfactory bounds 

either. The problem contains a number of constraints and objectives which 

include the minimisation of cover shortage. The nature of the hard constraints 

makes it difficult to define a search neighbourhood which operates over feasible 

solutions only. Therefore, a neighbourhood involving the movement of night 

shifts between nurses in partial solutions is used. The partial solutions contain 

only the assignment of holidays, requested days off and night shifts. Partial 

solutions are then completed by heuristically assigning morning and afternoon 

shifts. This neighbourhood is incorporated into a tabu search and an iterated local 

search which both produce better solutions than those found manually. 

 

Louw et al. [166] use tabu search to solve a nurse rostering problem in a South 

African hospital. The objective is to minimise a weighted combination of total 

wage costs and nurse dissatisfaction from not receiving preferred day on/off 

requests. A minimum cover for each nurse rank (or skill) per shift is a hard 

constraint along with a minimum and maximum number of shifts worked in the 

planning period and a maximum number of consecutive shifts. These are user 

definable parameters for each nurse rank. Every three months, the nurses alternate 

between working only day or night shifts so that the problem can be decomposed 

into only assigning one shift type to each nurse. The search uses compound 

moves (ejection chains) which identify strictly feasible neighbour solutions. The 

chains of moves are formed by swapping on/off days in individual schedules such 
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that the next link in the chain corrects the excess coverage caused by the previous 

move. The final move in the chain corrects the under coverage caused by the first 

move in the chain. Results showed that these compound moves were more 

effective than single moves and swaps. A user interface was also developed to 

allow manual changes and short notice repair to the schedules. 

2.4.8 Simulated Annealing 

The idea of simulated annealing is to always accept improving moves and to 

accept un-improving moves with a probability which decreases during the 

algorithm’s execution and is proportional to the change in solution quality 

produced by the move. In effect, many moves which cause large decreases in the 

current solution quality may be accepted at the beginning of the algorithm and at 

the end, few un-improving moves are accepted and those that are, produce very 

small decreases in quality. Parameter selection can have a large influence on 

performance. The algorithm was introduced by Kirkpatrick et al. [147] and is so 

called because the framework was provided by an analogy to annealing in solids.  

Isken and Hancock [139] define an integer programming model for a tour 

scheduling problem from a hospital care unit. The coverage demands for each 

half hour of the day are known and the objective is to determine a set of shifts for 

assignment each day such that over and under coverage costs will be minimised. 

Each shift can vary in start time and has one of three durations (8h, 10h and 12h). 

Additional constraints are added to ensure that a suitable work pattern over a ten 

day period can be easily created for each employee in a separate phase. The 

problem is solved by using a rounding heuristic on a solution to the linear 

relaxation. This initial solution is then improved by applying simulated annealing 
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which uses a simple swap neighbourhood. In the example instance described, the 

final solution was within 19% of the linear program lower bound. 

2.4.9 Evolutionary Algorithms 

Like most metaheuristics, there is no strict and universally accepted definition for 

evolutionary algorithms and so a large number of publications could arguably fall 

into this category. However, evolutionary algorithms are sometimes loosely 

inspired by natural or biological processes and often use one or more of the 

following: 

 

• Generations (algorithmic iterations). 

• Populations (multiple concurrent solutions). 

• Crossover (combining features from two solutions to produce new 

solutions). 

• Mutation (random changes to solutions). 

• Population management (e.g. elitism, survival of the fittest, diversification 

strategies). 

 

These features are not exclusive to evolutionary algorithms though and may 

appear in other metaheuristics in one form or another too. For example, ‘shuffles’ 

or ‘kicks’ in variable neighbourhood search and iterated local search could be 

described as mutations. Examples of evolutionary algorithms include genetic 

algorithms [104, 124, 132], memetic algorithms (genetic algorithms plus local 

search) [187] and genetic programming [149]. 
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Tanomaru [229] uses a genetic algorithm to solve a staff scheduling problem 

which has no predefined shift types. Instead of standard shifts with fixed start and 

end times (e.g. early, late, night etc), the planning horizon is split into uniform 

time intervals and a minimum cover requirement for each time interval is 

specified. Employees are categorized into groups with each group having 

different working constraints. Cover requirements are further broken down by 

giving a minimum number of employees required from each group. Wages vary 

between employees and the objective is to minimise the combination of 

employment costs and constraint violations. At each generation after a standard 

reproduction and crossover stage, a number of heuristic procedures are applied to 

further increase the quality of the schedules. An optimal solution is found for a 

smaller instance and good solutions are produced within a few minutes for 

moderate sized instances. 

 

Jan et al. [140] evaluate the use of a genetic algorithm to solve a nurse scheduling 

problem. Although the authors note that the problem is simplified slightly as they 

are conducting preliminary tests, some common hard (cover and personal 

requests) and soft constraints (mostly related to night shifts) are still present. The 

objectives are to minimise the total penalty incurred due to soft constraint 

violations and to minimise the variance in the individual nurse schedule penalties 

so ensuring fairness. A population of non-dominated solutions according to these 

two objectives is maintained. New solutions are not produced via crossover 

between solutions in this population however, but rather by mutating a single 

schedule. This aids the maintenance of only feasible solutions. The authors also 
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suggest a method for allowing a decision maker to adjust the schedule and guide 

the search during its execution. 

 

Cai and Li [70] present a genetic algorithm for solving a staff scheduling problem 

with three objectives of decreasing importance:  

 

1. Minimize total costs in satisfying cover demands (each feasible schedule 

has a different cost). 

2. Maximise the staff surplus (in the case of underestimated cover 

requirements). 

3. Minimise the variation in surplus over the planning periods. 

 

Feasible weekly schedules with varying costs are predefined and are assigned 

when the best number of workers for each schedule is found. The employment of 

fitness values for selecting parents is replaced with a ranking scheme according to 

the objectives. When comparing the objectives, an extra parameter is included to 

allow slightly different objective function values to be treated as equal if 

preferred. Crossover is performed using carefully constructed masks aiming to 

maintain diversity but not to create overly infeasible offspring. Repairs are 

performed heuristically by repeatedly identifying the most violated constraint and 

assigning an additional schedule to satisfy it subject to other constraints. If there 

is more than one possible schedule for performing the repair, the best one 

according to the objectives is used. The results were of sufficient quality for the 

approach to be included in an existing scheduling system. 
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Aickelin and Dowsland [10, 12] developed and tested a genetic algorithm in place 

of the tabu search method in [92]. They were able to achieve a similar 

performance with the genetic algorithm and felt it was more robust when applied 

to a greater variety of instances. To achieve this success, the genetic algorithm 

required a lot of adapting to the problem (as did the tabu search also) to exploit its 

structure. This was done by splitting the population into a hierarchy of sub-

populations based on nurse grades and then strategically using crossover on these 

better building blocks. Also, if a solution exhibits an under/over coverage 

structure, which is difficult for the genetic algorithm to repair, it is more severely 

penalised. To improve solution quality further, a basic hill climber involving 

testing a different work pattern for each nurse and accepting it if it increases 

fitness is also applied to some solutions. 

In [13] they also tested an indirect genetic algorithm on the same problem. This 

time, the genetic algorithm is used to identify permutations of nurses which are 

then passed to a decoder which applies heuristic rules to this permutation to 

assign work patterns and to construct the roster. In effect, the decoder acts as a 

fitness function for the genetic algorithm. Using this method removes, from the 

genetic algorithm, the complications of dealing with the problem specific 

constraints and infeasibility. Three decoders are experimented with, each having a 

different bias between producing feasible solutions and solutions which maximise 

nurse satisfaction. After fine tuning the heuristics and penalty weights, the 

algorithm was capable of slightly better results than the direct genetic algorithm. 

Aickelin and White [15] later presented an improved method for fine tuning 

algorithms which is superior to their manual attempts in selecting the best 
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parameters. They discuss the difficulties in comparing results which may contain 

feasible and infeasible solutions and suggest a method for handling them. 

 

Burke et al. [49] present a number of memetic algorithms for nurse scheduling. 

Experiments are conducted combining different crossover operators and local 

improvements methods. The best approach is a hybridisation of a tabu search [58] 

and a crossover operator based on selecting the ‘best’ events from each parent. 

Although the best memetic algorithm required a greater computation time than 

the tabu search, the solutions produced are nearly always of a higher quality. This 

research is discussed further in chapter 6. 

 

Dias et al. [88] developed a tabu search and a genetic algorithm for solving 

rostering problems in Brazilian hospitals. Generally, each employee only works 

one type of shift (morning, evening or night) which helps simplify the problem. 

However, there are still a number of soft constraints such as minimum and 

maximum working days, a required number of days and weekends off and 

minimum and maximum cover for each day. These constraints are weighted and 

used to form the objective function. Tests showed the genetic algorithm slightly 

outperformed the tabu search but, in practice, both approaches were welcomed by 

the hospital users without preference as they were both significantly superior to 

manual efforts. A user interface which easily allowed small changes to the 

schedule by hand was also appreciated by the staff. 

 

Inoue et al. [138] argue that evaluation functions for nurse rostering problems are 

not always accurate enough as it is difficult for head nurses to describe all the 
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qualities they wish to see in a high quality schedule. To overcome this, they 

describe an interactive scheduling approach. A fitness function based on a 

measure of the violation of easily defined constraints such as cover requirements 

(including skill mixes), forbidden shift patterns and personal requests is used in 

an evolutionary algorithm. However, at each generation, the user may modify and 

fix parts of the schedules in the population to increase their quality based on the 

user’s perception. The results of using various combinations of crossover, 

mutation and heuristics for repairing the crossover in the genetic algorithm are 

presented. 

 

Özcan [201] presents a number of mutation, crossover and hill climbing operators 

in a memetic approach to solving a nurse rostering problem. Two different shift 

types must be assigned over a planning period of a fortnight. There are a 

relatively small number of hard and soft constraints. The hill climbing method 

examines one constraint at a time and tries to repair violations by changing shift 

assignments. Experiments are performed on randomly generated instances to 

determine the best types of mutation and crossover. 

2.4.10 Hyperheuristics 

Hyperheuristics are designed for problems where good quality solutions are 

required within reasonable time limits but finding optimal or very close to 

optimal solutions is not critical. Instead it is more important to implement the 

algorithm quickly and cost effectively without spending large amounts of time 

fine tuning and adapting the algorithm to the problem. A key motivation of 

hyperheuristics is the ability to operate on different problems i.e. raising the level 

of generality. To achieve this, hyperheuristics generally operate by intelligently 
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selecting a heuristic or algorithm for the next step in improving or constructing a 

solution to a given problem. See [61, 217] for an introduction to hyperheuristics.  

 

In [63], Burke et al. successfully applied a hyperheuristic to the nurse rostering 

problem studied in [12, 91]. The main aim of the research was to show the 

algorithm could successfully operate on two different problems, as the same 

hyperheuristic was also effective on a university course timetabling problem. The 

algorithm manages a competition of the heuristics against each other by 

rewarding points to a successful heuristic and penalising an ineffective one. The 

heuristic with most points is the one applied at each iteration and it is then 

penalised or rewarded according to its affect on the current solution quality. The 

results of this hyperheuristic compared favourably to a choice function 

hyperheuristic [80] applied to the same problem. The choice function 

hyperheuristic uses a statistical record of the individual and joint performance of 

the heuristics.  

2.5 Surveys, Overviews and Bibliographies 

A number of literature reviews related to personnel scheduling and nurse 

rostering have also been published.  

 

In 1976, Fries [107] compiled an early bibliography of applications of operations 

research methods in health care systems. It includes some nurse staffing and 

scheduling approaches.  

 

Tien and Kamiyama [233] consider an entire manpower scheduling process and 

decompose it into five stages or sub problems. General models for each problem 
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are defined and a review is conducted of algorithms which have been developed 

to solve one or a combination of these problems. The five stages for a fixed 

planning period are: 1) determine the number of staff required for each shift, 2) 

determine the total number of staff required, 3) identify day-off blocks for 

assignment, 4) assign the days off, 5) assign shifts for the days on. 

 

In 1990, Sitompul and Randhawa [225] produced a state of the art review of nurse 

scheduling models. The problems are categorized into cyclical and non-cyclical 

scheduling and the methods for solving them are classified as optimising or 

heuristic techniques. According to the classification scheme, the optimising 

approaches use an objective function whereas the heuristic methods do not. The 

non-cyclical problems reviewed are mostly solved using an optimising approach 

and the majority of the cyclical problems have a heuristic technique applied to 

them. Decision support systems are also examined. The authors suggest future 

nurse scheduling systems may be more effective if they provide increased 

flexibility and adaptability. A decision support system is proposed as a possible 

solution. 

 

In 1991, Siferd and Benton [223] reviewed the literature relevant to a wide range 

of nurse staffing and scheduling issues. Cost reducing and containment pressures 

on American hospitals and their managers at the time were examined and the 

effect of these forces on nurse staffing and scheduling were discussed with 

reference to the relevant literature at the time. A few papers describing solutions 

to specific nurse staffing and rostering problems were reviewed. The authors also 

provided the results from a survey they conducted of 348 nursing managers which 
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included questions related to nurse scheduling. For example, at the time, 59% of 

the managers performed scheduling without computer help and 37% rated the 

task as “highly complex”. 

 

Bradley and Martin [44] reviewed a number of personnel scheduling algorithms 

published before 1991. The problems examined are classified as either staffing, 

rostering or short term scheduling. The latter, for example, includes assigning 

nurses to other wards to reduce under cover caused by short notice events such as 

staff illness or an unexpected increase in the number of patients. The algorithms 

are identified as heuristic or mathematical programming approaches and further 

grouped according to whether they produce cyclic or non-cyclic rosters. The 

authors highlight the dependencies between the staffing and rostering phases and 

suggest that it may be beneficial to consider these links in future models.  

 

In 1995, Hung [134] produced a bibliography of publications mostly related to 

experiments with different nurse scheduling policies. 

 

In 2003, Cheang et al. [73] wrote a bibliographic survey of nurse rostering 

problems and methodologies used to solve them. The paper details the common 

models used to define nurse rostering problems and lists frequently used 

constraints. A number of previously applied exact and heuristic approaches for 

solving the problems are reviewed. Other relevant issues such as evaluating the 

performance of different algorithms is also discussed. Concluding the paper, the 

authors argue in favour of the benefits that the existence of benchmark nurse 

rostering problems would have for future research. 
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In 2004, Burke et al. [60] conducted a review of the state of the art of nurse 

rostering. The paper contains a thorough examination of the most successful 

nurse rostering systems over the previous 40 years and compares them based on 

the objectives used and constraints considered. Staffing and cyclical scheduling is 

briefly observed but the paper concentrates on non-cyclical rostering problems. 

The approaches are categorised according to the solution methods used e.g. 

mathematical programming, expert systems, metaheuristics etc. The paper 

concludes with recommendations on future research directions in nurse rostering. 

These include: 

 

• The development of benchmark nurse rostering problems with an 

emphasis on representing real world scenarios. 

• Algorithms which produce more robust and flexible schedules with regard 

to scheduling uncertainty and changes at short notice. 

• More user friendly systems to increase user uptake and provide better 

human interaction with the scheduling process. 

 

The authors also suggest that algorithms which are less dependent on parameter 

tuning, decompose problems and/or exploit problem specific knowledge may be 

promising research ideas. 

 

Ernst et al. [99] review staff scheduling models and algorithms over a very wide 

range of industries. A complete scheduling process is broken down into six steps 

or modules. The majority of the literature can then be classified according to 
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which of these steps it examines. Commonly used models and algorithms are 

reviewed along with their advantages and disadvantages. The authors conclude 

that near future research directions in personnel scheduling may include the 

development of more generalised and flexible models which simultaneously 

consider more than one step in the overall scheduling process. For example, if 

possible, combining the staffing (or demand modelling) and shift assignment may 

yield benefits. It is also suggested that future rostering solutions may give more 

consideration to the requests and preferences of individual employees rather than 

treating them anonymously. 

Using the same classification schemes, Ernst et al. [98] also compiled an 

impressive bibliography of 700 references from the field or personnel scheduling 

and rostering. Each reference was briefly summarised and whenever possible 

checked with the publication’s author. 

2.6 Related Research  

The papers reviewed in this chapter have focussed on nurse rostering problems 

and the methods used to solve them. There are, however, many other publications 

that examine some of the other Operations Research problems related to nurse 

scheduling. For example, Kwak and Lee [153] use goal programming to solve a 

staffing problem involving physicians, nurses and technicians in three different 

hospital departments. Nooriafshar [196] developed a decision support system for 

solving a trainee nurse staffing problem. Staffing requirements must be met in 

different wards while giving different trainee nurses the required experience and 

training from working in the various departments. Wright et al. [248] investigate 

how different policies such as nurse to patient ratios affect total wage costs and 

work schedule quality. Punnakitikashem et al. [209] developed a stochastic 
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integer programming model for the problem of assigning nurses to patients before 

a shift starts so as to minimise excess workloads for nurses. Al-Zubaidi and 

Christer [16] use simulations to predict the effect of different management and 

operational policies on maintenance manpower requirements in a UK hospital. 

Moz and Vaz Pato [188-190] developed a number of methods for solving the 

nurse rerostering problem. Re-rostering involves adjusting rosters to cope with 

unexpected absences when there is no reserve pool of nurses available. Gutjahr 

and Rauner [126] use an ant colony optimisation approach to assign a pool of 

nurses to a number of hospitals within the Vienna region, Austria. The hospitals 

make requests for extra nurses on certain days due to excess demand. The nurses 

are then allocated to the hospitals, taking into consideration the nurses’ working 

preferences, the hospitals’ requirements and cost constraints. Beliën and 

Demeulemeester [35] combine a nurse rostering and surgery scheduling problem 

and successfully solve it using column generation. 

Blake and Carter [40] used goal programming to determine patient level targets at 

a hospital that was about to experience a significant reduction in funding. Patient 

requirements, operating costs and doctors’ preferred incomes and level and type 

of workload all needed to be considered. 

Abernathy et al. [7] present a stochastic programming model for solving staffing 

problems in hospitals which have highly variable personnel demands. The three 

planning stages that the process can be decomposed into are: policy decisions 

such as the number of nurses allocated to each ward over a scheduling period, 

staff planning such as the number of nurses needed in employment and short term 

scheduling using the decisions from the previous stages. 
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Trivedi and Warner [234] describe a method for optimally allocating float nurses 

among nursing units at the start of shifts. A model for representing the head 

nurse’s perception on the need for additional nurses at specific units is used to 

form the objective of a problem which is then solved using a branch and bound 

algorithm. Factors considered for describing the shortage severity include patient 

load, patient classifications and staff absences. 

Musliu et al. [193] handle weekly shift scheduling problems using local search 

techniques. Thompson [231] solves a general employee shift scheduling problem 

using a simulated annealing based approach. Glover et al. [122] outline local 

search ideas for solving a week long employee scheduling problem in which 

employee availability and cover requirements fluctuate. Baker et al. [24] present 

an optimal constructive approach to a very simplified rostering problem. 

Easton et al. [94] observe that in order to retain higher numbers of nurses and 

reduce nurse turnover and the associated costs, some hospitals are providing more 

attractive work schedules. Some of these scheduling policies include preferable 

shift rotations, less weekend assignments and higher wages for undesirable shifts. 

To examine the effects of some of these scheduling rules on the changes to total 

nurse wage costs and workforce sizes required, the authors conduct simulations 

and solve nurse scheduling problems using these new scheduling rules. The 

results suggest that although more restrictive scheduling policies may be more 

attractive to the nurses, the costs incurred to the hospital through higher total 

wages and larger workforces should perhaps be considered too. 

 

There are also a number of papers which do not present a specific method for 

nurse rostering but discuss different ways of modelling problems or ideas which 
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may be applicable to a number of approaches. For example in [55], Burke et al. 

suggest an alternative approach to the evaluation function which reduces the 

knowledge required by the user of the system when setting weights for soft 

constraints. In [53], Burke et al. describe a fast implementation of the evaluation 

function for a nurse rostering problem. Due to the large number of complex 

constraints which are typical in nurse rostering problems, the evaluation function 

is often a bottleneck. Therefore any gain in the speed of evaluation functions will 

increase the efficiency of the algorithms. Instead of writing individual evaluation 

functions for each soft constraint, they developed a single evaluation function. 

This function accepts certain data structures (called numberings and counters) 

which are cleverly initialised for each constraint. Performance gains occur due to 

the fact that certain soft constraints are able to share these data structures, hence 

reducing the number of evaluation function calls. For instances in which these 

data structures are significantly shared, this method is very efficient. De 

Causmaecker and Vanden Berghe [86] present algorithms for improving roster 

quality by manipulating coverage constraints. The algorithms mimic the way 

expert human planners sometimes alter coverage constraints in order to increase 

the quality of the nurses’ work patterns. 

Blöchliger [42] provides a tutorial on modelling a nurse scheduling problem with 

three objectives: minimize employment costs, maximize fairness by evenly 

distributing unpopular shifts and minimize soft constraint violations. No method 

for solving the problem is given but potential general approaches are suggested. 

 

It is worth mentioning that there is also a very large body of research around the 

effects of different nurse scheduling policies. Examples include: 
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 The health risks of shift work, such as the disruption of circadian rhythms 

and sleep disorders [207].  

 The benefit of providing flexible working in order to encourage 

commitment to nursing [45]. 

 The effect of longer shifts on performance [103].  

 Stress due to shift working [171] and so on. 

 

Finally, the publications reviewed in this chapter have primarily focussed on 

nurse rostering. It is worth noting though that the physician scheduling problem 

can be very similar and methods which are effective for this problem may also 

have applications in nurse rostering. See for example [29, 72, 110, 150, 218]. 

2.7 Conclusion 

A number of approaches have been used to address the problem of automated 

nurse rostering. In this chapter, these methods have been placed in ten different 

categories. Arguably, these categories could have been further divided and in the 

future, novel methods for solving this problem are likely to appear. Most of the 

approaches have been shown to produce high quality rosters. There is no way of 

knowing which the ‘best’ method is. Implementing and comparing all the 

different algorithms over all the published problems would be an impractical task. 

In the author’s experience, many researchers have a favourite method and will 

argue its strengths (occasionally even dismissing all other techniques). In reality, 

it is likely that different methods will dominate on different instances and 

variations of the problem. Also, it is well known that any algorithm is only as 

good as its implementation. It can also be significantly improved by ‘tailoring’ it 
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to the problem at hand with heuristics and other operators that can exploit some 

structure or knowledge of the problem (or even problem instance).  

It is also interesting to see how the approaches used are highly dependent on the 

technology available at the time. Early systems were severely constrained in 

terms of the problem complexity that was examinable by computational 

limitations and also by user interface restrictions. For example, in some of the 

early approaches punch cards were used to input data and paper forms were 

needed for data collection. As computing power has increased, the scheduling 

approaches have become more flexible and take into account more working 

preferences. For example, in 1983, Blau and Sear [41] suggest that the 1-2 hours 

run time could be reduced through use of “a hard disk integrated with this 

microcomputer” and a “microprocessor with a clock speed of 4MHz instead of 

2Mhz”. Some of the current state of the art approaches to automated nurse 

rostering require similar run times on personal computers with 3000MHz 

processors and numerous other improvements. This highlights either a serious 

lack of progress over the past 25 years, or more likely, the limitations on the size 

and complexity of the problems that could be solved in the past, and the increase 

in complexity of the problems that are solved now. This increase in computing 

power is also set to continue in the future so we should expect even better 

solutions produced more quickly on even harder real world problems. 

 

All the publications reviewed in this chapter make a contribution of some degree 

to the collective body of personnel scheduling research. However a number of 

papers are particularly noteworthy either for their originality, quality and/or 

practical impact. These include: 
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 [242] : Warner provides not only an early nurse rostering paper but also 

one of the first mathematical programming models. A number of 

subsequent researchers build on this work. 

 [92] : Dowsland and Thompson provide an excellent example of 

combining Operations Research methodologies to produce high quality 

rosters. Later research on the same problem confirmed the strength of this 

approach. 

 [178, 179] : Meyer auf’m Hofe’s publications are notable for a very 

effective constraint programming approach and for the rostering 

software’s commercial success.  

 [59] : Burke et al. contributed a number of novel metaheuristic approaches 

for a very flexible and practically oriented rostering model. The software 

and algorithms were successfully used in a large number of hospitals.  

 [30, 32] : Petrovic and Beddoe’s work is significant as being entirely 

novel and the first real application of case based reasoning to personnel 

scheduling. Even though the approach removes many of the familiar 

features of search and optimisation algorithms (such as objective 

functions, branching methods, search neighbourhoods etc), it is still able 

to produce high quality rosters. 

 

Although automated rostering systems are becoming more common in hospitals, 

in the author’s opinion, they will not become pervasive until a number of goals 

are achieved. Firstly, user interfaces need to be significantly improved. They 

should be more attractive and more user friendly. Entering new data, changing 
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constraints and modifying schedules should be as intuitive, fast and easy as 

possible. Developing software which allows this is not a simple task, but there 

appear to be no reasons to suggest that it is impossible. It will also become easier 

as users become more technologically capable and aware. Secondly, the 

algorithms need to become more powerful to solve a wider range of problems 

more quickly. This goal is being made easier by increases in hardware 

performance but there is also a significant level of potential for improvement in 

the algorithms themselves. Benchmark problems from real world environments 

would be particularly useful as a means for improving and validating the 

algorithms. Creating useful real world benchmark instances is not easy, however, 

as they are nearly always very complicated problems. Chapter 4 of this thesis 

discusses this issue further and presents a viable way forward. The rest of the 

thesis is concerned with developing improved nurse rostering algorithms, in 

particular, with harnessing the computing power currently available. 
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3 A Hybrid Heuristic Ordering and Variable 
Neighbourhood Search 

This chapter describes a new approach for solving a complex and challenging nurse 

rostering problem. The algorithm was developed in collaboration with ORTEC, a 

major supplier of software products and consultancy in the field of advanced 

planning and scheduling. One of the main goals of the research described in this 

chapter was to develop an effective and efficient search approach to improve upon 

the genetic algorithm based technique that is currently employed within ORTEC’s 

commercially available Harmony software1. As such, the methodology has to be able 

to handle all the requirements and constraints that are inherent in the nurse rostering 

problems that appear in the modern complex environments that are represented by 

today’s hospitals.  

 

The developed algorithm combines a variable neighbourhood search with a method 

of heuristically unassigning shifts and then repairing rosters using heuristic ordering. 

Variable neighbourhood search (VNS) is a metaheuristic first proposed by 

Mladenović in 1995 [184]. It has proved to be very popular with successful 

applications to a number of problems. It is described in detail in [127-129]. Its main 

feature, however, is a simple but effective idea: that of changing neighbourhood 

operators during a search. If a local optimum is reached using one neighbourhood, it 

is possible that this optimum can be escaped from by examining solutions in another 

neighbourhood. This basic principle is exploited by the approach presented here. The 

search is extended, though, by a heuristically guided solution disruption and repair 

                                                
1 The results of this research are incorporated in the latest product versions of Harmony. 
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phase. The approach is evaluated using commercial data against Harmony’s 

commercial strength genetic algorithm. 

3.1 ORTEC Problem Description 

The data for this problem was provided by ORTEC. They support hospitals and other 

organisations all over the world with automated workforce management solutions.  

The number of nurses in the problem instances tested ranges from 12 to 30, the ratio 

of full to part time nurses also varies between wards. For example, one ward consists 

of 16 nurses, where 12 of the nurses are full time and work 36 hours per week. One 

nurse works 32 hours per week and the other 3 are also part time and work 20 hours 

per week. Each instance also has a number of specific personal requests such as 

particular shifts and/or days requested off or on. All the other constraints that need to 

be satisfied are presented in sections 2.2 and 2.3. The scheduling period for each 

instance is exactly one month.  

The data was provided by ORTEC as a challenging real world problem and is very 

typical of their clients’ needs. An approach which is successful in dealing with a 

problem as complex as this will provide direct benefits in a number of real world 

personnel scheduling scenarios. 

3.1.1 Shifts and Shift Demand 

There are 4 different shift types in the problem: day, early, late and night shifts. All 

the shifts except night shifts cover 9 hours including one hour of rest time. So the 

actual number of working hours for each shift type is 8. Night shifts last 8 hours but 

include no rest time and so are counted as 8 working hours. The total cover 

requirements for each shift for each day varies between instances. Generally, larger 
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wards require more nurses on duty during each shift but similar sized wards can also 

have different cover requirements. 

 

Table 3.1 shows the daily demand for these shifts in the instance described earlier 

with 16 nurses. 

 
Shift Start 

time 
End 
Time 

Mon Tue Wed Thu Fri Sat Sun 

Day (D) 08:00 17:00 3 3 3 3 3 2 2 
Early (E) 07:00 16:00 3 3 3 3 3 2 2 
Late (L) 14:00 23:00 3 3 3 3 3 2 2 
Night (N) 23:00 07:00 1 1 1 1 1 1 1 

Table 3.1  Shift types and example weekly demand 

3.1.2 Hard Constraints 

The following rules must be met at all times, otherwise the roster is considered to be 

infeasible and unacceptable. 

 

 Shift cover requirements need to be satisfied. Over coverage is not permitted. 

 A nurse may start only one shift per day. 

 The maximum overtime assigned to each nurse per month is 4 hours. 

 The maximum hours worked per week is on average 36 hours over a period of 13 

consecutive weeks which do not include night shift assignments. 

 The maximum number of night shifts in any period of 5 consecutive weeks is 3. 

 A nurse must receive at least 2 weekends off in any 5 week period. A weekend 

off lasts 60 hours including Saturday 00:00 to Monday 04:00. 

 Following 2 or more consecutive night shifts, a 42 hour rest is required. 

 During any period of 24 hours, at least 11 hours rest is required. A night shift has 

to be followed by at least 14 hours rest. Once in a period of 21 days, however, the 

rest period may be reduced to 8 hours. 
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 The maximum number of consecutive night shifts is 3. 

 The maximum number of consecutive days worked is 6. 

3.1.3 Soft Constraints 

Ideally these requirements should be fulfilled. However, to obtain a roster that meets 

all the hard constraints it is usually necessary to break some of the soft rules. A 

weight is assigned to each soft constraint to reflect its importance (especially in 

comparison to the other soft constraints). A weighting is simply a number. The higher 

the number, the more strongly desired is the constraint or request. The weights are set 

either by the head nurses or through feedback from the nurses about what qualities 

they desire in their schedules. As a rough guide, the weights could be described as 

follows: 

 

Weight 1000 :  The constraint should not be violated unless absolutely necessary. 

Weight 100   :  The constraint is strongly desired. 

Weight 10     :  The constraint is preferred but not critical. 

Weight 1       :  Try and obey this constraint if possible but it is certainly not essential. 

 
In practice, exponentially scaled weights like these are most commonly used. 

However, the users do have the option of setting and changing the weight for each 

constraint to any positive integer value. 
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Constraint Weight Penalty 

Function 
Violation measurement 

factor 
From Friday 22:00 to Monday 0:00 a 
nurse should have either no shifts or at 
least 2 shifts (‘complete weekend’). 

1000 Linear Number of incomplete 
weekends 

No stand-alone shifts i.e. a day off, day 
on, day off sequence. 

1000 Linear Number of isolated shifts 

The length of a series of night shifts 
should be within the range 2-3.  

1000 Quadratic Difference between length 
of series and acceptable 
length. e.g. if 1 night shift, 
factor = 1, if 2 or 3 night 
shifts, factor = 0, if 4 night 
shifts, factor = 1, if 5 factor 
= 2 etc. 

A minimum of 2 days rest after a series of 
day, early or late shifts. 

100 Linear Factor is one if only one day 
of rest otherwise zero 

Employees with availability of 30-48 
hours per week, should receive a 
minimum of 4 shifts and a maximum of 5 
shifts per week. 

10 Quadratic Difference between number 
of shifts received and 
acceptable number per week 

Employees with availability of 0-30 hours 
per week, should receive a minimum of 2 
shifts and a maximum of 3 shifts per 
week. 

10 Quadratic Difference between number 
of shifts received and 
acceptable number per week 

For employees with availability of 30-48 
hours per week, the length of a series of 
shifts should be within the range of 4-6. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

For employees with availability of 0-30 
hours per week, the length of a series of 
shifts should be within the range 2-3. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

The length of a series of early shifts 
should be within the range 2-3. It could be 
within another series. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

The length of a series of late shifts should 
be within the range of 2-3. It could be 
within another series. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

An early shift after a day shift should be 
avoided. 

5 Linear Number of early shifts after 
days shifts 

A night shift after an early shift should be 
avoided. 

1 Linear Number of night shifts after 
early shifts 

Table 3.2  Soft Constraints 

3.1.4 Evaluation Function 

The evaluation function is the sum of all the penalties incurred due to soft constraint 

violations. The penalty for each soft constraint is calculated either linearly or 

quadratically using the violation measurement factors listed in Table 3.2. The 
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violation measurement factor is the degree to which the constraint is violated or the 

excess of the violation. The use of either quadratic or linear evaluation functions 

arises from practices in Harmony which were developed based on customer 

preferences and feedback. 

A soft constraint with a linear penalty function is simply calculated as: The violation 

measurement factor multiplied by the weight. For example, it is preferable to have at 

most zero stand-alone or isolated shifts. This is a soft constraint with weight 1000. 

However, to produce a feasible roster (i.e. one in which all the hard constraints are 

fulfilled) it may be necessary to allocate a nurse to an isolated shift. This is one more 

than is preferred so a penalty of 1000 is incurred. If the nurse had two isolated shifts, 

they would have a penalty of 2000 (2 * 1000) . 

A quadratic penalty function is calculated as: The violation measurement factor 

squared and multiplied by the weight. For example, it is preferable that during a 

period of five weeks, a nurse performs no more than three night shifts. This is a soft 

constraint with a weight of 1000. However, it may be necessary to assign five night 

shifts in the five week period (i.e. 2 more than preferred), then the penalty for this 

soft constraint violation would be 4000 (22 * 1000). 

It is now possible to define the objective of the problem: To find a feasible roster 

with the lowest possible penalty caused by soft constraint violations. From the 

perspective of the head nurse, of course, the actual penalty hides a lot of information 

about the solution but it is not totally meaningless. By examining the penalty for each 

schedule it is possible to gain some idea of the schedule quality. For example, if the 

penalty is less than 1000 then we know that all the constraints with weight 1000 have 

been satisfied. However, the key to producing satisfactory schedules is obviously 

setting the correct weights and ensuring that all the required constraints are defined. 
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Therefore, it is essential that the end user either has a good understanding of how to 

set the weights and define constraints or has clearly described the requirements to the 

software administrator. 

 

To further clarify the problem and provide a more formal description it will now be 

presented as an integer programming model. The model was originally produced by 

Jingpeng Li and can be found in [64]. 

 

Parameters: 

I = Set of nurses available. 

=∈ }3,2,1{| tI t  Subset of nurses that work 20, 32, 36 hours per week respectively, I = 

I1 + I2 + I3. 

J = Set of indices of the last day of each week within the scheduling period = {7, 14, 

21, 28, 35}. 

K = Set of shift types = {1(early), 2(day), 3(late), 4(night)}. 

K ′ = Set of undesirable shift type successions = {(2,1), (3,1), (3,2), (1,4)}. 

djk = Coverage requirement  of shift type k on day j, }7,...,1{ Jj ∈ . 

mi = Maximum number of  working days for nurse i within the scheduling period. 

n1 = Maximum number of consecutive night shifts within the scheduling period. 

n2 = Maximum number of consecutive working days within the scheduling period. 

ck = Desirable upper bound of consecutive assignments of shift type k. 

gt = Desirable upper bound of weekly working days for the t-th subset of nurses. 

ht = Desirable lower bound of weekly working days for the t-th subset of nurses. 

Decision variables: 

xijk = 1 if nurse i is assigned shift type k for day j, 0 otherwise 
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The soft constraints are formulated as goals. The overall objective function is: 
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2. Avoid isolated shifts (i.e. a working day preceded and followed by a day off). 
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3. A minimum number of days off after a series of shifts. 
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4. A maximum number of consecutive shifts of a specific type. 
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5. A minimum number of consecutive shifts of a specific type. 
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6. A minimum and maximum number of working days per week. 
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7. A maximum number of consecutive working days for part time nurses. 
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8. Avoiding certain shift rotation (e.g an early shift after a day shift). 
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The constraints are:   

1. Shift cover requirements. 
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2. A nurse may not start more than one shift each day. 
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3. Maximum number of working days. 
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4. Maximum of three working weekends. 
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5. Maximum of three night shifts. 
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6. A minimum of two consecutive night shifts.                                                       
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7. A minimum of two days off after a series of consecutive night shifts. This 

constraint is equivalent to the following three sub-constraints which rule out the 

sequences of ‘N01’, ‘N10’ and ‘N11’ respectively, where ‘N’ denotes a night shift, 

‘0’ an off-duty day and ‘1’ an on-duty day: 
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8. Maximum number of consecutive night shifts. 
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9. Maximum number of consecutive working days. 
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As discussed earlier and the weights iw  (given in Table 3.2) are set based on user 

preferences. 

 

As mentioned previously, a feasible roster is a roster that satisfies all the hard 

constraints. A penalty for an infeasible roster can still be calculated but, in our 

system, a feasible roster is always considered to be better than an infeasible roster 

regardless of penalty values. The only infeasible rosters that may be introduced 

during the search or returned afterwards are those that provide insufficient cover. 

This is ensured by never assigning a shift to a nurse if it will violate a hard constraint. 

For example, at certain points in the algorithm, shifts may be unassigned in a roster 

and so the coverage constraint will be violated. These shifts will then only be 

reassigned if no hard constraint violations occur in doing so. If the quality of 

infeasible rosters need to be compared, the rosters with the lowest number of 

unassigned shifts (i.e. minimum shift coverage violation) are ranked higher regardless 

of their penalties. If infeasible rosters have the same number of shifts unassigned, 

then the penalty function is used. 

For all the instances we tested, we were able to produce feasible rosters. It is possible 

though that there may be an instance for which a feasible roster does not exist. In 
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practice,  if a feasible roster cannot be found (either because one does not exist or it is 

too difficult to find) then the head nurse or manager decides whether to work with the 

best infeasible roster or relax some of the constraints or hire extra personnel and/or to 

assign some extra nurses to the ward (usually agency or float nurses) and then restart 

the search. 

3.2 The Hybrid Variable Neighbourhood Search Algorithm 

The algorithm presented in this section represents an iterative process in which 

variable neighbourhood search is followed by a roster disruption and repair strategy. 

The repairing of the roster is performed using a heuristic ordering technique. 

Backtracking is also carried out to further improve the quality of the produced 

schedules. 

 

The overall process is illustrated by the pseudocode in Figure 3.1. 

 
1.  Create Initial Roster 
2.  REPEAT 
3.     Variable Neighbourhood Search 
4.     IF current penalty < best penalty  THEN     
5.        SET best roster to current roster 
6.        SET best penalty  to current penalty 
7.     ELSE 
8.        SET current roster to best roster (i.e. backtrack one step) 
9.     ENDIF 
10.    Unassign shifts of a set of nurses 
11.    Repair roster (using heuristic ordering method) 
12. UNTIL search terminated 

Figure 3.1 Pseudocode of the overall hybrid VNS algorithm 

3.2.1 Initialisation 

A heuristic ordering is used to create the initial roster. In the experimentation section, 

the approach is compared against a commercial genetic algorithm developed by 

ORTEC and in use in real hospital environments. The commercial genetic algorithm 

that this hybrid variable neighbourhood search is evaluated against uses a similar 

heuristic ordering method to create its initial population of rosters.  
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The aim of the heuristic ordering process is to sort all the shifts in order of the 

estimated difficulty of assigning them or by how likely they are to cause high 

penalties (by using the criteria shown in Table 3.3). Using the weighted sum to 

identify them, the more troublesome shifts are then assigned earlier on in the roster 

construction process.  

Once the shifts have been sorted in the order in which to try and assign them, they are 

in turn assigned to each nurse to calculate the penalty that would be incurred if the 

shift was assigned to that nurse. The shift is then assigned to the nurse that gains the 

least penalty in receiving that shift. 

The attributes of a shift that are examined when ranking the shifts in the order of 

possible difficulty to assign are described in Table 3.3 along with the functions used 

to assign its total weight for ranking.  

 
Shift Criteria Evaluation Function Weight 
Night Shift Weight 100 
Weekend Shift Weight 50 
Number of valid 
nurses 

(NumValidNurses / TotalNumNurses) * Weight 70 

Shift Date Weight * (Roster.EndDate – Shift.BeginDate) 20 

Table 3.3  Heuristic ordering shift evaluation criteria 

 
The first two criteria in Table 3.3 are obvious to examine as there are high penalties 

associated with night shift and weekend shift constraints. The third criterion used is 

to deduce how many nurses are able to fulfil this shift. If there are many nurses able 

to undertake it, then it can be scheduled later but if there are very few then it is a 

good idea to assign it early on in the process. The shift date criteria is used to try and 

ensure that the shifts in the early days in the scheduling period are assigned earlier on 

in the process. This is useful as these shifts are more likely to conflict with the 

previous schedule’s assignments. The shift date evaluation function is in units of 

days. 
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3.2.2 Variable Neighbourhood Search 

When the initial roster has been created using the heuristic ordering method described 

above, a variable neighbourhood search is applied. This makes use of two 

neighbourhoods. Both of these neighbourhoods are commonly used by metaheuristic 

and other approaches and have been described before, see, for example, [141, 159, 

176, 204]. The two neighbourhoods are defined by the following moves or changes to 

a roster: 

 

1. Assigning a shift to a different nurse. 

2. Swapping the nurses assigned to each of a pair of shifts. 

 
The first neighbourhood is a lot smaller than the second neighbourhood. However, it 

is observed that moves in the second neighbourhood can improve the quality of the 

roster quite significantly. 

Our variable neighbourhood approach is a variable neighbourhood descent. As can be 

seen from Figure 3.2, the smaller neighbourhood (neighbourhood 1) is repeatedly 

examined for an improving move and the move is executed if found. When there are 

no improving moves left in neighbourhood 1, then the much larger neighbourhood 2 

is examined. If a move in neighbourhood 2 is used then neighbourhood 1 is examined 

again. This is repeated until there are no improving moves left in neighbourhood 1 

and 2. 
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1.  SET MoveMade to TRUE 
2.  WHILE MoveMade is TRUE 
3.      SET MoveMade to FALSE 
4.      FOR each move in neighbourhood one  
5.          IF an improving move THEN 
6.              make this move 
7.          END IF 
8.      END LOOP 
9.      FOR each move in neighbourhood two  
10.         IF an improving move THEN 
11.             make this move 
12.             SET MoveMade to TRUE 
13.         END IF 
14.     END LOOP 
15. ENDWHILE 

Figure 3.2 Pseudocode of VNS 

 

Initially, the variable neighbourhood search was implemented in a steepest descent 

manner. That is, for each of the moves in the neighbourhood, identify the move or 

swap that would bring the most improvement and then perform that move or swap. 

The disadvantage in steepest descent is the extra time required to examine every 

move and swap, especially in a highly constrained problem like this in which there 

are many constraints to check and penalties to calculate at each move. This was 

especially noticeable in the second neighbourhood, which is quite large. 

In an attempt to decrease the running time of the algorithm, a quickest descent form 

of VNS was tested. That is, until no more improving moves are found, examine each 

move and swap and execute the move or swap if it decreases the roster’s overall 

penalty at all. 

It was interesting to discover that, for this problem, using these neighbourhoods, the 

quickest descent method was not only faster than steepest descent but it was usually 

at least as good and sometimes better in comparison. This was an interesting 

observation that was initially difficult to understand. On closer investigation, though, 

a possible explanation became apparent. The heuristic ordering is very effective at 

satisfying the constraints with the highest penalties. This means that the soft 

constraint violations that the VNS needs to repair are often ones with smaller similar 
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sized penalties. If there is a high probability that all the possible improving moves 

will yield a similar sized improvement, it is not efficient to be examining all of them 

to find the absolute best if it will only be slightly larger than the average of all the 

available improving moves. 

3.2.2 Roster Feasibility 

After the creation of the initial roster described earlier, or the larger movements in the 

search space which are described later, the roster may be infeasible in that the shift 

cover may not yet have been fulfilled. Therefore, during the VNS, if there are still 

unassigned shifts, then after a successful move or swap an attempt is made to see if it 

is now possible to assign any of the unassigned shifts without creating hard constraint 

violations.  

3.2.3 Roster Disruption and Repair 

Generally, at the end of the VNS phase, the roster not only has a lower penalty than 

before but the roster is also usually now feasible by satisfying the cover requirements, 

if it was not before. 

 

The heuristic ordering and VNS is capable of producing high quality schedules in a 

number of minutes. However, for most instances it is more likely that a good local 

optimum rather than the global optimum has been found. Some users may wish to 

continue the search for a longer time period to try and produce an even higher quality 

roster e.g. running the search during a lunch break or over night. Also, as computers 

get faster and more powerful, it is practical to have an approach which can scale with 

these increases. A one hour search today may only last one minute in five years or so.  
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To extend the search, a heuristic restart mechanism was developed. The idea is to 

select sections of the overall roster which could possibly be improved and to then 

attempt to improve them.  

This is done by selecting a fixed number of nurses who have the worst schedules (the 

penalty is calculated just for their schedule) and then unassigning all the shifts 

assigned to this set of nurses. Using the heuristic ordering method, these shifts are 

then reassigned (over all available nurses) and the VNS is performed to try and 

produce a better roster. This roster disruption and repair cycle is used repeatedly until 

the user terminates the search. 

The algorithm was initially implemented to unassign shifts from the current roster 

after the VNS. However, on some occasions, it was observed that the current roster 

could be significantly worse than the best found so far and it could take a number of 

iterations to get the current roster penalty back close to the best found. To reduce this 

effect it was found to be more efficient to return to the best found (if the current 

roster is worse than the best found) before the disruption phase. 

As stated, the shifts selected for unassigning are those belonging to a fixed number of 

nurses with the worst individual schedules i.e. those with the highest individual 

penalties. To prevent cycling though, one of these nurses is selected randomly and 

replaced with another randomly selected nurse not belonging to this set. 

To identify the best number of nurses from which to unassign shifts, a number of 

experiments were conducted on each instance in which this number ranged between 1 

and 14. The results are provided in section  3.3.1. 
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3.2.4 Genetic Algorithm 

Harmony uses a genetic algorithm to produce rosters. This existing algorithm 

provides a benchmark upon which to compare the performance of the algorithm 

described here. 

The genetic algorithm of Harmony is designed to be robust and effective for a wide 

variety of  rostering problems. To achieve this, like our algorithm, it does not heavily 

rely on problem specific knowledge or use detailed knowledge of the problem 

instance’s structure. An algorithm designed for a specific problem instance which 

heavily exploits its particular structure is likely to be more effective but less useful 

when other instances are considered. The genetic algorithm has, however, already 

performed in a more than satisfactory manner for a number of clients with varying 

requirements. 

The algorithm has a number of phases. Firstly, the initial population of rosters is 

created using a similar heuristic ordering method to the one described in this chapter 

but ensuring that each individual (roster) is different enough to introduce sufficient 

diversity in the population. Successive generations are created using roulette wheel 

parent selection, two types of crossover and three types of mutation. The particular 

crossover and/or mutations used are determined statistically by measuring their 

success in previous use between generations. The genetic algorithm terminates when 

a minimum threshold of improvement between generations is reached.  After the 

genetic algorithm phase, a local search is performed to further improve the best roster 

found. 

3.3 Results 

To develop this algorithm, the workforce management and planning software 

ORTEC Harmony [208] was used. Using Harmony provided a number of advantages 
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from a research point of view. The software has a highly developed user interface 

with which a large number and wide variety of nurse rostering problems can be 

defined and created. All data structures and methods for manipulating the problem 

instances themselves already exist with many hours of work already performed to 

increase their access and use. This meant that we were able to concentrate on 

creating, testing and improving an efficient algorithm for a wide variety of nurse 

rostering instances. Obviously the software also provides a clear visual display of the 

rosters and with precise breakdowns of why each employee receives the penalty they 

have. It was also particularly useful to have an existing commercial strength 

algorithm with which to compare against our work.  

The experiments were performed using a PC with a  Pentium 4, 2.4GHz processor. 

3.3.1 Varying the Number of Nurses to Unassign Shifts From 

Table 3.4 presents the results of varying the number of nurses from which to unassign 

shifts in the disruption and repair phase. The ‘penalty after first VNS’ column is the 

penalty of the roster after the VNS is first applied to the initial roster. The columns 

‘1’ to ‘14’ show the penalty of the best roster found after the search has been applied 

for one hour when that number of nurses were selected for shift unassignment during 

the disruption. 

The results show the best number of nurses to use for unassignment is between three 

and five. Using these settings, the penalty of the final roster is, on average, 14% 

lower than the roster found after the first VNS. Using two nurses can also generate 

some improvement but using one nurse alone is generally ineffective and does not 

provide sufficient diversification in the search. Using six and seven nurses can also 

provide some good results but, above seven, the performance deteriorates with eleven 
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to fourteen providing little improvement suggesting that there is too much 

diversification. 

There does not seem to be any correlation between the size of the instance, in terms 

of the number of nurses, and the optimal number of nurses to use for unassignment. 

Three to five appears to be the best range for instances with varying sizes. 

The success of the disruption and repair also varies between instances. For example, 

on instance thirteen, using three, four or five nurses provides almost 70% 

improvement on the roster after one VNS whereas, on instance one, the final 

improvement is less than 1%. 
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    Number of nurses selected for unassignment 

Instance Nurses 
Genetic 

algorithm 
Penalty after 

first VNS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 30 3626 3766 3766 3721 3746 3751 3766 3751 3766 3766 3766 3766 3766 3766 3766 3766 
2 30 2381 2390 2375 2330 2285 2285 2295 2390 2390 2390 2390 2390 2390 2390 2390 2390 
3 28 4325 4687 4557 4476 4687 4687 4687 4687 4301 4687 4687 4687 4687 4687 4687 4687 
4 26 1301 1366 1311 1246 1231 1216 1151 1081 1186 1035 1191 1176 1366 1366 1366 1366 
5 24 5230 6575 6450 5340 5291 6545 5465 6575 6575 6350 6575 6575 6575 6297 6575 6575 
6 24 25406 32171 31986 31896 31971 27038 29931 28826 28826 28821 29857 28941 32141 32171 29925 29874 
7 22 15661 22602 22602 21476 15550 16601 21756 15276 18325 21055 16348 15437 16455 19480 18551 22353 
8 22 22877 25829 25824 23694 24808 23678 24799 24843 22991 22822 23926 23851 23716 23926 24717 24663 
9 20 22478 24297 24277 24174 24228 24163 23298 24284 23394 23334 24297 24297 24297 24297 24297 24297 

10 18 Infeasible Infeasible Infeasible Infeasible 15706 15696 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible 
11 18 4525 4546 4546 4530 4460 4506 4546 4546 4546 4546 4546 4546 4546 4546 4546 4546 
12 16 775 996 905 831 760 690 805 830 862 996 951 996 996 996 996 996 
13 14 1757 5026 4951 2741 1596 1591 1597 1740 1770 5026 3951 5026 5026 5026 5026 5026 
14 14 760 800 755 591 556 645 621 700 650 790 800 800 800 800 800 800 
15 13 1500 1626 1345 1275 1365 1401 1341 1550 1610 1626 1626 1626 1626 1626 1626  
16 12 18202 18873 18873 14746 18822 15867 11850 13000 16121 16991 18873 16052 18873 18873   

Average improvement in penalty on roster 
found after first VNS (%) 2.7 11.4 13.6 13.9 13.7 12.4 11.1 4.5 5.1 4.9 2.2 1.6 1.9 0.9 

 

Table 3.4  Results for the Hybrid VNS
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3.3.2 Comparison of the Hybrid VNS with the Genetic Algorithm 

If the number of nurses selected in the disruption phase is three or four, then the 

hybrid VNS outperforms the genetic algorithm on nine of the sixteen instances. 

Using the Sign test and the Wilcoxon signed rank test (both are non-parametric) 

this is not however statistically significant at the 0.05 level. (The null hypothesis 

(H0) tested was that the difference in objective values of the solutions produced 

by the two algorithms are symmetrically distributed around the central point of 

zero. Note this is a two tailed test. For the ranked test, the difference between an 

infeasible and feasible solution is ranked higher than the difference between two 

feasible solutions.) 

Interestingly, the hybrid VNS appears to be more effective on the instances with 

less than twenty nurses. For example, in the experiments in which four nurses are 

selected, all the rosters found for instances with less than twenty nurses have 

lower penalties than the genetic algorithm (this was not significant at the 0.05 

level using the Sign test and the Wilcoxon signed rank test though). If three are 

selected, the hybrid VNS outperforms on all but one. This was significant at the 

0.05 level using both the Sign test and the Wilcoxon signed rank test. 

It can also be seen that using the VNS phase alone is not sufficient to outperform 

the genetic algorithm. For all instances, after the first VNS iteration, the roster is 

worse than the final roster produced by the genetic algorithm (significant at the 

0.05 level using both tests). The disruption and repair phases are required to 

further improve the roster. 
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Figure 3.3 Penalty vs. time for the GA and Hybrid VNS 

 
Figure 3.3 shows the progress of the two algorithms in finding rosters for instance 

12. The graph shows the penalty for the best roster found so far for each 

algorithm after x minutes. For the genetic algorithm, a steady decrease in penalty 

can be seen over the sixty minutes as, after each generation, a new best roster is 

often found as a result of the crossover and repair operations. A drop of over 1000 

in penalty in under a couple of minutes is most likely due to one of the constraints 

with a weight of 1000 being satisfied as well as other small improvements being 

made. The relatively steep (as all the soft constraints with weight 1000 have now 

been satisfied) decrease in penalty in the last two minutes for the genetic 

algorithm is due to the final local search phase.  

For the hybrid VNS, it can be seen that within four minutes (after a couple of 

iterations of the algorithm) the best roster already has a penalty close to that 

produced finally by the genetic algorithm at the end of the sixty minutes. Between 

the fourth and sixtieth minute, an additional better roster is found as a result of the 
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roster disruption, repair and VNS. From observing the algorithm when applied to 

the other scheduling periods, within the first sixty minutes there are usually three 

or four improvements in the best solution found between the fourth and sixtieth 

minute. 

3.3.3 Longer Computation Times 

The hybrid VNS algorithm is more likely to find a better solution the more time it 

is given. However, in most hospitals, rosters can be produced a long time in 

advance of when they are required. This observation motivated our experiments 

with granting the algorithm more computation time than just one hour.  

The hybrid VNS was granted 12 hours of computation time for one of the 

instances (instance 12) on which a lot of testing using the genetic algorithm had 

been previously performed by ORTEC. For this instance, the best roster ever 

found by an extended run of the genetic algorithm (for a period of about 24 hours) 

had a penalty of 681. The best roster previously known for this period had a 

penalty of 587. This was produced over a long time period through an iterative 

process of using the genetic algorithm and then making some manual changes to a 

solution before reapplying the genetic algorithm and so on.  

After 12 hours, the hybrid VNS had found a roster with penalty 541. It is 

important to note that this approach is producing the best known solution 

(produced either automatically or manually) on this real world problem instance. 

Moreover, it is producing it within a period (overnight) which is quite appropriate 

for this kind of problem. The results are summarised in Table 3.5. As can be seen, 

if more computation time is given, the roster can be significantly improved.  
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Algorithm Penalty  
Hybrid VNS after 30 minutes 736 
Hybrid VNS after 60 minutes 706 
Best ever GA (24 hours) 681 
Previous best known (found using GA and manual improvements) 587 
Hybrid VNS after 12 hours 541 

Table 3.5  Experimentation with longer computation times 

 
 

 
Figure 3.4 Screenshot of Harmony displaying a roster with penalty 541 

3.4 Conclusion 

The hybrid VNS algorithm described has been shown to be a relatively 

straightforward but highly effective approach for this problem. It is particularly 

effective on medium and small sized instances with less than twenty nurses. It is a 

viable alternative to the existing genetic algorithm for the commercial workforce 

management and planning software Harmony and has been added alongside the 

genetic algorithm in the latest versions. This work has also been accepted for 

publication in The European Journal of Operational Research [50]. 
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For instances with less than twenty nurses, the VNS algorithm has been shown to 

regularly find superior rosters when compared against the genetic algorithm that 

is currently in use. For these sized instances, the VNS algorithm represents a 

significant improvement over a commercially successful methodology. It has also 

found best known rosters for some of the scheduling periods (by running the 

algorithm for 12 hours). 

On instances with more than twenty nurses, the VNS algorithm is competitive 

with the genetic algorithm and outperforms it on some. However, on average, the 

genetic algorithm is more successful on these larger instances.  

The shift unassignment and repair using heuristic ordering method has been 

shown to be an efficient and effective method of exploring the search space and 

when it is combined with the VNS, schedules of high quality can be found. It was 

also discovered that backtracking was very useful in finding better solutions more 

quickly by reducing the exploration of paths which only led to poor quality 

solutions. 
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4 A Rostering Engine and Benchmarks 

The previous chapter presented a very successful and relatively simple algorithm 

for the nurse rostering problem. In order to validate the approach it was compared 

against a commercial strength, tried and tested, genetic algorithm. Comparing the 

method against an independently commercially implemented, successful 

algorithm was an analysis that other nurse rostering researchers have been unable 

to perform. There are a number of reasons for this. This chapter discusses these 

problems and describes work that has been performed in order to overcome them. 

The result is a framework for describing and sharing nurse rostering problems in 

order to establish benchmarks and to underpin the research base in this area. A 

foundation has been created that will allow high quality, practically orientated 

nurse rostering research to be conducted. The results of which would have direct 

practical benefits. A number of other issues are also discussed such as guidelines 

for experimentation, research aids and possible avenues of research. 

 

Benchmark instances have played an important role in the progress made on a 

wide range of problems. They are a useful tool in developing and validating 

increasingly powerful solvers and are a source of competition and collaboration 

which often drives progress. Problems ranging from satisfiability [133] to the 

travelling salesman problem [215] to examination timetabling [211] all have 

benchmark instances. It is somewhat surprising, however, that the nurse rostering 

problem has very few publicly available benchmark instances, especially when 

considering its common occurrence, its practical applications and the wealth of 

research literature in the area. In the author’s opinion, the reasons for this are 



4 A Rostering Engine and Benchmarks 

95 

twofold. Firstly, there is no typical nurse rostering problem. Nearly all the 

published research tackles a slightly different version of the problem with varying 

constraints, objectives and associated priorities. Secondly, defining and 

maintaining a data format which could contain and describe all these variations of 

the problem is a considerable and challenging task. The most appealing solution 

to this lack of benchmarks would perhaps be to define an easily manageable, 

simplified nurse rostering problem which contains a reduced set of constraints 

and a simple objective function. That approach, however, has very definite 

disadvantages. 

At the 2006 Practice and Theory of Automated Timetabling (PATAT) 

conference, a plenary presentation given by Barry McCollum was titled 

“University Timetabling: Bridging the Gap between Research and Practice” 

[170]. One of the key points made by the speaker was that the research in 

university timetabling does not always follow the direction of or keep up with the 

requirements and complexities of  the ‘real world’. The reason for this can be 

partly attributed to the benchmark data sets used by researchers to test and 

develop the latest algorithms. Unfortunately, the data sets are too often simplified 

and infrequently updated to reflect the dynamic and complex scenarios found in 

modern real world environments. This partly occurs due to the fact that it is a 

long, time consuming process for researchers to write the code to deal with these 

complex problems. Although this may or may not be a valid reason, the major 

difficulty, is that it will become harder to justify research when the practical 

benefits become less apparent (i.e. without updating, the real problems will move 

further from the researchers’ data sets). The ideal solution to this gap between 

research and practice would be a system for describing and sharing real world 
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problems which could be used as benchmarks and which minimises the start up 

time required by researchers to examine and provide solutions to these complex 

real world scenarios. 

To investigate whether this is possible, a data format has been developed (and is 

continuing to be extended) which can describe complex nurse rostering problems 

with multiple, complicated constraints and objectives. A key design goal was to 

produce a format which can evolve to handle new problem formulations as they 

appear. All software and source code developed to work with this data (including 

solvers) has also been made available. This is important not only to reduce the 

researcher’s burden and to make these unwieldy problems more accessible but 

also to provide validation and verification of new solutions. A facility that is 

essential for complicated benchmark problems. 

4.1 Other Nurse Rostering Benchmarks and Data Formats 

This is not the first attempt at defining a format for employee timetabling 

problems in order to share instances and establish benchmarks. Meisels and 

Schaerf [175, 176] described a general model and format for employee 

timetabling and provided some real world instances 

[http://www.cs.bgu.ac.il/~am/ETP_Home/Main_Page.html]. Unfortunately 

though, the project appears to have received little recent work in order to develop 

it further and incorporate a wider variety of real world instances.  

Özcan [200] proposed an XML format for timetabling problems called TTML. 

This format was flexible enough to describe a real world nurse rostering problem 

[201] which is available online 

[http://cse.yeditepe.edu.tr/~eozcan/research/TTML/]. Again though, it does not 
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appear to have received much further attention in order to expand the number and 

variety of instances which can be presented.  

A recent benchmark project has been started by Vanhoucke and Maenhout [239, 

240]. They have created a nurse scheduling problem library called NSPLib. This 

is a useful contribution but currently the number of constraints is limited. 

Therefore, the large number of computer generated instances may not be 

reflective of the real world. However, they are able to generate a wide variety of 

instances in terms of size and complexity which data sets based on real world 

problems can not always achieve. As such, our projects complement each other 

well. 

4.2 About the Format 

The data instances and solutions are presented using Extensible Markup 

Language (XML). XML is a relatively new technology (work began in 1996) 

although it derives from SGML, the foundations of which began in the 1960’s. 

One of its main design goals was to facilitate the sharing of data, particularly over 

the internet. It has proven to be very popular with wide and successful adoption in 

many industries. Like HTML, XML uses elements (tags) and attributes. Unlike 

HTML however, it allows new tags to be introduced (i.e. it is extensible). 

 

Using XML provides a number of benefits when working with data that will be 

shared and transferred: 

  
 Schemas and DTD’s (document type definition) can be used to validate 

the data and ensure that all the necessary information has been provided. 

For example, ensuring parameters are legal values and in the correct 
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format and undefined element ID’s are not referenced. Schemas also 

facilitate the writing of more robust parsers. 

 

 It is human readable and can be edited in any text editor. 

 

 Tags and attributes provide a degree of self description. For example, 

most people would have a rough idea of what information is represented 

by <EmployeeName>John Smith</EmployeeName>. 

 

 It is platform independent. For example, differences in newline characters 

between systems do not cause problems. XML also supports Unicode, 

allowing different languages with unusual characters to be included. 

 

 Application programming interfaces and libraries for working with XML 

are available in most programming languages. 

 

 Parsers can be designed to continue working correctly even when the file 

format has been updated (e.g. after adding new elements). This allows 

backwards compatibility and removes the need to update old files when 

the format is updated. 

4.3 Overview of the Latest Version 

The first version was based on ANROM  (Advanced Nurse ROstering Model) 

[238]. However, as already emphasised, this is an evolving format. As new nurse 

rostering problems are encountered with new constraints and objectives, so the 



4 A Rostering Engine and Benchmarks 

99 

format will be updated to allow this new information to be included. In its short 

history it has already had a number of revisions.  

 

In the latest version (1.1) the information for a single instance can be broadly split 

into seven sections. The majority of information in each section is optional. This 

is a design feature that simplifies describing problems which may be significantly 

different to each other. An overview of each section now follows. 

4.3.1 Shift Types 

These are the different types of shifts which need to be assigned to employees 

over the scheduling period. Relevant information, for example, includes, start 

times and end times, hours counted as work (if different from the difference 

between the end time and start time), the skills required to perform this shift, the 

minimum rest times before and after the shift. It is also possible to specify 

information used for displaying schedules such as shift labels, descriptions and 

colours. An example shift definition in XML is shown in Figure 4.1. 

 
<Shift ID="D1"> 
  <GeneralType>D</GeneralType> 
  <Label>D1</Label> 
  <Colour>Red</Colour> 
  <Description>Head Nurse Day Shift</Description> 
  <StartTime>09:00:00</StartTime> 
  <EndTime>17:00:00</EndTime> 
  <HoursWorked>8.0</HoursWorked> 
  <FreeTimeBefore>660</FreeTimeBefore> 
  <FreeTimeAfter>480</FreeTimeAfter> 
  <Skills> 
    <Skill>HeadNurse</Skill> 
  </Skills> 
</Shift> 

Figure 4.1 Example shift definition 

4.3.2 Employees 

It is necessary to define the employees available during the scheduling period. 

Each employee is linked to a contract which specifies their working regulations 
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(constraints). Each employee’s skills, qualifications or training are also specified 

to ensure that they are not assigned shifts that they cannot perform. An example 

employee definition in XML is shown in Figure 4.2. 

 

Example employee definition in XML: 

 
<Employee ID="ExampleEmployee"> 
  <Name>John Smith</Name> 
  <ContractID>ExampleContract</ContractID> 
  <EmploymentStartDate>2007-05-01</EmploymentStartDate> 
  <Skills> 
    <Skill>HeadNurse</Skill> 
  </Skills> 
</Employee> 

Figure 4.2 Example employee definition 

4.3.3 Contracts 

Each employee is linked to a contract. An employee can have a unique contract 

but, more commonly, a number of employees share the same contract. Allowing 

employees to have unique contracts, however, provides a higher degree of 

flexibility. Within the contract is all the information regarding an employee’s 

working regulations and preferences. For example, the minimum and maximum 

number of hours worked during the scheduling period, the minimum and 

maximum number of consecutive working days or consecutive free days etc. In 

the current version there are approximately twenty constraints that can be 

specified in a contract. They are: 

 

 Maximum number of shifts worked during the scheduling period. 

 Maximum and minimum number of hours worked during the scheduling 

period or per week. 

 Maximum and minimum number of consecutive working days. 
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 Maximum and minimum number of consecutive non-working days. 

 Maximum number of a specific shift type worked. For example, maximum 

zero night shifts for the planning period or a maximum of seven early shifts. 

This constraint can also be specified for each week. For example, a nurse may 

request no late shifts for a certain week. 

 Maximum number of weekends worked in four weeks (a weekend definition 

is also a user definable parameter i.e. Friday and/or Monday may be 

considered as part of the weekend). 

 Maximum number of consecutive weekends worked. 

 No night shifts before a weekend off. 

 No split weekends, i.e. shifts on all days of the weekend or no shifts over the 

weekend. 

 Identical shift types over a weekend. For example, if a nurse has a day shift on 

Saturday then he/she may prefer to have a day shift on Sunday also. 

 Minimum number of days off after night shifts. 

 Valid numbers of consecutive shift types. For example, three or four 

consecutive early shifts may be valid but two or five consecutive early shifts 

may not. 

 Shift type successions. For example, if shift rotation is allowed, is shift type A 

allowed to follow B the next day? 

 Maximum total number of assignments for all Mondays, Tuesdays, 

Wednesdays… For example, a nurse may request not to work on Wednesdays 

or may require to work a maximum of two Tuesdays during the scheduling 

period. 
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 Avoid a secondary skill being used by a nurse. Sometimes a nurse may be 

able to cover a shift which requires a specific skill but they may be reluctant 

to do so as it is not their preferred duty. An example would be a head nurse 

not wanting to stand in for a regular nurse. 

 

The majority of these constraints are from ANROM and their implementation is 

based on their specification in [238]. As such, all these constraints are modelled 

as soft constraints. Weights are used to reflect their relative priority and can be 

specified within a contract for each constraint. If they are not provided in the 

contract they are specified in a different section and globally for all contracts. An 

example contract definition in XML is shown in Figure 4.3. 

 
<Contract ID="Trainee"> 
 <MaxNumAssignments>15</MaxNumAssignments> 
 <MinNumAssignments weight="10">8</MinNumAssignments> 
 <MaxConsecutiveWorkingDays>4</MaxConsecutiveWorkingDays> 
 <MinConsecutiveWorkingDays>2</MinConsecutiveWorkingDays> 
 <MaxWorkingBankHolidays>2</MaxWorkingBankHolidays> 
 <MaxConsecutiveFreeDays>4</MaxConsecutiveFreeDays> 
 <MinConsecutiveFreeDays>2</MinConsecutiveFreeDays>   
 <MaxConsecutiveWorkingWeekends>2</MaxConsecutiveWorkingWeekends> 
 <MaxWorkingWeekendsInFourWeeks>2</MaxWorkingWeekendsInFourWeeks> 
 <WeekendDefinition>FridaySaturdaySunday</WeekendDefinition> 
 <CompleteWeekends>true</CompleteWeekends>             
 <TwoFreeDaysAfterNightShifts>true</TwoFreeDaysAfterNightShifts> 
 <AlternativeSkillCategory>true</AlternativeSkillCategory> 
 <MaxAssignmentsForDayOfWeek> 
   <MaxAssignments> 
     <Day>Tuesday</Day><Value>1</Value> 
   </MaxAssignments> 
   <MaxAssignments> 
     <Day>Wednesday</Day><Value>1</Value> 
   </MaxAssignments> 
 </MaxAssignmentsForDayOfWeek> 
 <MaxShiftTypes> 
   <MaxShiftType> 
     <ShiftType>N</ShiftType><Value>0</Value> 
   </MaxShiftType> 
 </MaxShiftTypes> 
 <MaxShiftTypesPerWeek> 
   <MaxShiftTypePerWeek> 
     <ShiftType>E</ShiftType><Week>1</Week><Value>2</Value> 
   </MaxShiftTypePerWeek> 
 </MaxShiftTypesPerWeek> 
 <MaxHoursWorked>140.00</MaxHoursWorked> 
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 <MinHoursWorked>100.00</MinHoursWorked> 
</Contract> 

Figure 4.3 Example contract definition 

4.3.4 Cover Requirements 

These are the number of shifts needing to be assigned to employees for each day 

in the planning period. That is, the number of employees required at certain time 

periods over the planning horizon. They can be specified for specific dates and/or 

for a general day of the week (e.g. ‘Monday’). An example partial definition is 

shown in Figure 4.4. 

 
  <CoverRequirements> 
    <DayOfWeekCover> 
      <Day>Sunday</Day> 
      <Cover> 
        <Shift>E</Shift> 
        <Count>2</Count> 
        <Type>Required</Type> 
      </Cover> 
      <Cover> 
        <Shift>L</Shift> 
        <Count>2</Count> 
        <Type>Required</Type> 
      </Cover> 
    </DayOfWeekCover> 
    <DayOfWeekCover> 
      <Day>Monday</Day> 
      <Cover> 
        <Shift>E</Shift> 
        <Count>3</Count> 
        <Type>Required</Type> 
      </Cover> 
      <Cover> 
        <Shift>L</Shift> 
        <Count>3</Count> 
        <Type>Required</Type> 
      </Cover> 
    </DayOfWeekCover> 
  </CoverRequirements> 

Figure 4.4 Example cover requirements definition 

4.3.5 Day On/Off and Shift On/Off  Requests 

Employees may request particular days on or off with associated priorities (set 

using weights). A request to work or not work a specific shift is also possible. 

Example definitions are shown in Figure 4.5. 
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  <DayOffRequests> 
    <DayOff weight="1000"> 
      <EmployeeID>A</EmployeeID> 
      <Date>2007-01-03</Date> 
    </DayOff> 
    <DayOff weight="1000"> 
      <EmployeeID>A</EmployeeID> 
      <Date>2007-01-04</Date> 
    </DayOff> 
    <DayOff weight="10" holiday="false"> 
      <EmployeeID>B</EmployeeID> 
      <Date>2007-01-20</Date> 
    </DayOff> 
  </DayOffRequests> 
 
  <ShiftOnRequests> 
    <ShiftOn weight="1"> 
      <ShiftGroupID>Early</ShiftGroupID> 
      <EmployeeID>E1</EmployeeID> 
      <Date>2007-02-05</Date> 
    </ShiftOn> 
    <ShiftOn weight="1"> 
      <ShiftGroupID>Late</ShiftGroupID> 
      <EmployeeID>E2</EmployeeID> 
      <Date>2007-02-06</Date> 
    </ShiftOn> 
    <ShiftOn weight="1"> 
      <ShiftTypeID>L</ShiftTypeID> 
      <EmployeeID>E3</EmployeeID> 
      <Date>2007-02-07</Date> 
    </ShiftOn> 
  </ShiftOnRequests> 

Figure 4.5 Example day on/off and shift on/off request definitions 

4.3.6 History 

Some of the constraints are dependent on the previous schedule for an employee. 

For example, if there is a maximum number of consecutive night shifts, then we 

need to know if the employee had any night shifts at the end of the previous 

scheduling period before assigning any at the beginning of the current one. This 

information is provided in this section. An example is shown in Figure 4.6. 

 
<EmployeeHistory EmployeeID="T"> 
  <LastDayType>WorkingDay</LastDayType> 
  <LastDayShifts> 
     <Shift>D1</Shift> 
  </LastDayShifts> 
  <PreviousConsecutiveWorkingDays>4 
  </PreviousConsecutiveWorkingDays> 
  <PreviousConsecutiveWorkingDaysAndHoliday>4 
  </PreviousConsecutiveWorkingDaysAndHoliday> 
  <PreviousConsecutiveFreeDays>0</PreviousConsecutiveFreeDays>   
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  <PreviousConsecutiveWorkingWeekends>0 
  </PreviousConsecutiveWorkingWeekends> 
  <PreviousWorkingBankHolidays>0</PreviousWorkingBankHolidays> 
  <WeekendWorkedThreeWeeksAgo>false</WeekendWorkedThreeWeeksAgo> 
  <WeekendWorkedTwoWeeksAgo>true</WeekendWorkedTwoWeeksAgo> 
  <WeekendWorkedOneWeekAgo>false</WeekendWorkedOneWeekAgo> 
  <PreviousSaturdayWorked>false</PreviousSaturdayWorked> 
  <PreviousSundayWorked>false</PreviousSundayWorked> 
  <PreviousSaturdayRequestedHoliday>false 
  </PreviousSaturdayRequestedHoliday>      
  <PreviousSundayRequestedHoliday>false 
  </PreviousSundayRequestedHoliday> 
  <NightShiftThursday>false</NightShiftThursday> 
  <NightShiftFriday>false</NightShiftFriday> 
  <PreviousFridayWorked>true</PreviousFridayWorked> 
  <PreviousNightShift>false</PreviousNightShift> 
  <PreviousFreeDaysAfterNightShift>0 
  </PreviousFreeDaysAfterNightShift> 
  <PreviousConsecutiveHolidayDaysOff>0 
  </PreviousConsecutiveHolidayDaysOff> 
  <PreviousConsecutiveShifts> 
    <PreviousConsecutiveShift> 
      <GeneralShiftTypeID>D1</GeneralShiftTypeID> 
      <Count>1</Count> 
    </PreviousConsecutiveShift> 
  </PreviousConsecutiveShifts> 
  <PreviousOvertime>0</PreviousOvertime> 
</EmployeeHistory> 

Figure 4.6 Example scheduling history definitions 

4.3.7 Miscellaneous Information 

There is a large amount of other information which may also need to be provided. 

For example, the start and end dates of the planning period. Groups of shifts may 

need to be defined if they are used by some of the constraints. Bank holidays need 

to be specified if the maximum working bank holidays constraint is used. If the 

constraint specifying employees who should or should not work together is used, 

then this also needs to be provided. Examples of some of this information are 

shown in Figure 4.7. 

 
  <StartDate>2007-01-01</StartDate> 
 
  <EndDate>2007-01-28</EndDate> 
 
  <ShiftGroup ID="EarlyAndNight"> 
    <Shift>Early</Shift> 
    <Shift>Night</Shift> 
  </ShiftGroup> 
 
  <Partnership Type="Tutorship"> 
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    <Employee1ID>Tutor</Employee1ID> 
    <Employee2ID>Tutee</Employee2ID> 
  </Partnership> 
 
  <BankHoliday> 
    <Name>Christmas Day</Name> 
    <Date>2006-12-25</Date> 
  </BankHoliday> 

Figure 4.7 Example miscellaneous information 

The examples given here are very small compared to a full instance description. 

For examples of whole instances see the benchmark website 

http://www.cs.nott.ac.uk/~tec/NRP/ . 

4.4 A Problem Definition 

All the data is freely available for any research purposes. In order to use it as 

benchmark nurse rostering instances though, a problem must be defined. The 

definition derives from ANROM. Firstly, there are only three hard constraints: 

 

1. A nurse cannot be assigned more than one of the same shift type per day. 

2. Shifts which require certain skills can only be covered by (i.e. assigned to)  

nurses who have those skills. 

3. The shift coverage requirements must be satisfied. For example, if a 

certain day requires three night shifts then there must be three employees 

present at that time to work during that shift. Over coverage is not 

permitted. 

 

All other constraints are soft. The objective is to minimise a weighted sum of 

penalties due to soft constraint violations. The penalty for each constraint is 

calculated according to the functions given in [238]. 

As there are many constraints and their evaluation functions can be relatively 

complex, it may be naïve to assume that someone who independently implements 
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the functions found in [238] will produce an identical objective function. This 

would make any comparisons between solutions independently found, unreliable 

because, effectively, different problems are being examined. To avoid this, the 

source code is publicly available. An executable is also provided for checking 

solutions (described in an XML format). This will aid the process of checking and 

verifying new solutions. Researchers may also directly incorporate the source 

code into their own solvers rather than having to rewrite the objective function (a 

time consuming task).  

When the format is extended to include different versions of the problem an 

option will be added to the format to select/define the objective function. 

4.5 Research Aids 

As discussed, it is important to make available the source code for the objective 

function for increasing the accuracy of new results. As the data files can be large 

and complicated, the source code for the parsers and the data structures used by 

the latest solvers is online too. This should considerably reduce the time required 

to start examining the problem.  

The source code for the latest solvers is also made available. This is particularly 

useful for two reasons. Firstly, if a new problem is introduced (perhaps due to 

changing real world requirements) then there may be no benchmarks available. 

However, it may be possible to use a solver for an earlier version (perhaps with a 

little modification) to create some benchmark results for the new instances. Even 

if the results are not as strong on the new instances, it does create a source of 

comparison. 

Secondly, providing the code for the solvers is a partial solution to the problem of 

comparing experiments performed on different machines. If two solvers are 
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compared using the same computer, it removes unreliability due to differences in 

computing power. Of course, one algorithm may still be more effective due to a 

more efficient implementation but at least one variable in the experiments has 

been removed.  

 

Another tool provided converts solutions in an XML format into an HTML 

format for viewing the schedules in a web browser. This provides a visualisation 

of a solution by displaying the roster and schedules for each employee. Constraint 

violations are highlighted and soft constraints and employee requests presented. 

The penalties for soft constraint violations are also broken down and explained. 

This is a practical way of sharing solutions which can be viewed and understood 

by humans without having to download and install separate software. Figure 4.8 

is a screenshot of a roster displayed using HTML (shifts in the roster are colour 

coded to help differentiate them).  
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Figure 4.8 Screenshot of a schedule displayed in a web browser 

 
A graphical user interface has also been developed to allow manual changes to 

solutions and provides an alternative view of schedules, their violations and 

penalty explanations. This gives a better ‘feel’ for the problems and an 

appreciation of their complexity. Figure 4.9 is a screenshot of the application. It is 

publicly available on the research website for download.  
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Figure 4.9 Screenshot of Nurse Rostering GUI 

 
Another tool created whilst developing solvers provides a real time animation of 

the search algorithms. For neighbourhood searches and constructive heuristics, it 

is possible to create visualisations of the algorithms by updating a graphical view 

of the current schedule whenever a new shift has been assigned or shifts are 

swapped between employees. This was particularly helpful when developing 

more complex approaches. For some complicated searches (such as the one 

described in chapter 5) it is relatively easy to introduce errors or miss areas of 

inefficiency and redundancy. For example, re-visiting solutions, cycling, 

examining bad solutions which a simple heuristic would have avoided etc. Being 

able to watch an animation of the searches helped to spot some of these things 

and improve the efficiency of the searches. To reduce the impact of the animation 

on the speed of the searches, the power of the latest video cards was exploited by 

using Microsoft’s DirectX libraries to develop the animation software. At normal 
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running speed of the algorithms though, the animations were very fast and 

difficult to follow. A control was therefore added to dynamically adjust the speed 

of the algorithm and even pause it during its execution. The software also allows 

the rosters to be manually altered (when the animation is not running) by moving 

shifts between employees (using the mouse) to see the effect on the roster’s 

quality. A screenshot is shown in Figure 4.10. 

 

 
Figure 4.10 Screenshot of algorithm visualisation software 

4.6 Guidelines for Experiments 

The data was primarily compiled to create benchmark instances to real world 

nurse rostering problems. However, it is available for any research purposes. If it 

is used as a benchmark problem, a few guidelines for experiments and presenting 

results are suggested. These are only recommendations though which may help 

future research and make results more reliable. Most of these suggestions are well 
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known and generally accepted as good practice. For example, Schaerf and Di 

Gaspero [220] recently highlighted some of these ideas at PATAT06 and they can 

also be found in Johnson’s well known paper [143]. 

 

 Provide solutions for verification and future use. An XML format has also 

been defined for presenting solutions.  

 

 Provide an executable for a new solver. Ideally the source code should be 

provided as well. This may not always be possible though if it is 

commercially sensitive. 

 

 For neighbourhood searches, record the number of solutions examined 

(Vanhoucke and Maenhout [240] even use a maximum number of 

solutions visited as the stop criterion for their benchmarks). This is a 

metric which is unaffected by the speed and technology of the machine 

executing the algorithm. 

4.7 Research Uses and Possibilities 

There are a number of possible research uses for the benchmark instances. The 

most obvious is to create better algorithms. It is unlikely that one algorithm will 

dominate over all instances. However, useful insights may be obtained by 

examining algorithms that are particularly strong on certain instances or groups of 

instances. These insights may be useful in creating more robust solvers that are 

effective over a wide range of instances.  

Another research avenue that does not receive a lot of attention is improving the 

speed and efficiency of evaluation functions. These functions in nurse rostering 



4 A Rostering Engine and Benchmarks 

113 

problems are usually long, complicated and subsequently slow and there is 

considerable benefit in making them faster. Burke et al. [53] have performed 

some research in this area, but there is scope for further investigation. Benchmark 

instances would confirm any improvements, especially if the code is publicly 

available.  

 

Work has begun to try and identify optimal solutions to these instances, Even if 

this is not possible, good lower bounds may be found. Better lower bounds and 

optimal solutions would help gauge the strength of other results. 

4.8 Design Features 

The data format and software have been designed to make it as simple as possible 

to add new constraints and objectives, an exercise that will occur frequently as 

they are extended to handle a wider variety of nurse rostering problems. Within 

the format, nearly all the information is optional.  

 

A few relatively simple steps are required to model a new problem.  

 

1. Extend the format definition to allow any new information which varies 

between instances to be included. 

2. Modify the parser and create any new data structures required by the new 

constraints or objectives. 

3. Write the constraints and objectives. 

4. If necessary, modify an existing solver to handle the changes. 
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None of the above steps are beyond the ability of an average programmer. The 

fourth step could be challenging depending upon the solver and the type of 

changes made. However, it would only be necessary if no solver existed for this 

new problem or an alternative solver was wanted for comparison purposes. 

The software has been designed to allow new changes to be built on top rather 

than requiring everything to be rewritten each time. This also ensures everything 

is backwards compatible with the older versions. 

 

In effect, the software can be regarded as an API (application programming 

interface) or nurse rostering engine. As discussed in section 4.5, it is possible to 

build a user interface (web based or graphical etc) around the software in order to 

view schedules, enter new data, run solvers etc. When the user interface reaches a 

quality suitable for use in practice, it could be an effective tool for obtaining new 

real world problem instances. A function could be built into the interface to 

anonymize any data entered and make it available for research. The users would 

then benefit by having researchers working on their latest problems. This would 

be a mutually beneficial and direct link between research and practice.  

4.9 Instances Currently Available 

A variety of instances described using the XML format are already available on 

the research website. Table 4.1 lists some of the data sets and their characteristics. 

They vary in the number of nurses, cover requirements, shift types, constraint 

types and priorities, personal requests and planning horizon.  
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Instance Nurses Shift types Skill levels Planning horizon 
BCV-1.8.1 8 4 2 28 days 
BCV-2.46.1 46 4 1 28 days 
BCV-3.46.1 46 3 1 26 days 
BCV-4.13.1 13 4 2 29 days 
BCV-5.4.1 4 4 1 28 days 
BCV-6.13.1 13 4 2 30 days 
BCV-7.10.1 10 6 1 28 days 
BCV-8.13.1 13 4 2 28 days 
BCV-A.12.1 12 4 2 31 days 
ORTEC01 16 4 1 31 days 

Table 4.1  Example benchmark instances 

Data sets BCV-1 to BCV-8 are all based on real world data and were originally 

modelled using ANROM. As the data was taken from a commercial system used 

in real world environments it has been anonymized and any confidential 

information removed. Data set BCV-A.12.1 is a fictional test problem that uses all 

the possible constraint types available and contains many conflicting requests. 

ORTEC01 is instance 12 for the problem presented in chapter 3 (the instance 

which the extra tests were performed on and the one commonly used by ORTEC). 

To model the problem with this system, some of its hard constraints have been 

changed to soft constraints with weights of 10,000. Therefore all solutions with 

penalty below 10,000 are feasible solutions to the original problem (solutions 

with penalties above 10,000 are not necessarily infeasible for the original problem 

though). Care was taken and a lot of testing and verification performed to ensure 

that the objective function is identical, so enabling comparisons to the original 

results. 

Best known solutions to these instances (in the XML and HTML formats) are 

also available at the research website. 
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Figure 4.11 Screenshot of benchmark website 

4.10 Conclusion 

There is a large number of publications on solving nurse rostering problems. A 

problem with some of these published algorithms though is that there is rarely 

any way of knowing how ‘good’ they actually are. Readers have to place a certain 

amount of trust in the conclusions and anyone wanting to know the best way of 

solving a nurse rostering problem will have to use some guess work. This is not 

an ideal situation. As a potential solution to this problem, a flexible and 

extensible system has been proposed for sharing real world instances and 

benchmarks for nurse rostering problems. These benchmark instances will allow 

researchers to compare their algorithms to other approaches that have been 

independently implemented. This will increase the credibility of results and 

conclusions and help reviewers better gauge the strength of new methods. 
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Validation will be provided other than the usual “the rosters were better than 

those produced manually” or “the nurses were satisfied with the rosters”. 

This need for benchmark nurse rostering problems has been expressed in a 

number of publications e.g. [60, 73, 228]. As well as defining a format for 

describing the problems, from the outset, the intention was to also provide 

software (and source code), in order to facilitate and encourage the use of this 

format. In effect, a nurse rostering engine has been created which is freely 

available for research purposes. The engine accepts problem data in a standard 

format and outputs a solution in a standard format. Using the engine’s API, user 

interfaces (e.g. web based or GUI) can be built on top of it. When these interfaces 

are used in real world environments, direct links between research and practice 

will be created. The latest problem data can then be exported to researchers. Once 

the scientific challenges behind the current problems have been analysed and 

solvers developed in order to handle them, the end users’ software could be 

updated with the new algorithms at the click of a button (e.g. via the internet). 

This would be a mutually beneficial relationship and a method of “bridging the 

gap” between academia and practice.  

 

The engine could also be used in an alternative scenario. When a researcher 

solves a nurse rostering problem with a certain method and he/she would like 

some method of validating the method, it should be possible to convert the 

problem to the benchmark format and solve it using a publicly available (perhaps 

published) method. If their method is better this would have provided validation 

and information on how to improve the other solver. If their method is worse they 
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may be able to find ways of improving it by looking at the better approach. They 

will also have contributed a new benchmark instance for other researchers. 

 

Finally, research into solving unnatural, computer generated problems is often 

justified  by tenuous links to practice or to obtain insight into a particular problem 

or approach. This is justifiable to a degree. For example, many notable and 

hugely beneficial outputs of scientific research would not have been produced if 

the conductors were purely interested in practical benefits. However, this should 

not negate the scientific challenges and obvious contributions of tackling the 

inherent complexity of real world problems. Obtaining real world data though is 

not always an easy task and collating it into a usable format is not trivial either. 

This project has lessened these burdens and provided a platform for future 

research. 

 

The remaining chapters in this thesis present algorithms developed for the 

benchmark instances currently available. The source code for the algorithms can 

be found in the ‘Solvers’ module of the rostering engine. The engine, all the data 

sets, best solutions, and more documentation are all available online at the 

research website (http://www.cs.nott.ac.uk/~tec/NRP/). 
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5 A Time Predefined Variable Depth Search 

As mentioned in a recent survey paper by Ahuja et al. [9] many successful very-

large scale neighbourhood search techniques have appeared in various forms in 

the field of Operations Research. They commented, for example, that the well 

known Lin-Kernighan algorithm for the travelling salesman problem can be 

viewed as a very large-scale neighbourhood search technique. Ahuja et al. 

categorised very large-scale neighbourhood methods into three similar classes, 

one of which are variable depth methods. Variable depth searches (including 

some ejection chain methods [114]) have been effectively applied to a number of 

optimisation problems, for example the vehicle routing problem [214] and the 

generalised assignment problem [249]. Many more examples of successful very-

large scale neighbourhood searches can be found in the survey paper of Ahuja et 

al. Perhaps the problem closest to nurse rostering that these techniques have been 

applied to is exam timetabling [5, 6, 180]. There are, however, very few large-

scale neighbourhood searches applied to nurse rostering problems.  

One paper that does introduce the application of such techniques to nurse 

rostering is that of Dowsland [91]. In her approach to providing an automated 

nurse rostering system, a tabu search is used that oscillates between decreasing 

cover violation and increasing roster quality. In each of these phases, two types of 

ejection chains are used. The first consists of a sequence of on/off day swaps 

between nurses and the other is made up of sequences of swapping week long 

work patterns between nurses. The chains are able to escape from poor local 

optima that single on/off day or pattern swaps would not be able to escape from. 
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Another example of using such techniques in solving a nurse rostering problem is 

the method of Louw et al. [166] who also use an ejection chain approach. The 

compound move used is similar to Dowsland’s chain of on/off day swaps. They 

noted that “the compound move was able to achieve far superior reductions in the 

objective function value when compared to any of the elementary move types”. 

Very large-scale neighbourhood searches face the problem of exploring an 

exponentially large neighbourhood. Therefore, the key to developing effective 

ones is identifying heuristics and other mechanisms which can efficiently narrow 

or direct the search. This chapter presents a variable depth search for nurse 

rostering and describes the heuristics and other features that make it successful. 

 

The next section investigates various search neighbourhoods that have been used 

to solve nurse rostering problems. Section 5.2 presents the variable depth search 

and Section 5.3 contains the results from a number of experiments using this 

algorithm and comparisons to other approaches.  

5.1 Search Neighbourhoods for Nurse Rostering 

This section describes two types of search neighbourhood that have been used to 

solve nurse rostering problems. Their applicability to the benchmark instances are 

then investigated. The results from this preliminary investigation are relevant to 

the variable depth search presented in Section 5.2. 

 

5.1.1 The Single Shift Neighbourhood 

Included in this category are all neighbourhoods that are identified by moves or 

swaps that change the assignment of up to two shifts, days on/off or variables at a 

time. Depending on the type of cover constraints (are there minimum and/or 
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maximum shift cover requirements and are they hard or soft constraints?), these 

moves may involve either one nurse (e.g. [26, 39, 88]) or two nurses (e.g. [56, 58, 

78, 141, 159, 176, 205]). The neighbourhoods described in chapter 3 also fall 

under this category. 

 

In the benchmark problems, the shift cover requirements are hard constraints and 

neither over nor under coverage are permitted. Therefore, once an initial feasible 

roster is constructed, only swaps or moves between two nurses are allowed. This 

ensures that the coverage constraint is not violated. Examples of these swaps are 

illustrated in Figure 5.1 and Figure 5.2. Figure 5.1 shows a section of a roster 

where L, N, D and DH are shifts and G, H and A are nurses. Move a involves the 

swapping of shift L and shift N on the 5th of December between nurses G and H 

to give the resulting roster on the right. In Figure 5.2, move b involves the 

assigning of shift L to nurse G from nurse H on 5th December. This could be 

alternatively phrased as “swapping shift L and an empty shift between nurses G 

and H on the 5th of December.” 

 
 
 
 
 
 
 
 
 
 

Figure 5.1 Example move a in the single shift neighbourhood 

 
 
 
 
 
 

a 
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Figure 5.2 Example move b in the single shift neighbourhood 

 
The single shift neighbourhood is the most commonly used neighbourhood in 

solving nurse rostering problems. It is a relatively small neighbourhood and easy 

to implement in a search algorithm. Even for the largest instances examined, 

using today’s average desktop computer, this neighbourhood can be exhaustively 

searched and a local optimum can be reached quickly using a hill climber. Rosters 

produced using this approach, however, are not always of satisfactory quality and 

can usually be improved by an experienced human scheduler. Therefore, this 

neighbourhood is often, either incorporated into a more sophisticated method 

such as a metaheuristic (as in chapter 3) and/or replaced with a larger 

neighbourhood. 

5.1.2 The Block Neighbourhood 

The single shift neighbourhood, on its own, is often not effective enough. Meyer 

auf’m Hofe [179] highlights its weakness with a specific example in which this 

neighbourhood, even if combined with a tabu list, would be unlikely to remove a 

particular violation as it requires the simultaneous change of eight (and only these 

eight) specific variables. 

This section describes a larger neighbourhood defined by moves which would 

have been able to repair that particular violation. The neighbourhoods have 

b 
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recently been incorporated into search algorithms for nurse rostering and that 

approach has been shown to be very effective. 

  

Included in this category of neighbourhoods are those defined by the swapping of 

all assignments on two or more adjacent days between two nurses. Examples of 

these swaps can be seen in Figure 5.3 and Figure 5.4. Figure 5.3 illustrates a 

move involving the swapping of a block of two adjacent days. On the 5th and 6th 

December, the N shifts of nurse A are assigned to nurse G and the L shifts of 

nurse G are assigned to nurse A. Here the block size is two as it involves two 

adjacent days. Figure 5.4 shows a move involving the swapping of a block of 

adjacent days of length three. Note that on 6th December, nurse A had no shift 

but this is still labelled as a swap with a block of days of length three. 

As the block neighbourhood is a larger neighbourhood, its practical use was 

previously restricted by computational limitations. However, the recent dramatic 

increases in computing power have made a more aggressive use of this 

neighbourhood much more viable, as will be shown. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Example move c in the block neighbourhood 

 
 
 
 
 

c



5 A Time Predefined Variable Depth Search 

124 

 
 
 
 
 
 
 
 
 

 
Figure 5.4 Example move d in the block neighbourhood 

 
An early example of the use of changing blocks of shifts can be found in [148], 

where, although a block neighbourhood is not actually used, varying size blocks 

of shifts are assigned to nurses to create initial rosters. In [140], Jan et al. swap 

assignments on blocks of days between nurses as a mutation operator (called 

escape) in a genetic algorithm but again do not use it as a search neighbourhood. 

The first use of this type of swap in a search neighbourhood can be found in [58] 

and subsequently [49] and [56] in which they are called shuffle neighbourhoods. 

The authors commented that although these larger neighbourhoods were very 

time consuming and computationally intensive to use, the solutions they produced 

were significantly better and almost impossible to improve by hand. A very 

similar neighbourhood is also used by Valouxis and Housos  [237] and later, 

Bellanti et al. [37] also describe a neighbourhood search which partially uses 

similar moves. 

During development and testing, it was noticed that an expert human planner will 

often make improvements to a roster using similar moves. This may explain why 

an expert has such difficulty in improving a roster produced using this search 

neighbourhood.  

d 
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5.1.3 Comparing the Single Shift and Block Neighbourhood 

To examine how effective these neighbourhoods are and how quickly they can be 

searched using today’s desktop personal computer, some experiments were 

conducted using a simple first improvement hill climber on the benchmark 

instances introduced in chapter 4. (Note that it is actually a hill descender as the 

penalty is being minimised but it is referred to as a hill climber as this is, 

generally, a more familiar term). The search uses neighbourhoods defined by 

swaps of up to a maximum length block of days. The pseudocode is given in 

Figure 5.5. This pseudocode is simply to provide an outline of the process. The 

actual implementation contains many more lines of code that increase efficiency 

and avoid redundancy (e.g. not visiting a solution already examined, etc).  

 
1.  WHILE there are untried swaps 
2.    FOR BlockLength = 1 to MAX_BLOCK_LENGTH 
3.      FOR each employee (E1) in the roster                  
4.        FOR each day (D1) in the planning period 
5.          FOR each employee (E2) in the roster 
 
6.            Swap all assignments between E1 and E2 on D1 up  
              to D1+BlockLength 
 
7.            IF an improvement in roster penalty THEN 
8.              Break from this loop and move on to the next day 
9.            ELSE 
10.             Reverse the swap 
11.           ENDIF   
 
12.         ENDFOR 
13.       ENDFOR                   
14.     ENDFOR 
15.   ENDFOR                 
16. ENDWHILE 

Figure 5.5 Pseudocode for the hill climber 

 
The initial roster is created using a randomized greedy assignment method. It 

operates as follows: for each shift which needs to be covered, assign it to the 

nurse who incurs the least gain in penalty for their individual schedule (or who 

receives the greatest decrease in penalty) on receiving this shift. 
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In order to provide different starting solutions and allow the search to also be 

used with random restarts, the set of shifts to be assigned is randomly shuffled. 

The quality of the initial rosters created using this greedy algorithm is usually 

very poor. 

As there are few hard constraints, it is not difficult to construct a feasible roster. 

Also, the hard constraints are all related to coverage and it is possible to pre-

calculate whether a feasible solution can be built. If a feasible solution does not 

exist, the user is notified that the cover requirements need to be reduced or extra 

staff need to be added. This is important as the hill climber operates over the 

feasible solution space. 

 

Table 5.1 presents the results of the hill climber (outlined in Figure 5.5) when the 

maximum block length parameter (MBL) is set from one to ten. Note that when 

MBL=1, it is effectively the single shift neighbourhood. 

Each experiment is repeated five times using different initial rosters (the same 

initial rosters are used for each MBL setting). The best, average and worst 

solutions, the average number of solutions examined per repeat and the average 

computation time per repeat are recorded for each instance. Table 5.1 contains the 

averages of these over all instances (for quick reference) and the results for each 

instance can be found in Table 5.2. The experiments were performed using a 

desktop PC with an Intel P4 2.4GHz processor. 
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Repeats MBL Best Average Worst 
Average No. solutions 
examined per repeat 

Average computation 
time per repeat (secs) 

5 1 2064 2820 3576 49200 3.8 
5 2 1565 2245 2614 86095 7.5 
5 3 1452 1840 2224 100472 9.2 
5 4 1413 1634 1893 115241 11.0 
5 5 1253 1573 2005 127452 12.4 
5 6 1191 1570 1891 138627 13.7 
5 7 1341 1526 1829 159760 16.3 
5 8 1160 1452 1652 171433 17.7 
5 9 1165 1462 1712 183773 19.2 
5 10 1165 1458 1721 185903 19.7 

25 1 1589 2613 3888 50513 4.0 

Table 5.1  Results of varying MAX_BLOCK_LENGTH (MBL) 

 
 
 

Instance 

Max 
block 

length Best Ave. Worst 

Average 
No. 

solutions 
examined 

Average 
computation 

time 
(seconds) Instance 

Max 
block 

length Best Ave. Worst 

Average 
No. 

solutions 
examined 

Average 
computation 

time 
(seconds) 

ORTEC01 1 8927 14641 20192 55752 2.6 BCV-5.4.1 1 487 725 933 1560 0.1 

ORTEC01 2 5917 11046 13185 83462 4.1 BCV-5.4.1 2 193 369 633 2389 0.1 

ORTEC01 3 5120 7735 9771 109864 5.9 BCV-5.4.1 3 48 196 487 2433 0.1 

ORTEC01 4 5020 5706 6865 126689 7.1 BCV-5.4.1 4 48 108 205 2670 0.1 

ORTEC01 5 3355 5470 8045 144511 8.1 BCV-5.4.1 5 48 106 195 2680 0.1 

ORTEC01 6 2745 5303 6915 167063 9.7 BCV-5.4.1 6 48 106 195 2831 0.1 

ORTEC01 7 4257 4848 6470 173036 10.2 BCV-5.4.1 7 48 106 195 3032 0.1 

ORTEC01 8 2475 4022 4700 185363 11.1 BCV-5.4.1 8 48 106 195 3268 0.1 

ORTEC01 9 2525 4174 5295 202584 12.4 BCV-5.4.1 9 48 106 195 3452 0.2 

ORTEC01 10 2525 4131 5345 188767 11.6 BCV-5.4.1 10 48 106 195 3587 0.2 

BCV-1.8.1 1 328 491 698 9647 0.4 BCV-6.13.1 1 1024 1324 1597 19883 1.0 

BCV-1.8.1 2 291 448 650 14206 0.6 BCV-6.13.1 2 1019 1223 1287 29736 1.6 

BCV-1.8.1 3 288 332 470 20461 0.9 BCV-6.13.1 3 994 1131 1286 34222 1.9 

BCV-1.8.1 4 273 330 464 22138 1.1 BCV-6.13.1 4 954 1057 1257 41324 2.4 

BCV-1.8.1 5 287 338 470 22226 1.1 BCV-6.13.1 5 954 1057 1257 46422 2.8 

BCV-1.8.1 6 287 336 470 25884 1.3 BCV-6.13.1 6 954 1057 1257 50864 3.1 

BCV-1.8.1 7 287 337 471 30805 1.6 BCV-6.13.1 7 954 1011 1101 60173 3.8 

BCV-1.8.1 8 287 337 471 33242 1.8 BCV-6.13.1 8 954 1011 1101 64769 4.2 

BCV-1.8.1 9 287 329 471 35425 2.0 BCV-6.13.1 9 954 1011 1101 69157 4.5 

BCV-1.8.1 10 287 327 471 37639 2.1 BCV-6.13.1 10 954 1011 1101 73355 4.9 

BCV-2.46.1 1 1704 1715 1726 140592 12.4 BCV-7.10.1 1 403 555 662 10259 0.4 

BCV-2.46.1 2 1618 1674 1716 246792 24.1 BCV-7.10.1 2 381 514 606 13863 0.6 

BCV-2.46.1 3 1618 1663 1701 302478 31.4 BCV-7.10.1 3 381 505 596 18048 0.9 

BCV-2.46.1 4 1618 1663 1701 335523 35.8 BCV-7.10.1 4 381 505 596 19851 1.1 

BCV-2.46.1 5 1618 1663 1701 361902 39.5 BCV-7.10.1 5 381 505 596 21480 1.1 

BCV-2.46.1 6 1618 1663 1701 387107 42.8 BCV-7.10.1 6 381 505 596 23038 1.2 

BCV-2.46.1 7 1618 1663 1701 411298 46.4 BCV-7.10.1 7 381 505 596 24540 1.3 

BCV-2.46.1 8 1618 1663 1701 434607 49.8 BCV-7.10.1 8 381 505 596 25982 1.4 

BCV-2.46.1 9 1618 1663 1701 456895 52.9 BCV-7.10.1 9 381 505 596 27368 1.6 

BCV-2.46.1 10 1618 1663 1701 478249 55.9 BCV-7.10.1 10 381 505 596 28691 1.7 
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BCV-3.46.1 1 3883 3969 4094 200929 16.8 BCV-8.13.1 1 236 268 334 17229 0.8 

BCV-3.46.1 2 3607 3675 3801 392147 37.2 BCV-8.13.1 2 148 236 333 22756 1.1 

BCV-3.46.1 3 3464 3525 3605 420806 41.7 BCV-8.13.1 3 148 198 236 28734 1.5 

BCV-3.46.1 4 3474 3507 3554 483621 49.7 BCV-8.13.1 4 148 198 235 34321 1.9 

BCV-3.46.1 5 3443 3463 3493 535836 56.8 BCV-8.13.1 5 148 198 235 37471 2.1 

BCV-3.46.1 6 3432 3463 3486 581235 62.8 BCV-8.13.1 6 148 198 235 40455 2.3 

BCV-3.46.1 7 3430 3456 3470 737642 82.7 BCV-8.13.1 7 148 198 235 43316 2.5 

BCV-3.46.1 8 3408 3446 3470 800863 90.5 BCV-8.13.1 8 148 198 235 48029 2.9 

BCV-3.46.1 9 3409 3446 3470 857518 98.4 BCV-8.13.1 9 148 198 235 50671 3.1 

BCV-3.46.1 10 3409 3454 3507 852724 99.3 BCV-8.13.1 10 148 198 235 53218 3.3 

BCV-4.13.1 1 75 110 189 12284 0.6 BCV-A.12.1 1 3570 4397 5335 23867 2.9 

BCV-4.13.1 2 17 53 75 20875 1.0 BCV-A.12.1 2 2463 3210 3858 34728 4.6 

BCV-4.13.1 3 22 54 75 21729 1.1 BCV-A.12.1 3 2433 3060 4015 45941 6.4 

BCV-4.13.1 4 22 54 75 24019 1.3 BCV-A.12.1 4 2190 3207 3980 62257 9.2 

BCV-4.13.1 5 22 52 74 31412 1.8 BCV-A.12.1 5 2275 2878 3980 70575 10.4 

BCV-4.13.1 6 22 52 74 33390 2.0 BCV-A.12.1 6 2275 3019 3980 74401 11.2 

BCV-4.13.1 7 22 52 74 35330 2.1 BCV-A.12.1 7 2265 3082 3980 78429 11.9 

BCV-4.13.1 8 15 50 74 38808 2.4 BCV-A.12.1 8 2265 3178 3980 79397 12.3 

BCV-4.13.1 9 13 49 74 45282 2.8 BCV-A.12.1 9 2265 3134 3980 89375 14.0 

BCV-4.13.1 10 13 49 74 47293 3.0 BCV-A.12.1 10 2265 3134 3980 95509 15.0 

Table 5.2 Results of varying MBL in the hill climber (5 repeats for each instance) 

 
 

Instance Max block length Best Ave. Worst 

Average No. 
solutions 
examined 

Average 
computation 

time (seconds) 

ORTEC01 1 5431 12505 21199 56621 2.6 

BCV-1.8.1 1 312 432 698 9168 0.4 

BCV-2.46.1 1 1634 1694 1799 158093 14.2 

BCV-3.46.1 1 3694 3899 4094 199456 16.9 

BCV-4.13.1 1 18 135 411 12140 0.6 

BCV-5.4.1 1 194 714 1099 1676 0.1 

BCV-6.13.1 1 1024 1360 1749 19574 1.0 

BCV-7.10.1 1 403 535 742 9379 0.4 

BCV-8.13.1 1 149 243 379 16799 0.8 

BCV-A.12.1 1 3030 4609 6708 22223 2.8 

Average  1589 2613 3888 50513 4.0 

Table 5.3 Results for hill climber, 25 repeats with MBL=1 

 
The results in Table 5.2 and Table 5.1 show that the single shift neighbourhood 

(i.e. MBL=1) is not as effective as when MBL>1. It is logical to question whether 

this is simply due to less solutions being examined when MBL=1. To provide a 

fairer comparison, the experiments were repeated for MBL=1 but with 25 instead 

of 5 repeats (Table 5.3 and the bottom row of Table 5.1). This ensures that the 

searches with MBL=1 receive at least the same time (and in most cases more) as 
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each experiment with MBL>1. Although giving a longer computation time did 

improve the best solution found, it was still worse than MBL=2 on all but one 

instance. Testing the null hypothesis (H0) that the difference in objective values of 

the solutions produced by the two algorithms are symmetrically distributed 

around the central point of zero, for the Wilcoxon signed rank test the probability 

was greater than 0.05 and for the Sign test less than 0.05. Compared against 

MBL=5, MBL=1 was also worse on all instances but one. For MBL=5 versus MBL=1, 

H0 had a probability of less than 0.05 using the Wilcoxon signed rank test. 

As shown, increasing MBL increases the quality of the results but at the cost of 

extra computation time. However, when MBL>8, any increases in performance 

become less clear. Although MBL could range up to the number of days in the 

planning period, the results suggest that setting MBL>8 does not yield better 

results, especially in relation to the extra computation time required. In fact, when 

MBL>8 the results deteriorate slightly for some instances. This would have been a 

strange result if line one of the pseudocode was not present. However, what is 

happening is that a move is being made when the block length=9 that would 

obviously not have been made if MBL<9 and hence in the next iteration of the loop 

at line 1 the current solution is slightly different. 

It can also be seen that the increase in computation time is approximately linear in 

relation to MBL.  

  

On average, increasing MBL will yield better solutions. However, if the results for 

each instance are studied, the benefits of using larger blocks on some instances is 

less noticeable. For example, on instances BCV-2.46.1 and BCV-7.10.1, MBL=2 is 

only slightly better than MBL=1 and increasing MBL above three gives no further 
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improvement. Similarly, increasing MBL above five for instance BCV-5.4.1 is not 

worthwhile. Although the reasons for this are not obvious, it could possibly be 

linked to which types of constraints and their priorities are used in the schedules. 

Although it may be possible to estimate the suitability of neighbourhoods for a 

particular instance based on its constraints, it would also be difficult, as 

potentially each nurse could request a different set of constraint types with 

different parameters for any one scheduling period. 

 

The computation times for each instance range from less than one second to 

approximately 90 seconds. As would be expected, the longer computation times 

are required for the rosters with more employees, longer planning horizons and 

also those instances which utilise a larger set of the available soft constraint types 

for each employee (e.g instance BCV-A.12.1). 

 

As can be seen, on the machine used, the search, on average, examines 

approximately 10,000 solutions per second. Examining the results for each 

instance reveals that the solutions examined per second ranges from 

approximately 28,000 for the instances with fewer soft constraints to around 

6,000 for the instances which use all the available soft constraint types. 

Evaluating soft constraints is by far the most time consuming function in the 

search and so a large amount of effort was spent streamlining them to ensure that 

they were fast and efficient as well as accurate. It is possible to obtain large 

increases in search performance through writing faster code than any new 

heuristic or search mechanism may be able to achieve. This is not always 

appreciated and the challenge and importance of writing fast and efficient 
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evaluation functions is often underestimated. Also, metrics such as the 

performance per number of solutions evaluated are often analysed less, if at all. In 

the results, the number of rosters examined as well as computation times are 

provided. In the author’s opinion this is a more revealing, reliable and future-

proof measure of a search method’s performance.   

5.2 The Variable Depth Search 

As the results in the previous section show, using today’s average desktop PC, a 

local search employing the block neighbourhood can be completed on the larger 

instances in less than 90 seconds. These solutions are very difficult to improve by 

hand. However, due to the complexity of the problems, they are still very often 

local optima (albeit high quality ones). Therefore, end users may wish to use idle 

computer time (e.g. during a lunch break or over night) to try and find even 

higher quality rosters. Perhaps the simplest way to provide this option is by 

restarting the hill climber as many times as possible in the allotted time with 

different initial rosters, in the form of a basic iterated local search [165]. This is 

something that was tested and the results are provided in section 5.3. However, 

the main focus of this chapter is a variable depth search which will now be 

introduced. 

 

The first step of the algorithm is to create an initial roster. This is done using the 

greedy assignment method introduced in section 5.1.3. As mentioned, these initial 

rosters can be constructed very quickly (in less than a second) but are generally of 

poor quality. It was found, however, that the quality of the initial roster had 

relatively little impact on the final roster. Once the initial roster is created, it is 

possible to proceed with the variable depth search which, like the hill climber, 
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also operates over the feasible solution space. Figure 5.6 provides an outline of 

the algorithm. 

The search is similar to a method used when attempting to manually improve 

rosters. When improving rosters by hand it was observed that first we would try 

to improve one nurse’s individual schedule (that is lower the penalty for that 

nurse’s schedule). Improving this nurse’s schedule would usually be at the 

expense of another nurse so we then try to improve their schedule. If the second 

nurse’s schedule is improved it may be at the expense of a third nurse’s schedule 

so we then move on to the third nurse and so on until (hopefully) we have an 

overall roster penalty that is lower than the original penalty. If not, we would 

reverse all the changes we have just made and try a different path. This is the 

basic idea behind the algorithm. 
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penaltyr    = the penalty for roster r. 

penaltyr,n = the penalty for the schedule of nurse n in roster r. 
 
0.   set best roster    := the current roster 
     
1.   set current roster := an unvisited neighbour in neighbourhood 
                           for best roster 
         
2.   if no unvisited neighbour available 
         stop and return best roster 
         

3.   if penaltycurrent roster < penaltybest roster   
         goto 0. 
             
4.   if neither of the penalties decrease for the individual schedules of 
     the two employees involved in the swap OR maximum depth <= 1 
         goto 1. 
             
5.   set E1 := the employee with increased penalty 
     set current depth := 1 
            
6.   In the neighbourhood for the current roster where considering swaps  
     of blocks between employee E1 and all other employees (E2) 
 
     set current roster := neighbouring roster with lowest penalty where   

     penaltyneighbour < penaltybest roster or      

     penaltyneighbour - penaltyneighbour,E2 + penaltycurrent roster,E2  

     < penaltybest roster 
      
7.   if no such neighbour   
         goto 1. 
8.   else if current roster's penalty < best roster's penalty 
         goto 0. 
9.   else if current depth < a preset maximum depth 
         set E1 := E2 
         set current depth := current depth + 1; 
         goto 6. 
10.  else 
         goto 1. 

Figure 5.6 Variable depth search outline 

 

The neighbourhoods referred to in Figure 5.6 are identified by swaps of blocks up 

to a maximum block length (MBL). The neighbourhood at step 1 is defined by all 

possible swaps of blocks, on all days of the planning period, between all nurses. 

At step 6, the swaps are just between two nurses on all days of the planning 

period. It was found to be generally more efficient to set MBL at step 1 lower than 

at step 6 (e.g at step 1, use 2 or 3 and at step 6, use 5 or 6). 
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At various points in the algorithm (e.g. steps 4 and 6), it is necessary to analyse 

the change in penalty for a nurse’s individual schedule after a swap has been 

performed. After any swap, at least one but no more than two of the nurse's 

individual schedules will have been altered. However, the penalties for other 

nurses’ schedules may also have changed even though their schedule has not been 

modified. This occurs in instances which use the so called ‘vertical’ constraints of 

tutorship and ensuring that certain nurses work separately. Therefore, when 

analysing the change in penalty for any individual nurse’s schedule that has just 

been altered, what we actually use is the net change in penalties for this nurse and 

all other nurses that are directly linked to this nurse by ‘vertical’ constraints. 

5.2.1 Heuristics 

It was stated that the search operates over the feasible solution space. However, it 

was discovered that it was beneficial to treat the hard constraint that a nurse must 

have the skills required to perform a shift as a soft constraint. This can be 

achieved by assigning a sufficiently high weight to the hard constraint violation 

(e.g. giving it the same value as the penalty of the initial roster) thus ensuring that 

a solution with this constraint violated will not be returned. Using it as a soft 

constraint though, allows greater exploration of the search space. This happens 

because rosters with this hard constraint violated are sometimes used as 

intermediate solutions in a chain of moves and a better local optimum may be 

reached via them. 

 

Step 6 is perhaps the most important step in the algorithm. Step 6 specifies which 

moves to examine as potential candidates to be added to the current chain of 

moves and also defines the rule for deciding which one (if any) to select. As 
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outlined in Figure 5.6, a swap is only selected as a potential move to add to the 

current chain if  ignoring the change in E2's penalty, the neighbour’s penalty is 

less than the best roster's penalty. This rule is similar to, and inspired by, the 

‘Gain Criterion’ of the Lin-Kernighan algorithm for the travelling salesman 

problem [163]. In section 5.3, the results of a number of experiments are 

presented in which this rule is removed to investigate its benefit. 

 

The number of moves to examine in order to select candidates for continuing the 

chain can have a significant effect on the performance of the algorithm. If too 

many moves are tested, then the algorithm’s run time will increase. If too few are 

selected, then there is a smaller chance of a successful one being found and the 

algorithm will become less effective. In Figure 5.6, all swaps up to a maximum 

block length, on all days of the planning period, between one nurse and all the 

others are tested. Reducing the run time by limiting the number of nurses to test 

swaps between and reducing the number of days adjacent to the swap at step 1 

over which to test swaps was evaluated. As expected, the run time was improved 

but at the cost of roster quality. To try to increase efficiency, two heuristics for 

selecting candidate moves were developed and tested instead. 

 

In the first heuristic (violation flag heuristic), all days which need changing 

either through the removal, addition or changing of shift assignments, in order to 

remove a soft constraint violation are flagged during penalty recalculations. Only 

the swaps which involve at least one of these days are then tested. This heuristic 

is also applied at step 1. Only focusing on parts of a solution that have violations 

and need repairing is a common heuristic. For example, Nonobe and Ibaraki [195] 
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use a similar heuristic in a tabu search approach tested on a nurse rostering 

problem formulated as a constraint satisfaction problem. 

 

In the second heuristic (worsened days heuristic), an array of penalties due to 

soft constraint violations for each day is maintained for each nurse’s schedule 

during penalty calculations. Using these arrays, the moves in step 6 are then 

restricted to only those blocks that contain days which were made worse (i.e. 

penalty increased) after the last move. This is a more restrictive heuristic as days 

which contain violations will be ignored if they were not affected by the last swap 

in the chain. 

5.2.2 Predefined Run Time 

The running time for the algorithm depends on the size of the neighbourhoods at 

steps 1 and 6, the maximum depth used at step 9 and the structure of the instance 

being addressed. The size of the neighbourhoods at steps 1 and 6 depends upon 

the number of nurses, the number of days in the planning period and the 

maximum block length. The effects of the third factor (the instance structure) on 

the running time cannot be as easily predicted as factors such as the number of 

nurses and days. For some instances, it is possible that the structure (determined 

more by the soft constraints and their weights) is such that there is very often a 

valid neighbour found at step 6 with which to replace the current roster but which 

is not better than the best roster. This can mean that the search sometimes reaches 

great depths which obviously affects the running time. 

To reduce this effect, a maximum depth which is set beforehand is used at step 9. 

Initially the depth was set using a trial and error method of running the algorithm 

for a short time and observing its progress on the particular instance. Then 
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altering the maximum depth value until a suitable setting is found (that is 

estimated) will restrict the algorithm to a satisfactory running time. This is 

obviously not a suitable approach for practical use. Therefore, an additional 

mechanism was added which takes the preferred running time as a parameter and 

attempts to use that time efficiently. 

 

This mechanism works as follows: for the algorithm to finish, every neighbour in 

the neighbourhood at step 1 needs to be examined and potentially used as the first 

solution in a chain of moves. It is possible to calculate the size of the 

neighbourhood at step one using the number of nurses, the maximum block 

length and the number of days in the planning horizon. Given a preferred running 

time and the number of solutions to evaluate at step 1 (updated each time a new 

best solution is found), it is possible to calculate an average time to spend using 

each neighbour at step 1 as the first solution in a chain. Then at step 9, instead of 

testing whether a maximum depth will be exceeded in continuing the chain, we 

test whether the average time per chain will be exceeded if it continues.  

In the results section where this heuristic is not used but a maximum running time 

is set, the search immediately terminates and returns the best solution when the 

time limit is reached. If the algorithm naturally terminates and the preferred 

running time has not been exceeded, then at step 2, instead of returning the best 

roster, a new initial roster is created and the algorithm restarts at step 0.  

 

Figure 5.7 shows an example of an improving chain of moves. The change in the 

roster consists of seven moves which, when performed simultaneously, provide 

an overall reduction in the roster’s penalty. It can be seen that the second nurse of 
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a swap is always the first nurse in the next swap. Note that Figure 5.7 is just used 

to illustrate the idea of a chain of moves. For the roster shown (which is far from 

optimal), there are many other chains which would also improve the roster. 

 

 
 

Figure 5.7 Example chains of swaps 

 
From observing the logs after searches, the lengths of improving chains of moves 

varies greatly. Note that poor rosters are easily improved by single moves. When 

the local optima start to be found less frequently, (and the penalty is approaching 

better values) even for the smaller instances, improving chains of moves with 

lengths over one hundred are not uncommon. 

5.2.3 Efficient Implementation 

At step 6, there is a possibility that a neighbouring solution will be selected that 

has been visited previously and cycling could occur. Two different methods were 

tested to remove this risk. In the first method, a history of solutions visited along 



5 A Time Predefined Variable Depth Search 

139 

the current path (i.e. since the last use of step 1) is maintained and used to ensure 

that they are not revisited. This is fast and prevents cycling but does not guarantee 

that solutions are not revisited at other points in the algorithm, for example 

visiting a solution at step 1 that has already been used at step 6. The second 

method maintains a hash table of all solutions visited during the run of the 

algorithm and so also prevents all solutions being revisited. Testing showed that 

the first, simpler method, produced better results. This appears to be because the 

probability of visiting a duplicate solution at the points which the first method 

does not prevent is small and much lower than the probability of cycling at step 6. 

Therefore, using the faster method which prevents the majority of cycling and 

revisiting duplicate solutions was more efficient than the slower approach which 

guaranteed no cycling or duplicate paths. 

 

As discussed earlier, increases in performance can be achieved as effectively 

through making the algorithm faster and more efficient as by using better 

heuristics. We have already mentioned the importance of avoiding cycling. There 

are also some other efficiency measures which are worth highlighting. Firstly, 

when a nurse’s schedule has been altered it is only necessary to re-evaluate their 

schedule and any other nurses’ schedules which may be linked by vertical 

constraints to recalculate the new roster’s penalty. Secondly, by far the most time 

consuming operation is calculating penalties (i.e. soft constraint evaluations). If 

there is a likelihood that a solution will be returned to, then the algorithm caches 

penalties to avoid having to recalculate them. Finally, some soft constraint 

calculations can be speeded up by using data structures that are modified as 

assignments are made. A simple example is to update the total number of hours 
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worked when a shift is (un)assigned rather than to add all the hours up when 

calculating the penalty. Some of the more complicated constraints benefit from a 

similar approach. 

5.3 Results 

The algorithm was tested on the ten publicly available data sets introduced in 

chapter 4.  

5.3.1 Comparing Heuristics 

In the experiments, the following parameters were used: Maximum depth = 1000, 

maximum block length at step 1 = 2,  maximum block length at step 6 = 5. As 

described, if the algorithm finishes before the maximum running time is reached, 

a new initial solution is constructed and the search restarts. 

Table 5.4, Table 5.5, Table 5.6 and Table 5.7 contain the results of the variable 

depth search when different heuristics are used. Predefined maximum run times 

of 1 minute, 2 minutes and 5 minutes were tested with each instance and repeated 

five times using different random seeds (but which were the same for each 

corresponding trial). The best, worst and average of these runs were recorded. 

The penalties in Table 5.4 are the averages over all instances. The results for each 

instance given in Table 5.5, Table 5.6 and Table 5.7. 

 

The heuristics are summarised below: 

 
No heuristics Step 4 is removed and step 5 is applied twice but with E1 set as the 

other nurse each time. At step 6 the only rule is to select the best 

neighbour. 
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PG Partial gain heuristic (only add a swap to the end of the current 

chain if it satisfies the partial improvement criterion). 

VF Violation flag heuristic (only test swaps which include at least one 

day which is flagged as having a violation). This is used at steps 1 

and 6. 

WD Only swap worsened days heuristic (only test swaps which include 

at least one day which has a violation and the violation’s penalty 

was increased or the violation occurred after the last swap). This is 

used at step 6. 

TR Time restriction heuristic (ensure that a pre-calculated average 

amount of time is spent on every chain). 

ILS Hill climber with restarts. Maximum depth is set to 1 and 

maximum block size at step 1 is increased to 5. 

 
 1 Minute 2 Minutes 5 Minutes 

Heuristics Best Avg. Worst Best Avg. Worst Best Avg. Worst 

No heuristics 1390 1561 1879 1196 1454 1825 1154 1394 1766 
PG 917 1156 1461 888 1078 1271 872 1034 1225 
VF 1222 1629 2050 1113 1329 1611 973 1111 1232 
WD 1046 1241 1515 1008 1131 1251 972 1087 1234 
PG + VF 1003 1228 1680 894 1163 1619 872 1016 1303 
PG + WD 900 1016 1205 895 973 1083 877 946 1031 
TR 1153 1454 1829 1175 1450 1654 1008 1232 1386 
TR + PG + VF 1014 1122 1277 888 994 1141 874 978 1141 
TR + PG + WD 899 1068 1260 862 935 1027 858 889 938 
ILS 1164 1266 1405 1048 1174 1290 1012 1067 1161 

Table 5.4  Comparison of heuristic combinations 
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Time restriction = 1 minute. Max. depth = 1000. Max. block length at step 6 = 5.  Max. block  length at 

step 1 = 2. 

    
No 

heuristics PG VF WD 
PG + 
VF 

PG + 
WD TR 

TR + 
PG + 
VF 

TR + 
PG + 
WD ILS 

ORTEC01 Average 5768 2358 6560 3234 3347 1103 4605 2242 1910 3573 
 Best 4826 506 3245 1655 1421 425 2746 1430 555 2825 

BCV-1.8.1 Average 263 263 267 265 263 259 278 257 261 266 
 Best 255 253 259 257 254 254 271 254 255 261 
BCV-2.46.1 Average 1679 1667 1643 1662 1659 1683 1657 1605 1598 1641 
 Best 1653 1616 1595 1633 1616 1646 1618 1593 1574 1618 
BCV-3.46.1 Average 3570 3478 3546 3515 3501 3481 3588 3477 3411 3464 
 Best 3483 3411 3456 3505 3460 3422 3531 3442 3380 3443 
BCV-4.13.1 Average 11 13 10 11 11 10 22 11 11 12 
 Best 10 10 10 10 10 10 11 10 10 11 
BCV-5.4.1 Average 48 48 48 48 48 48 48 48 48 48 
 Best 48 48 48 48 48 48 48 48 48 48 
BCV-6.13.1 Average 941 873 793 770 814 769 844 768 770 908 
 Best 827 768 768 768 768 768 769 768 768 822 
BCV-7.10.1 Average 419 455 385 384 383 384 392 384 384 381 
 Best 381 381 381 381 381 381 381 381 381 381 
BCV-8.13.1 Average 180 164 148 148 148 148 196 148 148 148 
 Best 148 148 148 148 148 148 148 148 148 148 
BCV-A.12.1 Average 2731 2240 2890 2370 2103 2271 2912 2284 2135 2215 
 Best 2265 2033 2309 2050 1919 1900 2009 2068 1870 2085 

Table 5.5 Variable depth search heuristics with maximum run time 1 minute 

 
Time restriction = 2 minutes. Max depth = 1000.  Max. block length at step 6 = 5.  Max. block length at 

step 1 = 2. 

  
No 

heuristics PG VF WD 
PG + 
VF 

PG + 
WD TR 

TR + 
PG + 
VF 

TR + 
PG + 
WD ILS 

ORTEC01 Average 5023 1931 4246 2529 2893 860 4990 1262 868 2713 
 Best 3110 485 2450 1605 520 425 3099 470 480 1691 
BCV-1.8.1 Average 263 261 265 262 260 255 269 257 257 265 
 Best 255 252 257 257 254 253 263 253 253 261 
BCV-2.46.1 Average 1679 1664 1642 1652 1649 1680 1627 1597 1600 1620 
 Best 1653 1616 1595 1633 1596 1646 1616 1572 1574 1615 
BCV-3.46.1 Average 3486 3433 3477 3433 3477 3457 3523 3410 3380 3446 
 Best 3449 3392 3419 3414 3399 3372 3479 3380 3338 3413 
BCV-4.13.1 Average 11 11 10 11 10 10 11 11 10 12 
 Best 10 10 10 10 10 10 10 10 10 11 
BCV-5.4.1 Average 48 48 48 48 48 48 48 48 48 48 
 Best 48 48 48 48 48 48 48 48 48 48 
BCV-6.13.1 Average 904 842 780 769 768 769 836 768 768 889 
 Best 827 768 768 768 768 768 774 768 768 822 
BCV-7.10.1 Average 419 437 384 384 382 384 403 384 384 381 
 Best 381 381 381 381 381 381 381 381 381 381 
BCV-8.13.1 Average 164 148 148 148 148 148 148 148 148 148 
 Best 148 148 148 148 148 148 148 148 148 148 
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BCV-A.12.1 Average 2540 2007 2293 2071 1992 2115 2647 2051 1882 2213 
 Best 2075 1775 2050 1819 1820 1900 1928 1845 1620 2085 

Table 5.6 Variable depth search heuristics with maximum run time 2 minutes 

 
Time restriction = 5 minutes. Max depth = 1000.  Max. block length at step 6 = 5.  Max. block length at 

step 1 = 2. 

  
No 

heuristics PG VF WD 
PG + 
VF 

PG + 
WD TR 

TR + 
PG + 
VF 

TR + 
PG + 
WD ILS 

ORTEC01 Average 4763 1785 2421 2234 1570 857 3150 1147 448 1901 
 Best 3000 460 1390 1410 435 425 1420 360 420 1590 
BCV-1.8.1 Average 259 258 262 255 255 254 264 257 254 263 
 Best 254 252 256 253 253 253 255 253 253 257 
BCV-2.46.1 Average 1664 1654 1621 1635 1647 1669 1622 1596 1586 1607 
 Best 1633 1614 1595 1594 1595 1613 1595 1572 1572 1595 
BCV-3.46.1 Average 3468 3404 3465 3392 3448 3423 3443 3392 3378 3427 
 Best 3427 3374 3411 3382 3399 3372 3399 3347 3355 3413 
BCV-4.13.1 Average 11 11 10 10 10 10 12 10 10 11 
 Best 10 10 10 10 10 10 10 10 10 10 
BCV-5.4.1 Average 48 48 48 48 48 48 48 48 48 48 
 Best 48 48 48 48 48 48 48 48 48 48 
BCV-6.13.1 Average 857 818 768 769 768 768 814 768 768 853 
 Best 768 768 768 768 768 768 770 768 768 777 
BCV-7.10.1 Average 401 401 382 383 382 383 384 383 383 381 
 Best 381 381 381 381 381 381 381 381 381 381 
BCV-8.13.1 Average 148 148 148 148 148 148 148 148 148 148 
 Best 148 148 148 148 148 148 148 148 148 148 
BCV-A.12.1 Average 2320 1814 1985 2000 1881 1900 2437 2028 1867 2034 
 Best 1869 1664 1720 1729 1679 1750 2053 1849 1620 1900 

Table 5.7 Variable depth search heuristics with maximum run time 5 minutes 

 
The results indicate that a good combination of heuristics is TR+PG+WD. For 

example, comparing this combination against no heuristics over all tests it 

outperformed or was equal on all but four (out of 150). The null hypothesis that 

the difference in objective values of the solutions produced by the two algorithms 

are symmetrically distributed around the central point of zero, using the Wilcoxon 

signed rank test, had a probability less than 0.05. Similarly TR+PG+WD could be 

considered “better” than TR+PG+VF at the same confidence level using the 

Wilcoxon signed rank test and using the Sign test. The better results all use PG 

For example, using the Wilcoxon signed rank test, comparing PG against no 

heuristics, the null hypothesis could be rejected at the 0.05 confidence level, 
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indicating the efficacy of PG. TR is improved if combined with other heuristics 

and similarly VF and WD also perform better when not used on their own. As 

would be expected, VF and WD perform similarly (WD is a more restrictive form 

of VF). ILS performs similarly to TR, VF and WD when they are used on their 

own. All other combinations outperform ILS. 

Examining the results for each instance is also interesting. VF is very effective on 

instance BCV-4.13.1, even when used on its own and WD+PG works well on 

instance ORTEC01. However, we were unable to draw any definite conclusions 

on why this should be the case after examining the characteristics of these 

instances more closely. Due to its simplicity ILS is able to examine more 

solutions in the allocated time but its lack of heuristics makes it less effective.  

5.3.2 Comparisons with Other Methods 

Brucker et al. [46] developed a heuristic constructive approach and tested it on 

the benchmark instances. As it is a constructive method it is not possible to 

provide a comparison to the variable depth search by using the number of 

solutions examined metric. However, their experiments were performed on the 

same machine and a comparison can be provided by using computation times. 

The results in Table 5.8 are Brucker et al’s best results from all experiments. The 

total computation time in obtaining these solutions for each instance was then set 

as the maximum run time for the variable depth search with the heuristic 

combination TR+PG+VF.  

Burke et al’s result for ORTEC01 using the hybrid variable neighbourhood search 

[50] had a computation time of twelve hours (this is the method and results 

presented in chapter 3). The result for the variable depth search on this instance is 

the best of the five, five minute tests using the heuristic combination TR+PG+VF.  
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As can be seen, the variable depth search outperforms the constructive method, 

over the same computation times, on all instances except one, on which they are 

equal. Using the Sign test, these results were significant at the 0.05 level (testing 

the same null hypothesis as in section 5.3.1) but not significant using the 

Wilcoxon test. It also beats the hybrid method of Burke et al. on instance 

ORTEC01. 
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 Time Brucker et al. [46] Burke et al. [50] Variable Depth Search 

ORTEC01 12 hrs - 541 360 
BCV-1.8.1 136 sec 323 - 253 
BCV-2.46.1 3424 sec 1594 - 1572 
BCV-3.46.1 2888 sec 3601 - 3324 
BCV-4.13.1 208 sec 18 - 10 
BCV-5.4.1 16 sec 200 - 48 
BCV-6.13.1 304 sec 890 - 768 
BCV-7.10.1 216 sec 396 - 381 
BCV-8.13.1 224 sec 148 - 148 
BCV-A.12.1 944 sec 3335 - 1843 

Table 5.8  Comparison of VDS with other algorithms 

To provide further comparisons, the hybrid tabu search of Burke et al. [49, 58] 

was implemented and tested on the benchmark data sets. The best version of their 

tabu search (TS2) was applied five times to each instance. Table 5.9 contains the 

best and average results. The average execution time on each instance was also 

recorded. The variable depth search was then set a maximum run time identical to 

that used by the tabu search for each instance. Five repeats of the variable depth 

search were then performed to obtain average and best results. Heuristics 

TR+PG+WD were used. 

 

  Variable depth search TS2 [49, 58]   
Instance Best Average Avg. Evals. Best Average Avg. Evals. Time (secs) 
ORTEC01 480 1120 1,852,788 1581 3201 2,363,828 108 
BCV-1.8.1 262 269 159,379 293 350 140,690 9 
BCV-2.46.1 1574 1593 1,563,865 1573 1596 1,557,905 167 
BCV-3.46.1 3334 3346 4,486,399 3410 3453 5,088,206 427 
BCV-4.13.1 10 11 152,182 11 25 150,639 9 
BCV-5.4.1 48 48 21,208 48 48 17,580 1 
BCV-6.13.1 769 817 356,891 1010 1154 345,595 24 
BCV-7.10.1 381 427 117,224 391 458 93,817 7 
BCV-8.13.1 148 148 248,927 148 165 215,524 15 
BCV-A.12.1 1835 1942 649,926 2065 2831 718,354 108 

Table 5.9  Comparison of the variable depth search with a hybrid tabu search 

 

The results in Table 5.8 and Table 5.9 show the variable depth search nearly 

always outperforms or is equal to previous methods in comparable tests over all 
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instances. The only time it was beaten was when TS2 found a best solution for 

BCV-2.46.1 with penalty 1573. The variable depth search could still manage a best 

with penalty 1574 though. Note that the variable depth search is actually 

dynamically adjusting to the run time of the other approaches. Using the Sign 

test, these results were statistically significant at the 0.05 level (testing the same 

null hypothesis as in section 5.3.1).   

5.3.3 Longer Computation Times 

Further experiments were conducted to examine the potential benefit of a longer 

execution time. The variable depth search with the same parameters as before and 

using heuristics TR+PG+WD was tested on each instance with a time limit of one 

hour. ILS was also tested for comparative purposes. 

 
  TR+PG+WD ILS 
  Pen Evals Pen Evals 
ORTEC01 435 58,703,568 630 69,151,556 
BCV-1.8.1 254 62,769,622 255 72,216,494 
BCV-2.46.1 1574 29,767,138 1594 39,255,535 
BCV-3.46.1 3302 36,422,606 3414 42,504,506 
BCV-4.13.1 10 58,613,414 10 68,301,984 
BCV-5.4.1 48 73,021,195 48 92,071,328 
BCV-6.13.1 768 54,683,305 814 62,509,316 
BCV-7.10.1 381 59,704,319 381 69,957,265 
BCV-8.13.1 148 59,084,678 148 66,960,140 
BCV-A.12.1 1564 23,675,881 1808 25,506,048 
Average 848   910   

Table 5.10  Experiments with VDS using longer computation times 

The increase in computation time leads to an improvement for both methods. 

Again the simpler ILS examines more solutions in the allotted time but is still not 

as effective as the variable depth search. In fact, ILS after one hour on each 

instance is, on average, still worse than the best of five, one minute repeats of the 

variable depth search with heuristics PG + WD. 
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5.4 Conclusion 

This chapter has briefly reviewed search neighbourhoods that have been 

previously used to solve nurse rostering problems. They were tested using new 

benchmark nurse rostering problems and based on the results, a variable depth 

search was created. 

The block neighbourhood is very effective for the majority of the instances. 

Today’s technology allows these larger neighbourhoods to be exhaustively 

searched very quickly. Even a simple hill climber which uses these 

neighbourhoods will produce satisfactory rosters and combining the hill climber 

with the greedy construction, restart method further improves the quality of 

solutions produced. 

However, the variable depth search can still improve upon this basic iterated local 

search. The variable depth search works by chaining together the block moves 

using a number of heuristics to select the next move (link in the chain). The 

results show the best combination of heuristics to use is PG (the positive gain 

criterion) with TR (the time restriction heuristic) and WD (selecting moves on 

days that have violations which occurred after the last move). 

It is also worth noting that, although the variable depth search is more effective, it 

is also more complicated to implement with an increased potential for introducing 

errors. 

 

If the hill climber using the block neighbourhoods or the variable depth search 

were used in a population based approach such as a memetic algorithm [152] or a 

scatter search [118], then even better results may be possible. These are good 

methods for adding extra diversification to the search, especially over extended 
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execution times. This is investigated in the next chapter where the variable depth 

search is used as the improvement method in a scatter search.
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6 A Scatter Search 

This chapter describes a scatter search for the nurse rostering problem. Like 

genetic algorithms [104, 124, 132, 219], memetic algorithms [151, 152, 186] 

particle swarm optimisation [145, 177] and ant colony optimisation [89, 90], a 

key feature of scatter search is the maintenance of a population of solutions. This 

is in contrast to many other metaheuristics which generally work with one 

solution, for example simulated annealing [1, 147], tabu search [111, 117], 

GRASP [101], variable neighbourhood search [130, 185] etc. In genetic 

algorithms, these sets of solutions are often referred to as populations. To 

continue the metaphor, the individuals within a population may be labelled as 

parents and new solutions are usually called offspring. New solutions are 

generally created from two parents in the population through crossover and 

mutation operations. Although, for different problems, the details of the crossover 

and mutation functions can vary, there is typically some stochastic element to 

their operation. This contrasts with scatter search in which the method for 

forming new solutions is designed to minimize (if not eliminate) decisions being 

allocated to random (or more usually pseudo-random) chance. The idea is to try 

to replace calls to the random number function with “systematic and strategically 

designed rules” [118].  

Another difference is found in the way that new solutions are added to the 

population or reference set. In many genetic algorithms, new solutions are 

allowed to enter the current population if their quality (usually determined by an 

objective function) is greater than the worst member of the current population. In 

scatter search, a method for comparing the similarity of two solutions is used to 
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measure the reference set’s overall diversity. Whether or not a new solution enters 

the reference set may then be decided by not only its quality, but also its 

contribution to the reference set’s diversity. The goal is to try to maintain the 

highest quality, yet diverse, reference set. 

Some genetic algorithms also use a local search or other optimisation method on 

each of the new solutions between generations in order to improve their quality. 

These methods may also act to repair the solutions if they were incomplete or 

infeasible after the crossover stage. These genetic algorithms plus local search are 

often labelled as memetic algorithms but may also be referred to as hybrid genetic 

algorithms and genetic local search. The idea of using a heuristic improvement 

process on new solutions is also common to scatter search. These 

improvers/repairers can be a noticeable bottleneck in the algorithm though. Also, 

as new solutions can be created from more than one reference solution (in 

contrast to genetic algorithms), even with a small reference set, many new 

solutions can be created at each iteration. Therefore, the reference set is typically 

a lot smaller than the corresponding population in a genetic algorithm.  

However, as the boundaries between metaheuristic algorithm classification 

sometimes overlap and as different metaheuristic approaches are often hybridised, 

so also, features of scatter search may appear in genetic algorithms and vice 

versa. The comparisons between genetic algorithms and scatter search described 

here are just a basic introduction. For further information on scatter search and a 

more in depth analysis see [115, 118, 119, 155]. 

 

Population based optimisation methods have previously and successfully been 

applied to employee timetabling problems in various forms. Example approaches 
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include memetic algorithms [49]  and genetic algorithms [12, 13, 93, 140, 144, 

190, 229]. These papers were reviewed in chapter 2. 

At the time the work presented here was undertaken, there had been very little 

research into investigating scatter search for personnel scheduling and no known 

applications of it to nurse rostering. This made it an appealing method to test, 

especially considering how successful evolutionary approaches for nurse 

rostering have been previously. This is a conclusion which was simultaneously 

(but independently) made by Maenhout and Vanhoucke. They have also 

implemented and tested a scatter search for the nurse rostering problem [167]. 

Surprisingly, their implementation of Glover’s template is almost entirely 

different to the one presented here. However, they also were able to achieve 

successful results albeit on a variation of the nurse rostering problem. Scatter 

search and path relinking strategies have been applied to a considerable variety of 

problems other than nurse scheduling though. For example, arc routing [125], 

linear ordering [71], quadratic assignment [81], mixed integer programming [120] 

and exam proctor assignment [164]. All of these studies have demonstrated 

promising results. 

 

The next section describes the scatter search implementation and section 6.2 

contains the results of testing this algorithm on the benchmark instances 

introduced in chapter 4. To help draw conclusions, the scatter search has been 

compared against Brucker at al.’s constructive method [46] and the memetic 

algorithm of Burke at al. [49]. The variable depth search presented in chapter 5 is 

also used for comparisons as well.  
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6.1 The Algorithm  

In Glover’s template for scatter search [115], five component subroutines for the 

overall process are outlined. The following sections describe an implementation 

of these subroutines for the nurse rostering problem. The overall scatter search is 

outlined in Figure 6.1. 

 

0.    Create initial set of diverse solutions 
1.    Improve each solution in diverse set 
2.    Create initial reference set (RefSet) 
3.    Make a copy of the reference set (RefSetCopy) 
4.    FOR each untried subset of solutions in RefSet 
5.        Combine solutions in subset to produce a new solution (NewSolution) 
6.        Improve NewSolution 
7.        Replace a solution in RefSetCopy with NewSolution subject to certain criteria 
8.    ENDFOR 
9.    IF RefSet and RefSetCopy are not identical 
10.      SET RefSet := RefSetCopy 
11.      GOTO 3. 
12.  ENDIF 
13.  Return the best solution in RefSet or GOTO 0. 

Figure 6.1 Scatter search overview 

6.1.1 The Diversification Generation Method 

A diversification generation method is required to create a diverse set of 

solutions. These solutions are then improved (according to the objective function) 

and added to the initial reference set subject to certain criteria. When creating the 

diverse set of solutions, the objective value for each solution is not relevant, only 

its similarity to other solutions in the set is of interest. A number of methods were 

tested for creating diverse solution sets with varying degrees of success. Of these 

methods, the one outlined in Figure 6.2 consistently produced the most diverse set 

of solutions. 
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1. Create an empty set (set) of size n for the diverse solutions 

2. UNTIL set is full 

3.     Create a roster (roster) with no assignments made 

4.     FOR each day (day) in roster 

5.         FOR each shift type (shift) to be covered on day 

6.             UNTIL the cover is satisfied 

7.                 Assign shift to a nurse who has been assigned shift on day the  
                    least number of times in all other rosters in set (subject to no hard 
                    constraint violations) 
8.                 If more than one nurse has received shift on day the least number  
                    of times then randomly select one of them 

9.             ENDUNTIL 

10.       ENDFOR 

11.   ENDFOR 

12.   Add roster to set 

13. ENDUNTIL 

Figure 6.2 Pseudocode for the scatter search initial set creation 

 
To measure the similarity of two rosters, a simple but effective method is used: 

counting the number of nurse to shift assignments in common. An example of this 

is given in Figure 6.3 which shows the individual schedules of three nurses 

(labelled D, E, and F) from two different rosters. Identical assignments are 

highlighted, for example nurse E has a late shift (L) on Monday 4th in both 

schedules. In this example, just looking at these three nurses’ schedules, there are 

seventeen identical assignments in the two rosters. 

 
Figure 6.3 Example of the roster similarity measure 
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To demonstrate the success of the method, we compare it to a purely random 

approach which simply assigns randomly selected shifts to randomly chosen 

nurses. The assignments are made subject to no hard constraint violations (e.g. 

skills needed to perform certain shifts) until total cover is satisfied. A set of ten 

solutions was generated using both methods and the total number of shift 

assignments in common between all solutions in the set counted. Five repeats 

were performed on each instance and the average numbers of common 

assignments for each instance are given in Table 6.1. The results show that, on 

nine out of the ten instances, the random method made approximately twice as 

many common assignments. On the other instance, the random method made 

roughly 30% more common assignments. 

 
Instance Diversification method Random Assignment 

ORTEC01 1064 2101 
BCV-1.8.1 286 786 
BCV-2.46.1 1705 3752 
BCV-3.46.1 1770 3675 
BCV-4.13.1 609 1190 
BCV-5.4.1 614 842 
BCV-6.13.1 986 1859 
BCV-7.10.1 374 1102 
BCV-8.13.1 901 1631 
BCV-A.12.1 434 1192 

Table 6.1  Comparison of common assignments by different generation methods 

6.1.2 Improvement Method 

The goal is to try to improve any solutions according to their objective function. 

If necessary, it may also repair solutions. The solutions which it works upon may 

be those produced by the diversification generation method (see section 6.1.1) or 

the solution combination method (see section 6.1.5). 

The improvement method used is the time predefined variable depth search 

presented in chapter 5. Experiments were performed using a number of different 
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maximum run times to investigate how it affected the performance of the scatter 

search. The results are provided in section 6.2. For the experiments, the same 

settings as described in section 5.3.1 were used. 

6.1.3 Reference Set Update Method 

The reference set update method is used at two separate stages in the algorithm. It 

is used to create the initial reference set from the solutions produced by the 

diversification method. Afterwards, it is used to maintain the reference set. It 

decides whether to add to the reference set new solutions that are produced by the 

combination and improvement methods. 

The reference set is initialised in a similar manner to that used by Glover at al. 

[119]. After all the solutions produced by the diversification method are improved 

by the variable depth search, they are ranked according to the objective function. 

The best b1 of these solutions are then added to the reference set. From the 

remaining solutions, b2 are selected and added, based on their contribution to the 

diversity of the reference set. Figure 6.4 outlines the process. b1, b2 and the 

number of diverse solutions to initially generate are all parameters which may 

affect the running time of the algorithm and the quality of schedules produced. In 

section 6.2, the results of varying these parameters are presented. 
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P is the set of solutions created using the diversification generation method. 
RefSet is the reference set and is initially empty. 

b1 and b2 are algorithm specific parameters (integers >= 0). 

 

1. FOR 1 to b1 

2.    Select from P the best solution according to the objective function 

3.    Remove the solution from P and add it to RefSet 

4. ENDFOR 

5. FOR 1 to b2 

6.    For each solution in P calculate its total similarity to all the solutions 
       currently in RefSet (using the similarity function) 

7.    Select the least similar solution  (the schedule with least assignments  in 
       common with other rosters in RefSet) 

8.    Remove the solution from P and add to RefSet 

9. ENDFOR 

Figure 6.4 Scatter search reference set initialisation 

After the solution combination method, new solutions are added to the reference 

set if their objective function value is better than the reference set’s current worst 

solution and the set does not already contain an identical solution. If a new 

solution is added, the current worst solution is removed. 

6.1.4 Subset Generation Method 

The subset generation method is used to identify the subsets of solutions in the 

reference set that will be used by the combination method to create new solutions. 

A commonly used subset generation method in scatter search is that suggested by 

Glover [115]. This approach is also adopted here. Using this method, four 

different types of subsets of increasing size are identified. They are: 

 

1. All unique subsets of the reference set containing 2 elements. 

2. Subsets of size 3 identified by adding to each 2-element subset (above) the 

best solution not already in this subset. 
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3. Subsets of size 4 identified by adding to each 3-element subset (above) the 

best solution not already in this subset. 

4. Subsets containing the best i solutions, for i = 5 to |RefSet| 

 

The best solutions here refer only to the objective function values.  

At each iteration, it is also necessary to keep a record of which solutions in the 

reference set are new. This avoids combining sets of old solutions which were 

already combined in the previous iteration. 

6.1.5 The Solution Combination Method 

The solution combination method uses two or more solutions (selected by the 

subset generation method) for reference and produces one or more new solutions, 

often using a path relinking mechanism. These new solutions are then improved 

by the improvement method and then either added to the reference set or 

discarded by the reference set update method. 

Although the subset generation method can be easily adapted to a wide range of 

problems, the solution combination method is often more specifically designed 

for each problem. Glover et al. [118] discuss a number of forms that the solution 

combinations or path relinking could take. The solution combination method 

developed here is categorized in their paper as a constructive neighbourhood 

approach “where the guiding solutions vote for attributes to be included in the 

initiating solution” [118]. In our case, the attributes are shift to nurse allocations 

within the rosters. 

A solution can be regarded as simply a number of shift to nurse assignments. In 

the solution combination method, each shift to nurse allocation in each solution to 

be combined is regarded as a vote for a candidate. The candidates available for 
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selection are all the possible shift to nurse assignments for the problem instance. 

All these votes are then analysed and used to construct a new solution. The shift 

assignments (candidates) for the new solution are made according to the number 

of votes they received from the guiding solutions. The pseudocode in Figure 6.5 

outlines the process. 

In Figure 6.5, a candidate is a shift to nurse assignment on a specific day. The 

voters are the guiding solutions, each solution is a voter and each assignment 

within that solution is a vote for a specific candidate. The first step in the process 

is to create a new solution which initially has no assignments. 

 

1.  Identify candidates as the set of all possible shift to nurse assignments for  
     this instance 
2.  Collect all the candidates’ votes from each solution in the guiding set 
3.  Remove from candidates any candidate with zero votes 
4.  IF candidates is empty 
         GOTO 10. 
5.  Sort candidates by: 
          a)  decreasing total number of votes 
          b)  increasing total number of votes successful for voters selecting this candidate 
          c)  increasing sum of objective function values for voters selecting this candidate 
6.  Select and remove the first candidate in candidates 
7.  Make the assignment represented by this candidate in the new solution  
     unless it exceeds cover requirements or breaks any hard constraints 
8.  IF the assignment was made 
         GOTO 4. 
9.  IF candidates is not empty 
         GOTO 6. 
10. Return new solution 

Figure 6.5 An outline of the scatter search solution combination method 

 

At step 5 of Figure 6.5, the list of candidates (that is, shift to nurse assignments) 

is sorted by the number of votes they received. As the guiding sets of solutions 

are small (see the subset definitions), the candidates are often tied. If this is the 

case, two tie-breakers are used. If two candidates receive the same number of 

votes, the candidate whose voters have had the least total number of successful 

votes is ordered first. If this does not differentiate between the two candidates, 
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then the candidate whose voters have the lowest sum of objective function values 

comes first (lowest as it is a minimisation problem).  

The requirements at step 7 ensure that no hard constraints will be violated by the 

new solution except possibly not providing full cover (but not exceeding cover). 

If the shift coverage constraint is not satisfied, it is repaired by the variable depth 

search. 

6.2 Results 

The algorithm was tested using the benchmark data sets introduced in chapter 4. 

Two preliminary investigations were conducted with the scatter search. Firstly, 

we varied the amount of computation time given to the improvement method 

(variable depth search) each time it is used. Secondly, we evaluated the effect of 

using a larger reference set. The main aim in these experiments was to examine 

the difference in solution quality with respect to the variation in computation 

time. It was expected that the larger the reference set and/or the more time given 

to the variable depth search, the better the solutions. The purpose though was to 

examine the trade off between computation time and solution quality in order to 

investigate the balance.  

To conduct these experiments, a reference set of size 5 (b1=3, b2=2, initial number 

of solutions=8) was used and the variable depth search was given 5 seconds, 30 

seconds and 5 minutes. An additional experiment was conducted where the 

variable depth search was replaced with a hill climbing algorithm which uses the 

single shift neighbourhood introduced in section 5.1.1. As shown, this local 

search typically has a very short execution time (less than one second on smaller 

instances). 
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Secondly, a reference set of size 10 (b1=6, b2=4, initial number of solutions=20) 

was used. As a larger reference set would require the improvement method to be 

called many more times, the improvement method was restricted this time to the 

hill climber and then tried with the variable depth search with a limit of 5 seconds 

per execution. 

The results of these experiments are shown in Table 6.2. As well as the 

computation time, the number of solutions evaluated is also given. The 

experiments were performed on desktop PC with an Intel Pentium 4 2.4GHz 

processor. 
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Data set Penalty Evaluations Time Penalty Evaluations Time Penalty Evaluations Time 

 
RefSet=5 (b1=3, b2=2), Initial solutions=8, 

Improvement method=HillClimber 
RefSet=5 (b1=3, b2=2), Initial solutions=8, 

Improvement method=VDS (5secs) 
RefSet=5 (b1=3, b2=2), Initial solutions=8, 

Improvement method=VDS (30secs) 
BCV-A.12.1 1813 2,765,040 6 mins, 42 sec 1378 43,256,411 1 hr, 23 mins, 43 sec 1518 44,925,889 1 hr, 31 mins, 7 sec 
ORTEC01 2551 4,195,911 3 mins, 51 sec 470 39,643,699 22 mins, 19 sec 341 174,202,494 1 hr, 32 mins, 35 sec 
BCV-1.8.1 275 918,415 1 mins, 1 sec 253 33,082,154 23 mins, 18 sec 252 91,816,046 1 hr, 3 mins, 37 sec 
BCV-2.46.1 1574 18,097,242 16 mins, 27 sec 1577 16,711,732 13 mins, 13 sec 1572 102,694,355 1 hr, 16 mins, 43 sec 
BCV-3.46.1 3427 31,587,573 24 mins, 6 sec 3301 250,015,392 2 hrs, 22 mins, 32 sec 3312 298,790,524 3 hrs, 21 mins, 7 sec 
BCV-4.13.1 12 1,786,825 1 mins, 43 sec 10 15,009,273 9 mins, 18 sec 10 46,820,989 28 mins, 36 sec 
BCV-5.4.1 48 88,930 0 mins, 13 sec 48 4,414,062 3 mins, 5 sec 48 18,586,063 13 mins, 1 sec 
BCV-6.13.1 915 2,582,780 2 mins, 54 sec 768 20,872,954 15 mins, 8 sec 768 67,159,785 54 mins, 54 sec 
BCV-7.10.1 382 808,381 1 mins, 7 sec 381 10,184,684 7 mins, 39 sec 381 52,674,941 46 mins, 26 sec 
BCV-8.13.1 149 1,558,705 1 mins, 45 sec 148 10,698,537 7 mins, 26 sec 148 29,749,689 24 mins, 43 sec 

  
RefSet=5 (b1=3, b2=2), Initial solutions=8, 

Improvement method=VDS (300secs)  
RefSet=10 (b1=6, b2=4), Initial solutions=20, 

Improvement method=HillClimber 
RefSet=10 (b1=6, b2=4), Initial solutions=20, 

Improvement method=VDS (5secs) 
BCV-A.12.1 1440 491,902,115 16 hrs, 41 mins, 19 sec 1640 18,257,546 43 mins, 52 sec 1490 154,689,835 5 hrs, 7 mins, 7 sec 
ORTEC01 325 306,473,260 2 hrs, 40 mins, 45 sec 1881 25,548,930 25 mins, 59 sec 500 221,390,330 1 hr, 56 mins, 58 sec 
BCV-1.8.1 252 475,692,443 5 hrs, 29 mins, 6 sec 267 6,412,094 7 mins, 6 sec 253 112,208,101 1 hr, 11 mins, 3 sec 
BCV-2.46.1 1572 1,679,197,437 1 day, 21 mins, 22 sec 1573 75,473,986 1 hr, 15 mins, 15 sec 1573 61,658,977 50 mins, 14 sec 
BCV-3.46.1 3294 2,747,238,252 1 day, 8 hrs, 47 mins, 21 sec 3414 199,490,595 2 hrs, 40 mins, 37 sec 3293 4,031,912,911 1 day, 11 hr, 35 mins, 24 sec 
BCV-4.13.1 10 313,030,852 3 hrs, 10 mins, 47 sec 10 11,588,880 11 mins, 13 sec 10 87,667,326 51 mins, 45 sec 
BCV-5.4.1 48 32,520,202 22 mins, 35 sec 48 408,408 0 mins, 52 sec 48 19,016,777 11 mins, 8 sec 
BCV-6.13.1 768 319,751,554 4 hrs, 37 mins, 14 sec 886 10,784,081 12 mins, 54 sec 768 142,817,348 1 hr, 51 mins, 42 sec 
BCV-7.10.1 381 332,434,426 5 hrs, 6 mins, 16 sec 381 5,478,574 7 mins, 32 sec 381 121,430,659 1 hr, 21 mins, 26 sec 
BCV-8.13.1 148 191,706,580 2 hrs, 49 mins, 44 sec 148 6,299,783 7 mins, 54 sec 148 79,125,315 49 mins, 38 sec 

Table 6.2  Results of varying the reference set size and the improvement method
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As expected, increasing the size of the reference set and increasing the maximum 

execution time of the variable depth search, increased the total execution time. A 

benefit in terms of increased solution quality is not obvious however. Using a 

reference set of size 5 (RefSet=5) and with the variable depth search given a 

maximum time of 5 minutes (VDS=5mins) produced very long execution times. 

The results were not greatly better than RefSet=5, VDS=30secs though which had 

a shorter execution time. Although it was better or equal on all instances for the 

three instances on which is was better, the improvement was small. Again, using 

a larger reference set did not result in much better solutions in relation to the 

required execution time. The results suggest that the best trade off between 

solution quality and execution time is with RefSet=5 and VDS=5secs. This was 

able to produce very good solutions on all instances without unfeasibly long run 

times. The result for BCV-A.12.1 using these parameters is particularly 

encouraging as it is a new best result.  

Using these settings, further tests were performed to compare this approach to the 

memetic algorithm, MEH, of Burke et al [49]. MEH is a hybrid approach which 

performs a tabu search on individuals in the population between generations and a 

greedy shuffling step on the best solution at the end. It was shown to be a robust 

approach and the best method on the more difficult instances. The same settings 

as described in the original paper were used (underlying memetic algorithm ME4, 

population size of twelve and stop criterion of no improvement during two 

generations). Five repeats of both the scatter search and MEH were executed. The 

best and average solutions and average computation times are shown in Table 6.3. 

The scatter search with RefSet=5 and using the hill climbing improver was also 

tested for comparative purposes.  
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 MEH 
Scatter search using hill 

climber (SS1) 
Scatter search using VDS at 

5 secs. (SS2) 

Instance Best Average 
Time 

(secs.) Best Average 
Time 

(secs.) Best Average 
Time 

(secs.) 

ORTEC01 1580 2904 3351 601 1707 713 405 445 1381 
BCV-1.8.1 275 285 99 263 268 66 253 253 815 
BCV-2.46.1 1574 1589 2560 1573 1588 1665 1575 1594 1076 
BCV-3.46.1 3439 3471 10714 3379 3396 5226 3344 3380 3814 
BCV-4.13.1 12 19 93 11 12 114 10 10 374 
BCV-5.4.1 48 48 27 48 135 9 48 48 126 
BCV-6.13.1 815 959 385 806 904 207 768 768 592 
BCV-7.10.1 381 390 66 381 385 76 381 381 361 
BCV-8.13.1 148 166 219 148 148 123 148 148 226 
BCV-A.12.1 1990 2349 929 1685 1813 518 1434 1522 1786 

Table 6.3  Scatter search compared to MEH 

The results show that the scatter search using the hill climber as the improver 

(SS1) produces average solutions which are found in less time and are better than 

MEH on seven out of the ten instances. For the other three instances, the solutions 

are better for two of them but used slightly more time and worse on one but using 

less time. The Wilcoxon signed rank test was used to test the null hypothesis (H0) 

that the difference in objective values of all the solutions produced by the two 

algorithms are symmetrically distributed around the central point of zero. It had a 

probablity of greater than 0.05. 

 The scatter search using the variable depth search with a maximum run time of 

five seconds as the improver (SS2) outperforms SS1, but with a longer run times 

for all instances except BCV-3.46.1. SS2’s average results compared to SS1 are 

better for eight of the instances, equal on one and were worse on the other. 

 

For further comparisons, Table 6.4 contains the average results of SS1, the best 

results of Brucker et al’s heuristic constructive approach on the BCV data sets 

and Burke et al’s best result on the ORTEC01 data set. Brucker et al.’s 

experiments were all performed on the same machine as SS1. 
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As can be seen, SS1 outperforms the constructive approach on all but two 

instances (for one of which they are equal). It can also be noted that SS1 uses less 

computation time on all instances but one. SS1 does not outperform the result of 

Burke at al. on instance ORTEC01 although it does use considerably less 

computation time. SS2 does produce a better result in less time for ORTEC01 

though. Comparing SS1 with the constructive approach, H0 (as defined above) 

had a probability of greater than 0.05 using the Wilcoxon signed rank test and the 

Sign test. 

 

 SS1 Brucker et al. [46] Burke et al. [50] 
 Penalty Time (s) Penalty Time (s) Penalty Time
ORTEC01 1707 713 - - 541 12 hours
BCV-1.8.1 268 66 323 136 - -
BCV-2.46.1 1588 1665 1594 3424 - -
BCV-3.46.1 3396 5226 3601 2888 - -
BCV-4.13.1 12 114 18 208 - -
BCV-5.4.1 135 9 200 16 - -
BCV-6.13.1 904 207 890 304 - -
BCV-7.10.1 385 76 396 216 - -
BCV-8.13.1 148 123 148 224 - -
BCV-A.12.1 1813 518 3335 944 - -

Table 6.4 Comparisons of scatter search with other algorithms 

 
For a final comparison, the variable depth search (VDS) was tested on its own but 

with a predefined maximum run time equal to the average time used by MEH and 

then SS1. Five repeats were also performed and the best and average results are 

shown in Table 6.5. 
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VDS with max run time same as used 

by MEH 
VDS with max run time same as used 

by SS1 
Instance Best Average Time (secs) Best Average Time (secs) 

ORTEC01 355 377 3351 360 420 713 
BCV-1.8.1 252 260 99 253 258 66 
BCV-2.46.1 1572 1592 2560 1574 1588 1665 
BCV-3.46.1 3290 3313 10714 3312 3337 5226 
BCV-4.13.1 10 11 93 10 10 114 
BCV-5.4.1 48 48 27 48 48 9 
BCV-6.13.1 768 768 385 768 777 207 
BCV-7.10.1 381 438 66 381 412 76 
BCV-8.13.1 148 148 219 148 148 123 
BCV-A.12.1 1495 1694 929 1734 1865 518 

Table 6.5  VDS with the same maximum run times as MEH and SS1 

 
Looking at average results, the variable depth search outperforms MEH on seven 

of the ten instances, is equal on one and worse on the other two. Using best 

results, VDS is better on seven out of ten instances and equal on three. When 

compared to SS1 and using identical run times, for the average results, VDS is 

better on six out of ten instances, equal for two and worse on two. Comparing 

best results, VDS is better than SS1 on five instances, equal on three and worse 

on two. Comparing MEH with VDS, H0 had probability of greater than 0.05 using 

the Wilcoxon signed rank test. Comparing SS1 with VDS, H0 also has a 

probability greater than 0.05. 

6.3 Conclusion 

A scatter search has been presented for the nurse rostering problem and tested 

using benchmark instances. Scatter search is similar to a memetic algorithm in 

that it is a population based, evolutionary approach which improves individuals 

between generations using a heuristic or exact method. Scatter search differs in 

that new schedules can be constructed with guidance from more than two 

solutions and random decisions are replaced with strategic rules. The first 

experiments showed that the scatter search is more powerful when using the 
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variable depth search as the improvement method rather than a hill climber 

operating over the single shift neighbourhood. However, this improvement in 

solution quality comes at a cost of extra computation time. Setting a maximum 

run time for the VDS of 5 seconds though is a good compromise for most users 

on today’s PCs. Even on the largest instances, this produced a run time of less 

than a couple of hours. 

When compared against the heuristic constructive method of Brucker et al. the 

scatter search found better solutions on all but two instances and using less 

computational time on all but one. On instance ORTEC01, the scatter search 

using the variable depth search as the improvement method found a better 

solution than the hybrid approach of Burke et al., also in less time.  

When compared with Burke et al.’s memetic algorithm, the scatter search (with 

hill climber improvement method) found better solutions for seven out of ten 

instances in less time. This shows that it is an efficient and successful approach. 

When scatter search was compared to the VDS on its own with a maximum run 

time identical to that used by the scatter search, it produced better results on two 

instances and equal results on two more. 

Interestingly, there is one instance on which the scatter search outperforms the 

VDS and is consistently strong; instance BCV-A.12.1. This is highlighted by the 

solution for BCV-A.12.1 with penalty 1378 which was found in the first set of 

experiments. 1378 is a new record and was particularly impressive considering 

the days of computation that had been used on it previously by other methods; for 

example the VDS during its development and testing. It is not clear why the 

scatter search should be so suited to this instance. BCV-A.12.1 does contain 
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constraint types which do not appear in the other instances (for example the 

tutorship constraint), which may be a possible explanation. 

Compared to the variable depth search, the scatter search with the hill climber as 

the improvement method is easier to implement with less potential for 

introducing bugs. The solution similarity comparison method is simple and 

intuitive and the solution combination method is also easily understandable. 

When these subroutines are combined into the overall scatter search, a relatively 

straightforward yet demonstrably robust and effective approach is produced. 
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7 Conclusions 

In Section 1.1 the central research question of the thesis was defined: “To what 

extent can the state of the art metaheuristic approaches to nurse rostering be 

improved upon, particularly to meet today’s real world needs in complex 

operating environments?” To answer this question, six hypotheses were formed. 

We will now attempt to resolve these hypotheses based on the investigations, 

experiments and interpretation of results presented in Chapters 3-6. 

 

Hypothesis 1: Based on recent advances in metaheuristic approaches to nurse 

rostering, improvements can be made on the genetic algorithm in ORTEC’s 

software Harmony. To test this hypothesis a hybrid heuristic ordering and 

variable neighbourhood search was developed. When compared against the 

genetic algorithm, a statistical analysis of the results leads us to conclude that 

with a high level of probability the hybrid method is better on the smaller 

instances (up to twenty nurses). On the larger instances it is not possible to make 

confident conclusions on either algorithm’s superiority. Therefore, although the 

hybrid variable neighbourhood search is a successful algorithm which 

incorporates novel and effective ideas, this hypothesis can be neither entirely 

accepted or rejected.  

 

Hypothesis 2: The research community will significantly benefit from the 

development of a collection of real world benchmark data sets. As recognised at 

the start of the research, this hypothesis will have to be tested in a time frame 

beyond the scope of this project. However, the data sets and related software have 

been created. Extensibility, accessibility and the ability to bridge the gap between 
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research and practice were key design goals which have been achieved. As a 

result we believe this hypothesis will eventually be accepted. 

 

Hypothesis 3: Very large scale neighbourhood search techniques can be 

successfully applied to nurse rostering. The variable depth search confirms this 

hypothesis. When it was compared against a number of state-of-the-art 

metaheuristic approaches the results show this is a very effective algorithm. 

 

Hypothesis 4: A successful time predefined algorithm can be developed for the 

nurse rostering problem. Again the variable depth search confirms this 

hypothesis. It uses a heuristic which, based on the execution time remaining, 

dynamically alters the length of chains of swaps examined when looking for an 

improvement. In effect this prevents over intensification and ensures 

diversification during the search. The algorithm was competitive with and often 

superior to other approaches even when adjusting to their computation times. 

 

Hypothesis 5: A class of search neighbourhoods that are known to be very 

effective for the nurse rostering problem but are computationally intensive to use, 

can now be applied equally successfully but with much shorter computation 

times. This hypothesis was confirmed in Section 5.1.3 and was a result of 

significant practical importance. These neighbourhood operators were previously 

known to be very effective but their use had been very restricted due to their 

increased size and subsequent high computational expense. However, it is now 

possible to search these neighbourhoods exhaustively in very short computation 
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times and produce high quality rosters. They may also be incorporated in more 

sophisticated approaches (as in the variable depth search). 

 

Hypothesis 6: If a successful very large scale neighbourhood search algorithm 

can be developed, it will be possible to incorporate it in a novel evolutionary 

algorithm for increased robustness. To test this hypothesis a scatter search was 

developed and the variable depth search was used as the improvement method 

applied to solutions between generations. The scatter search was shown to be 

successful when compared against a previously published evolutionary approach. 

It produced very high quality solutions on all instances and a new record on a 

particularly complex instance. When compared against the variable depth search 

though, over all instances, it could not be concluded with a high level of 

confidence that one method outperformed. Hence, although the first part of the 

hypothesis can be confirmed, there is not clear evidence that the scatter search is 

in fact more robust.  

 

Based on these investigations we can now attempt to answer the main research 

question: “To what extent can the state of the art metaheuristic approaches to 

nurse rostering be improved upon, particularly to meet today’s real world needs in 

complex operating environments?”. We can conclude that the hybrid variable 

neighbourhood outperforms Harmony’s genetic algorithm on smaller instances. 

We cannot make confident conclusions about their performance on larger 

instances. We can conclude that the variable depth search is better than the tabu 

search of Burke et al. [58] and the hybrid constructive approach of Brucker at al. 

[46]. Although the variable depth search outperforms or is equal to the memetic 
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algorithm of Burke at al. [49] on nearly all test instances, based on the statistical 

analysis we cannot confidently conclude that it is in fact superior. Similarly, the 

scatter search produces better results than the memetic algorithm on most of the 

benchmark data sets. However, based on the statistical anlaysis there is not 

enough evidence to make confident conclusions on which is the better algorithm. 

7.1 Contributions  

As well as answering the main research question this thesis has also been aimed 

at advancing research into the highly practical and scientifically challenging nurse 

rostering problem. It makes a number of significant  research contributions. 

 

Chapter 2 contains a thorough review of the automated nurse rostering literature 

and associated publications. Although literature reviews on this topic already 

exist e.g. [30, 60, 98], a surprisingly large number of publications have appeared 

since the last of  these surveys was published in 2004 (over 30). Also, with the 

previous summaries to refer to, chapter 2 includes interesting contributions, 

strengths and weaknesses that were not previously discussed. An effort was made 

to ensure that the review gives a different angle on the publications, highlighting 

key points not previously mentioned. Hence, it contributes to and strengthens the 

existing library of nurse rostering surveys. 

The review begins with a general overview of personnel scheduling, an 

introduction to the different scheduling problems and definitions of key terms 

used in personnel scheduling. The variety of approaches to solving rostering 

problems are then organised into ten distinct categories, beginning with 

mathematical programming and ending with hyperheuristics. Each of these 

general methodologies are briefly examined and all significant publications 
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falling within each category are reviewed in a chronological order. Related nurse 

rostering publications, overviews and surveys are also discussed. The review 

concludes with a short critical discussion of key papers, an analysis of the 

progress in automated nurse rostering and the relation of the research in this thesis 

to the large body of previous work. 

 

The research conducted in collaboration with ORTEC makes a number of 

contributions. Firstly, a novel and successful hybridisation of heuristic ordering 

and variable neighbourhood search was developed. This was validated on a 

challenging real world problem against a commercially successful genetic 

algorithm. As a result the scheduling software Harmony is also now no longer a 

‘black box’ to other researchers. Instead, benchmark results have been provided 

which can be used to provide validation for other approaches. The ORTEC 

problem has already attracted the attention of other researchers e.g. [64]. 

The algorithm is an iterative procedure of applying a variable neighbourhood 

descent, heuristically disrupting the roster and then repairing it using heuristic 

ordering. The variable neighbourhood search can be regarded as an intensification 

phase in the overall search and the disruption and repair as a diversification 

mechanism. The disruption method is a simple but effective idea, unassigning the 

shifts of employees who have poor quality schedules. The heuristic ordering 

phase then attempts to improve the quality of these schedules by ranking the 

unassigned shifts in order of difficulty (to assign) before reassigning them over all 

nurses using a greedy method. For example, night shifts and weekend shifts have 

a number of high priority constraints associated with them so it makes sense to try 
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to assign them first. The variable neighbourhood descent is then reapplied from 

this point in the search space to try to further improve the roster. 

Experiments were conducted to examine the effect on solution quality of 

increasing the size of the disruption (i.e. the number of employees’ schedules to 

unassign shifts from). Interestingly it was discovered that the optimum disruption 

size appears to be unrelated to the size of the instance being solved. The best 

number of nurses’ schedules to unassign was around 3-5 regardless of the number 

of nurses in the roster. 

Experimental tests showed this approach was consistently more successful than 

Harmony’s existing genetic algorithm on instances with less than twenty nurses 

and competitive on larger instances. As a result, the hybrid variable 

neighbourhood search was incorporated in the latest product versions of Harmony 

alongside the genetic algorithm. 

 

The new benchmark problems and related software have provided a solid 

platform from which nurse rostering research can build upon well into the future. 

Although this was a significant amount of work (all the software alone is over 

35,000 lines of code at a recent count), the invested time and effort will benefit 

other researchers and be rewarded by the quality of new algorithms and related 

research it will produce. This, in turn, will lead to an increase in the adoption and 

impact of automated personnel scheduling in practice. 

To describe and share nurse rostering instances, an XML format has been defined 

(using schema). Although a large variety of instances can already be presented, 

the format has been designed with flexibility and future expansion in mind. A 

number of rostering instances taken from real world scenarios have been 
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converted into this new format and made publicly available for other researchers 

(see http://www.cs.nott.ac.uk/~tec/NRP/). These instances have also been used to 

establish benchmark results and the best known solutions are also available 

online. Benchmarks will help validate new algorithms and methodologies and 

encourage competition and collaboration. This will result in more powerful 

solvers for practical, real world scenarios. 

To help and encourage other researchers a number of software tools have been 

created and made available (including source code). These include parsers, 

helpful data structures, objective functions and solvers. Rosters may also be 

converted to/saved as HTML for examining solutions, their violations and 

explanations of penalties via a web browser (Figure 7.1). An application has also 

been created for viewing rosters and adjusting them by hand. This gives a better 

feel for the complexity of the problems and can also be used to verify new 

solutions to the benchmark instances (Figure 7.2).  

 



7 Conclusions 

176 

 

Figure 7.1 Roster displayed using HTML 

 

 

Figure 7.2 Screenshot of roster viewer application 
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Chapter 5 begins with an analysis of the very effective, block neighbourhood for 

nurse rostering problems. Although this neighbourhood was already known, its 

previous use was severely restricted due to slower computers and its larger size 

(compared to the single shift/day neighbourhood). It was shown that these 

neighbourhoods can now be exhaustively searched very quickly, producing high 

quality solutions. The approach in chapter 5 takes this even further by chaining 

these block moves together in a variable depth search (a class of very large scale 

neighbourhood search). A number of heuristics for achieving this were developed 

and tested. The result was a very competitive algorithm. Again, it was validated 

against the state of the art, previously published methods on our new benchmark 

instances. The most efficient heuristics for building the chains was a positive gain 

heuristic and a heuristic which only tests swaps which are flagged as containing 

violations. The positive gain heuristic was inspired by the ‘Gain Criterion’ of the 

Lin-Kernighan algorithm for the travelling salesman problem. It ensures the chain 

is only continued if the last but one move resulted in an improved (although 

infeasible) solution.  

A particularly novel feature of this algorithm was a mechanism for allowing the 

user to specify a maximum run time which the algorithm dynamically reacts to, in 

order to use its time more effectively. It does this by altering the maximum length 

of chains it may examine. Hence, it avoids over intensification and ensuring 

diversification. 

 

Finally, the variable depth search has been incorporated into an evolutionary 

approach. The result is a robust method which produces solid results on all 
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instances. The algorithm was particularly effective on one of the more complex 

instances. This is also one of the first applications of scatter search to the nurse 

rostering problem. 

Scatter searches are similar to memetic algorithms except that the random 

decisions are replaced with intelligently designed rules and solutions may be 

created from more than one parent. Applying the approach to the nurse rostering 

problem required the development of new methods for measuring similarity 

between solutions, creating solutions from multiple parents and maintaining 

diversity in the population. For measuring similarity, a simple but effective 

method was used : counting the number of common shift assignments in rosters. 

To create new solutions for each generation a ‘democratic’ approach was adopted 

in which each guiding solution ‘votes’ for the assignments in the new solutions. 

Experiments were also conducted to examine the trade offs between solution 

quality and  computation time, when the size of the reference sets and the run 

time of the improvement method (variable depth search or a simple hill climber) 

were varied. It was discovered that the best trade off was a relatively small 

reference set combined with using the variable depth search with a maximum 

execution time of 5 seconds. These settings produced high quality solutions in 

acceptable computation times on all instances and a new record for a particularly 

complex instance. 

 

All the source code for the algorithms developed for the benchmark instances is 

publicly available. This is also a novel contribution, especially within the field of 

nurse rostering. Writing code to be shared with other researchers, requires a 
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discipline and standard which is not always necessary for code written for private 

use. 

7.2 Publications 

The research presented in this thesis has been published (or is currently under 

review) as follows: 

[50]  Burke, E.K., T. Curtois, G. Post, R. Qu, and B. Veltman, A Hybrid 

 Heuristic Ordering and Variable Neighbourhood Search for the Nurse 

 Rostering Problem. European Journal of Operational Research, Accepted 

 for publication, to Appear 2008. 

 

[51] Burke, E.K., T. Curtois, R. Qu, and G. Vanden Berge, A Scatter Search 

for the Nurse Rostering Problem. 2007, Under  journal review. 

 

[52] Burke, E.K., T. Curtois, R. Qu, and G. Vanden Berge, A Time Predefined 

Variable Depth Search for Nurse Rostering. 2007, Under journal review. 

 

The author of this thesis is also the main author of the papers listed above. During 

this project the author also contributed to the following related work which has 

been published or is currently under review. The author’s contributions to these 

papers were implementing (but not designing) algorithms and/or conducting 

experiments.  

 

[46] Brucker, P., E.K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe, 

Adaptive Construction of Nurse Schedules: A Shift Sequence Based 

Approach and New Benchmarks. Under journal review, 2006. 
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[82] Curtois, T., L. Fijn van Draat, J.-K. van Ommeren, and G. Post. Progress 

 Control in Variable Neighbourhood Search, in Proceedings of the 6th 

 International Conference on the Practice and Theory of Automated 

 Timetabling. E.K. Burke and H. Rudova, Editors. 2006. Brno, Czech 

 Republic.  pp. 376-380. 

7.3 Future Research 

This section discusses possible future research directions which are directly 

related to the specific research presented in this thesis and for nurse rostering in 

general. 

7.3.1 Future Research Directly Related to this Thesis 

A large number of nurse rostering problems described in the literature could be 

presented in the current version of the data format. However, the format will 

continue to be extended to include a wider variety of instances with varying 

objective functions. Currently, many of the constraints are soft and to model a 

problem where one of these constraints is actually hard, a very high weight is set. 

Although this has proved satisfactory, it may be an improvement to include an 

option to identify a constraint as strictly hard. This would reduce the risk of 

returning infeasible solutions.  

Since this thesis was completed, two more problems have been added to the 

database. One from Queen’s Medical Centre, Nottingham and another from 

SINTEF (a Norwegian research organisation). 

The format is also currently being extended to allow the inclusion of instances 

(including physician scheduling) from hospitals in the area of Montreal, Canada. 
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These instances allow minimum, maximum and preferred levels of cover to be 

specified. The objective function includes a measure of deviation from preferred 

levels which has to be minimised. To accommodate these instances, the format 

also now allows cover constraints to be specified per periods of the day as well as 

per shift. The shifts therefore can include definitions of which periods of the day 

they cover. A number of new employee constraints particular to these instances 

have also been added. This work, which is being carried out in collaboration with 

the Université de Montréal, will allow us to make comparisons between different 

algorithmic approaches on shared instances. 

 

Relating to the algorithms presented, there may be potential for further 

investigation. For example, in the variable depth search, specific neighbourhoods 

(i.e. maximum block size settings) and heuristics are particularly effective on 

certain instances. A method which can exploit this by, for example, intelligently 

selecting neighbourhoods and heuristics, may be able to contribute gains in 

performance. One possibility may be an algorithm which runs some short 

preliminary tests on the instance, testing different parameters and heuristics in 

order to estimate a good set of parameters for the variable depth search. An 

alternative approach may be to dynamically adjust the algorithm’s set of 

heuristics and parameters as the search progresses. This is somewhat akin to 

hyperheuristics [63, 217].  

 

Another interesting idea with potential benefit is related to analysing and 

optimising constraint evaluation functions used in neighbourhood searches. As 

discussed in section 5.2.3 improvements in the speed of the evaluation functions 
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can contribute to increased performance of the search algorithms (more solutions 

examined per second). Some work has been initiated in this direction e.g. [53]. 

However, there may be scope for further improvements. Pattern matching 

algorithms could have possible application here. Again, the benchmark instances 

and publicly available code could be used for experiments and validation. 

7.3.2 Future Research Directions for Nurse Rostering 

In the survey papers [60, 73, 99] a variety of promising future research directions 

related to nurse scheduling in general are suggested. Some of the key ideas 

include: 

 

Integrating staffing and rostering models. If the staffing and rostering 

problems are combined into a single model, it may yield benefits in terms of cost 

savings and increased satisfaction with work schedules. For example, a combined 

model may help decision makers analyse the relationship between the workforce 

size (and related costs) and the quality of rosters that could be produced under 

different demand scenarios. A multiobjective formulation may be most 

appropriate here.  

 

Pareto optimisation has also been suggested as having utility in nurse rostering. 

So far, though, the number of investigations using these methods has been 

limited, [141, 158] being the only real applications. If a decision maker wishes to 

view or choose from the trade off between two or more conflicting objectives (or 

groups of objectives), then a Pareto optimisation approach would be an obvious 

choice. 
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Producing more robust schedules which can adapt more easily to unforeseen 

circumstances would also be an interesting scientific challenge with practical 

benefits. There has been a variety of research into how to assign pool or float 

nurses or how to adjust schedules when employees are absent e.g. [188-190, 234]. 

However, there has been very little work into how to make these potential 

problems easier by building robustness and flexibility into the original rosters. 

 

Parameterless algorithms. Naturally, end users do not want to fiddle with 

meaningless parameters to achieve the highest quality rosters. They just want to 

click a button and see the solutions appear. The time predefined variable depth 

search in chapter 5 shows how it is possible to accept a preferred run time and 

dynamically adjust to this requirement without requiring manual tinkering with 

settings, yet still produce excellent rosters. In section 7.3.1, methods which may 

enhance solution quality even further through automatic and intelligent parameter 

selection are also suggested. In the future, approaches which minimise the 

reliance on manual parameter/heuristic selection, should be aimed for. (This is 

also a recent research direction in exam timetabling [48]).  

 

Improved user interfaces. Increasing the attractiveness and ease of use of user 

interfaces will increase the adoption of automated rostering systems in hospitals. 

As discussed, nurse rostering problems are complicated and as such require a lot 

of data input. Entering and modifying this data should be fast and intuitive for the 

typical end users. There is a considerable amount of work in researching and 

designing such complex user interfaces. However, appealing and user friendly 

interfaces will significantly increase the uptake of rostering systems. 
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Algorithmic improvements. This thesis has introduced a number of algorithms 

which have been shown to outperform commercial and previously published 

approaches. Easily accessible and practically oriented benchmark instances have 

also been introduced in order to allow future comparisons against these new 

methods. Predicting the shape and form of future solvers is difficult. However, 

problem decomposition and hybrid methods have both been suggested as having 

potential for the nurse rostering problem [60]. Again, problem decomposition has 

already been successfully investigated for exam timetabling [66]. 
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