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Abstract

In this thesis, we present a complete study of machine learning applications, in-
cluding both supervised and unsupervised, for galaxy morphological classification
using calibrated imaging data. Two main topics are approached: (1) classification
- we discuss optimal machine learning technique in terms of accuracy, efficiency,
and inclusiveness using imaging data for large-scale surveys; (2) exploration - we
explore galaxy morphology without human bias and discuss a novel morphological
classification scheme defined by machine learning.

In the classification task, we first carry out a thorough comparison in accu-
racy and efficiency between several common supervised methods using the Dark
Energy Survey (DES) imaging data (Chapter 2). The morphology labels from
the Galaxy Zoo 1 (GZ1) catalogue (Lintott et al., 2008, 2011) are used to train
the supervised methods. We conclude that using a combination of linear and
gradient images (with the Histogram of Oriented Gradient technique) to train
our convolutional neural networks (CNN) shows the most optimal performance
in terms of accuracy and efficiency amongst the supervised methods tested us-
ing imaging data. Due to the better resolution (0.′′263 per pixel) and greater
depth (i = 22.51) of DES data than the Sloan Digital Sky survey (SDSS) imag-
ing data used in the GZ1 project, we reveal that ∼ 2.5% galaxies in our dataset
are mislabeled by the GZ1. After correcting these galaxies’ labels based on the
DES imaging data, we reach a final accuracy of over 0.99 for binary classification
(ellipticals and spirals) with the CNN (Chapter 3). We then use the CNN to
build one of the largest galaxy morphological classification catalogues which in-
cludes over 20 million galaxies from the DES Year 3 data (Chapter 4). However,
supervised machine learning techniques are biased towards the training set and
the human-defined labels. Therefore, we test the possibility of a classification
task using unsupervised machine learning techniques (Chapter 5 and Chapter 6).
In Chapter 5, the combination of a convolutional autoencoder and a Bayesian
Gaussian mixture model successfully distinguishes a variety of lensing features
such as different Einstein ring sizes and arcs from galaxy-galaxy strong lensing
systems (GGSL). This unsupervised method categorises simulated images from
Metcalf et al. (2019a) into 24 classes without human involvement and picks up
∼ 63 percent of lensing images from all lenses in the training set. Additionally,
with fewer human judgements involved to classify 24 machine classes, we reach
an accuracy of 77.3± 0.5% in the binary classification of lensing and non-lensing
systems.

On the other hand, unsupervised machine learning techniques are used to ob-
jectively explore galaxy morphology using the SDSS imaging data in Chapter 6.
We improve the efficiency of the unsupervised method used in Chapter 5 by ap-
plying a vector quantisation process in the feature learning phase, and achieve a
better ‘accuracy’ compared to the current knowledge towards galaxy morphology
using an uneven iterative hierarchical clustering (Chapter 6). This unsupervised
method can categorise the galaxies in the dataset, which includes 23% early-type
galaxies (ETGs) and 77% late-type galaxies (LTGs), into two preliminary classes
and reach an accuracy of ∼ 0.87 for binary classification of ETGs and LTGs. To
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explore galaxy morphology, our method provides 27 classes based on the galaxy
shape and structure. We further confirm that regardless of the galaxy morpholog-
ical mix that existed in the dataset, this unsupervised machine captures consistent
features. The 27 machine-defined morphological classes show a solid division on
stellar properties such as colour, absolute magnitude, stellar mass, and physical
size of the galaxies. Each class has distinctive galaxy features which distinguish
each class uniquely from other classes. Moreover, when comparing the machine
classes with visual Hubble types, it is clear that a mix of different galaxy struc-
tures can exist in one visual morphological Hubble type. This reveals that an
intrinsic uncertainty exists in visual classification schemes such as the Hubble
sequence in precisely classifying galaxies. With the investigation in Chapter 6,
we propose to rethink the current visual morphological classification scheme, and
consider the possibility of using a novel classification scheme defined by machine
learning to re-approach studies of galaxy evolution and formation from a different
perspective.
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Chapter 1

Introduction

1.1 The Big Data Era in Astronomy

The story is set in the ages of the data explosion, which started since the 1950s
due to the fast development of all kinds of technology. In the late 1990s, another
exponential growth of information happened when digital storage replaced analog
storage. Since then, the amount of data generated per day in the world has
reached over a trillion gigabytes (Sivarajah et al., 2017). This revolution of the
storage capacity also boosted the development of large astronomical surveys and
resulted in the Big Data era in Astronomy.

The Big Data era in Astronomy is presented in four different aspects: Volume,
Velocity, Variety, and Value/Veracity (Zhang and Zhao, 2015). The Volume
and Velocity represent the size of the data and the speed of data production as
well as analysis, respectively. For the past decades, the remarkable development
in computational capability and storage capacity enables the success of large
astronomical surveys such as the Galaxy Evolution Explorer (GALEX; Martin
et al., 2005)1, the Sloan Digital Sky Survey (SDSS; York et al., 2000)2, the Dark
Energy Survey (DES; DES Collaboration, 2005; DES Collaboration et al., 2016)3,
and the future surveys such as the Large Synoptic Survey Telescope (LSST; Ivezić
et al., 2019)4, the Euclid Space Telescope5, etc. The size of astronomical data
is exponentially increasing so that more than hundreds of millions of galaxies
are imaged in one survey. Meanwhile, the data production also significantly
accelerates, for instance, the LSST will generate the size of the SDSS data for ten
years in one night. The Variety indicates the complexity of astronomical data
which can be reflected on different data types such as photometric, spectroscopic,
and simulated data, or different storage formats in different surveys, etc. Finally,
the Value/Veracity points to the quality in the data, for example, better resolution
yields more information.

Since the scale of astronomical data has officially stepped into the so-called
‘Big Data Era’ in all four aspects, many conventional astronomical analyses be-

1https://archive.stsci.edu/missions-and-data/galex-1
2https://www.sdss.org
3https://www.darkenergysurvey.org/
4https://www.lsst.org
5https://sci.esa.int/web/euclid/
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come challenging, particularly in terms of Volume, and many new approaches are
carried out. One of the most successful example is the series of the Galaxy Zoo
projects (Lintott et al., 2008, 2011; Willett et al., 2013) on galaxy morphological
classifications for the SDSS which is also the flagship of citizen science. It allows
the general public to classify galaxies by answering a series of questions based
on galaxy images. The statistical analysis based upon the volunteers’ votes have
shown a great achievement in accelerating the time taken to classification, and
providing a reliable catalogue of a large set of galaxies. Similar approaches to
this are carried out in a plurality of astronomical topics, e.g., Planet Hunters6.

Although citizen science such as the Galaxy Zoo projects accelerates the anal-
ysis that could be done by single individuals, it has an upper limit of time-saving.
For example, the Galaxy Zoo projects spent around 3 years obtaining the classifi-
cations of ∼300,000 galaxies, due to the need for so many individual classifications
per object. DES and LSST, for instance, would take of the order of > 100 years
to classify with the Galaxy-Zoo-type projects. Therefore, machine learning tech-
niques are introduced to astronomical studies in particular to deal with the large
scale of astronomical data generated in the current and future surveys (Ball and
Brunner, 2010; Baron, 2019).

1.2 Machine Learning in Astronomy

With machine learning as the main storyline of this thesis, its concept can be
traced to the Turing Test introduced by Turing (1950): the programmed machine
tries to convince humans that it is a human rather than a computer. In 1952, the
‘Machine Learning’ phrase was firstly used by Arthur Samuel who created a com-
puter program for playing checkers which could memorise the game it had played
and became better at it (Samuel, 1959). After this, the first artificial neural
network - Mark I Perceptron (Rosenblatt, 1958) was proposed. However, as the
first successful neural network, it failed to fulfill the expectation of recognising a
variety of visual patterns, e.g., face recognition. The breakthrough of visual pat-
tern recognition was not achieved until Fukushima (1980) and Fukushima et al.
(1983) when a hierarchical and multilayered neural network, Neocognitron, was
proposed. Since then, machine learning applications in visual pattern recogni-
tion have been rapidly developed, for instance, Self-organizing Maps (Kohonen,
1997), Boltzmann machines (Smolensky, 1986; Ackley et al., 1988; Hinton, 2002;
Salakhutdinov et al., 2007; Salakhutdinov and Hinton, 2009), recurrent neural
networks (Schuster and Paliwal, 1997; Hochreiter and Schmidhuber, 1997), con-
volutional neural networks (Lecun et al., 1998; Krizhevsky et al., 2012), etc.

Machine learning techniques can be categorised through a variety of perspec-
tives such as classification or regression problem, decision trees or Bayesian al-
gorithms, instance-based or density-based, etc. The simplest and most general
category is defined based upon whether a prior knowledge (e.g., labels) is input
to the machine: ‘supervised’ if yes and ‘unsupervised’ if no. For example, a su-
pervised machine is trained with the data represented by a group of features and

6http://www.planethunters.org/
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pre-labelled by the class assigned based on these features. Therefore, we have told
the machine a kind of correlation between the input features and the classes that
we intend to predict. Conversely, to train an unsupervised machine, we provide
only the data presented through a set of features. In this way, the machine figures
out the possible correlation between features themselves, which is unnecessary to
be corresponding with any prior knowledge concluded by humans. In this thesis,
we approach our astronomical studies using both types of machine learning.

Machine learning techniques started to be introduced to astronomical studies in
the 1990s. They have been widely discussed in three different stages of astronom-
ical data: (1) before observation, (2) raw data, and (3) after calibration. First,
before observations are carried out, machine learning techniques are considered
to help the complicated calculations in simulations such as the three-body prob-
lem (Breen et al., 2020) or to build data driven simulations such as high-fidelity
synthetic data emulators (e.g., Rodŕıguez et al., 2018; He et al., 2019; Mustafa
et al., 2019; Perraudin et al., 2019; Kodi Ramanah et al., 2020, etc). Second,
machine learning techniques are applied in the pipeline for preprocessing the raw
data such as object detection (e.g., Vafaei Sadr et al., 2019), signal reconstruc-
tion (e.g., Higson et al., 2019), deblending (e.g., Reiman and Göhre, 2019; Burke
et al., 2019; Arcelin et al., 2020), etc. Finally, the most common machine learn-
ing applications in astronomy are used for the analysis of calibrated data such as
star-galaxy separation (e.g., Odewahn et al., 1992; Weir et al., 1995; Ball et al.,
2006; Kim and Brunner, 2017), anomaly detection (e.g., Baron and Poznanski,
2017; Giles and Walkowicz, 2019; Margalef-Bentabol et al., 2020), strong-lensing
identification (e.g., Jacobs et al., 2017; Petrillo et al., 2017; Lanusse et al., 2018;
Jacobs et al., 2019; Cheng et al., 2020b), studies of galaxy mergers (e.g., Bottrell
et al., 2019; Ferreira et al., 2020), the measurement of different physical proper-
ties (e.g., Ball et al., 2007; CarrascoKind and Brunner, 2014; Ntampaka et al.,
2015; D’Isanto and Polsterer, 2018; Tuccillo et al., 2017, 2018; Bonjean et al.,
2019; Calderon and Berlind, 2019), etc.

In this thesis, we work on reduced and calibrated data, and the story focuses
on the morphological classification of galaxies. The machine learning applications
on this topic can be traced to Storrie-Lombardi et al. (1992). They applied a neu-
ral network with an input of 13 parameters indicating different galaxy features,
such as stellar properties and brightness profiles, to predict the galaxy morpho-
logical types. Since then, a multitude of approaches have appeared utilising the
technology of machine learning (e.g., Huertas-Company et al., 2008, 2009, 2011;
Shamir, 2009; Polsterer et al., 2012; Sreejith et al., 2018), neural networks (e.g.,
Maehoenen and Hakala, 1995; Naim et al., 1995; Lahav et al., 1996; Goderya and
Lolling, 2002; Ball et al., 2004; de la Calleja and Fuentes, 2004; Banerji et al.,
2010), and convolutional neural networks (e.g., Dieleman et al., 2015; Huertas-
Company et al., 2015, 2018; Domı́nguez Sánchez et al., 2018; Huertas-Company
et al., 2019; Cheng et al., 2020a; Walmsley et al., 2020) for the morphological
classification of galaxies. Amongst them, only two studies explore this topic us-
ing the concept of unsupervised machine learning (Hocking et al., 2018; Martin
et al., 2020). They applied Self-organizing Maps (Kohonen, 1997) to extract rep-
resentative features, and grouped the data with similar features together using
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Hierarchical Clustering. In this thesis, different unsupervised machine learning
approaches than the previous two studies are explored in Chapter 5 and Chapter 6
for galaxy-galaxy strong lensing systems and galaxy morphological classifications,
respectively.

1.3 Galaxies and Morphological Classification

The main characters in this story, galaxies, are gravitationally bound systems of
stars, gas, dust, and dark matter. Each galaxy can harbour more than hundreds of
billions of stars, and have stellar masses in the range from 108M� to 1012M� and
total masses from 1010M� to 1013M�. Galaxies are critically important probes
for the formation of stars and metals as well as the structure of the Universe.
However, galaxies were thought to be nebulae belonging to the Milky Way until
the 1920s, when Cepheid variables were identified in the Andromeda galaxy by
Edwin Hubble. This discovery indicated that Andromeda was beyond our Milky
Way.

Galaxy structure and morphology are connected with the stellar properties
and formation mechanism of galaxies (Holmberg, 1958; Dressler, 1980). Visual
classification of galaxy morphology has been approached since the pioneer works
by Hubble (1926); galaxies are elegantly categorised into two main types: early-
type galaxies and late-type galaxies. The former is composed of stars with older
population, have redder colours, and shows little star formation, while the latter
generally has younger populations of stars which reflected is a bluer colour and
ongoing star formation, and often shows spiral structures. This system is then
further revised in Hubble (1936) and Sandage (1961) to the well-known classifi-
cation system called ‘Hubble Tuning Fork’ (Fig. 1.1).

Since then, several detailed classification systems were suggested in later works.
For example, de Vaucouleurs (1959) revised the Hubble sequence with extra de-
scriptions of structures such as bars, rings, etc using observations of the Southern
sky. A number of catalogues were then published based upon the ‘de Vancouleurs
revised Hubble-Sandage system (VRHS)’ (de Vaucouleurs, 1964; de Vaucouleurs
et al., 1995a,b). Meanwhile, a luminosity class system was proposed by van den
Bergh (1960), and systems focusing on the spiral structures were developed (van
den Bergh, 1976; Elmegreen and Elmegreen, 1982, 1987). While many detailed
classification systems are proposed, the two main morphological types of galax-
ies, early-type and late-type galaxies, are fundamental and valid in separating a
variety of galaxy properties and formation histories.

In addition to the visual classification systems which can be subjective and
intrinsically bias, more objective and quantitative relations between physical pa-
rameters, shape measurements, and galaxy morphology are carried out such as
color and magnitude (de Vaucouleurs, 1961; Chester and Roberts, 1964; Aaron-
son, 1978; Strateva et al., 2001; Baldry et al., 2004), spectrum (Morgan and
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Figure 1.1: Hubble sequence classification scheme (credit: Department of Physics
and Astronomy, University of Iowa)

Mayall, 1957; Madgwick, 2003), de Vaucouleurs 1/4 profile (de Vaucouleurs,
1948), sérsic profile (Sérsic, 1963, 1968), CAS systems (Concentration, Asym-
metry, Smoothness/Clumpiness), Gini coefficient, M20, etc (Morgan, 1962; Rix
and Zaritsky, 1995; Bershady et al., 2000; Conselice et al., 2000; Abraham et al.,
2003; Conselice, 2003; Lotz et al., 2004; Conselice, 2006; Law et al., 2007). In
this thesis, we mostly based upon the visual classifications of the two funda-
mental morphological types, and some of the systems listed above are used for
cross-validations. Additionally, in Chapter 6, we apply an unsupervised machine
learning technique to propose an objective classification and analysis without
human involvement for galaxy morphology.

1.4 Thesis Overview

In this thesis we present the story of galaxy morphological classifications ap-
proached through a variety of machine learning techniques using data from sev-
eral different large surveys such as the Dark Energy Surveys (DES; Chapter 2,
3, and 4) and the Sloan Digital Sky Survey (SDSS; Chapter 6). Through this,
we provide a novel analysis of the capabilities of different machine learning tech-
niques applied to the galaxy morphological classification problems as we step into
the Big Data era of Astronomy.

The machine learning techniques applied in this thesis can be simply cate-
gorised into two kinds: supervised and unsupervised machine learning. Starting
with the supervised machine learning techniques, we present a thorough compar-
ison of several common supervised machine learning techniques in chapter 2 in
order to determine the most optimal method for analysing the data from DES.
After this analysis, in Chapter 3 a further investigation is carried out on the
capabilities and performance of convolutional neural networks (CNN) applied to
galaxy morphological classification. Using these CNN, the largest galaxy morpho-
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logical classification catalogue of DES Year three data is presented in Chapter 4.

A new unsupervised machine learning application, combining a convolutional
autoencoder and a Bayesian Gaussian mixture model, is introduced to astronom-
ical studies in Chapter 5. This new method is applied to galaxy-galaxy strong
lensing identification using simulated data for the Euclid Space Telescope (Met-
calf et al., 2019a). In Chapter 6 we improve the unsupervised method proposed
in Chapter 5, and extend this research to galaxy morphological classification.
Specifically, we combine a recently developed technique - Vector-Quantised Vari-
ational Autoencoder by Google DeepMind (van den Oord et al., 2017; Razavi
et al., 2019) - with iterative Hierarchical Clustering. The resulting new method
is used to further explore galaxy morphology from a machine’s perspective. A
summary of this thesis and a discussion of future work are shown in Chapter 7.



Chapter 2

Finding the Optimal Supervised Machine

Learning for Categorising Galaxies in the Dark

Energy Survey

This chapter is based on published material by Ting-Yun Cheng, Christopher J.
Conselice, Alfonso Aragón-Salamanca, Nan Li, Asa F. L. Bluck, Will G. Hartley,
et al. Monthly Notices of the Royal Astronomical Society, Volume 493, Issue 3,
April 2020, Pages 4209–4228.
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Abstract

There are several supervised machine learning methods used for the application
of automated morphological classification of galaxies; however, there has not yet
been a clear comparison of these different methods using imaging data, or an
investigation to maximise their effectiveness. In this chapter, we carry out a
comparison between several common machine learning methods for galaxy clas-
sification [Convolutional Neural Networks (CNN), K-nearest neighbour, Logistic
Regression, Support Vector Machine, Random Forest, and Neural Networks] us-
ing Dark Energy Survey (DES) data combined with visual classifications from
the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine
learning methods when using imaging data for galaxy classification. We show
that CNN is the most successful method of the ten methods in our study. Using
a sample of ∼2,800 galaxies with visual classification from GZ1, we reach a pre-
liminary accuracy of ∼0.95 for the morphological classification of Ellipticals and
Spirals.
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2.1 Introduction

The morphological classification of galaxies is a very important tool for under-
standing the history of galaxy assembly. It not only tells us about the evolution
of galaxies, but it can also reveal their stellar properties, and thus their his-
tories (see Section 1.3). Conventionally, visual assessment is the main method
of galaxy morphological classification (e.g., de Vaucouleurs, 1959, 1964; Sandage,
1961; Fukugita et al., 2007; Nair and Abraham, 2010; Baillard et al., 2011). How-
ever, in recent decades, the amount of observed astronomical data has been grown
at an exponential rate due to the fast development in computational capacity and
observing capability. Studies in Astronomy have officially stepped into the age of
the big data, and conventional methods for analysing astronomical data become
challenging. In Section 1.1, we mentioned that the Galaxy Zoo projects (Lintott
et al., 2008, 2011; Willett et al., 2013) achieved large scale morphological clas-
sification of galaxies by involving amateurs in the classification process. Citizen
science projects such as Galaxy Zoo have thus provides an impressive number of
galaxy morphological classifications which have been used in a variety of scientific
studies. Nevertheless, the enormous amount of data generated in a larger astro-
nomical survey such as the Dark Energy Survey (DES)1 (Abbott et al., 2018) is
too large to be analysed by visual assessment after all (Section 1.1). Therefore, an
efficient automated classification is sought, and machine learning techniques from
computational science are therefore introduced to tackle the problem efficiently.

Machine learning applications on large scale datasets have been widely dis-
cussed for the past decades, particularly, the last few years in Astronomy (Sec-
tion 1.2). However, we are still learning the best ways to apply this to galaxy
morphology and other areas of astronomy. Several astronomical ‘challenges’ were
carried out to find the best solution to a specific astronomical problem which can
be applying machine learning techniques or other approaches, e.g., the Galaxy
Zoo challenge (e.g., Dieleman et al., 2015), the strong gravitational lensing (Met-
calf et al., 2019a), the weak gravitational lensing (Mandelbaum et al., 2014),
etc.

For galaxy morphology, there are now several different machine learning meth-
ods used to carry out supervised classifications; however, there is not a clear
quantitative comparison between these different methods yet, especially concern-
ing imaging data. In previous works, except for the application of CNN, there
has been very few studies which directly exploited imaging data when using other
machine learning algorithms, such as neural networks or support vector machine.
Therefore, in this chapter, we carry out a comparison of the simplest classifica-
tion – binary morphological classification of ‘Ellipticals’ and ‘Spirals’ (follows the
classification of the Galaxy Zoo 1 project) – between several common methods in
machine learning (listed in Table 2.1) using imaging data. We emulate the ap-
plication of face and hand-writing recognition in computational science (Bishop,
2006) that directly input image pixels as features to all the methods we compared
so that a fair comparison can be achieved. Additionally, this comparison also pro-
vides a decision of the most optimal technique for DES imaging data on galaxy

1https://www.darkenergysurvey.org/
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Labels Machine Learning Algorithms

1 K-Nearest Neighbour (KNN)
2 KNN + Restricted Boltzmann Machine

(KNN+RBM)
3 Support Vector Machine (SVM)
4 SVM + Restricted Boltzmann Machine

(SVM+RBM)
5 Logistic Regression (LR)
6 LR + Restricted Boltzmann Machine

(LR+RBM)
7 Random Forest (RF)
8 RF + Restricted Boltzmann Machine

(RF+RBM)
9 Multi-Layer Perceptron Classifier

(MLPC)
10 Convolutional Neural Networks (CNN)

Table 2.1: The list of machine learning methods tested in this chapter.

morphological classification that will be discussed with more details in Chapter 3
and used for building the largest galaxy morphological classification catalogue of
the DES year three data in Chapter 4.

The arrangement for this chapter is as follows. Section 2.2 describes the data
resources, the procedure of pre-processing, and the datasets we use in this chapter.
Each supervised machine learning method used is introduced in Section 2.3. We
present the main results in Section 2.4 and the conclusion is shown in Section 2.5.

2.2 Data Sets

For the images in this analysis we use the subset of Dark Energy Survey (DES)
first year (Y1) GOLD data - DES observation of the Sloan Digital Sky Sur-
veys (SDSS) stripe 82, selected at magnitude i<22.5 and redshift z<0.7 (Drlica-
Wagner et al., 2018). DES data covers 5000 square degrees (∼ 1/8 sky) and
partially overlaps with the survey area of the SDSS, but has a better seeing than
the SDSS images from Galaxy Zoo. Dark Energy Camera (DECam) (Flaugher
et al., 2015), the new installed camera used in DES, which is mounted on the Vic-
tor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory
(CTIO) in the Chilean Andes, improved the quantum efficiency in the infrared
wavebands (>90% from ∼650 nm to ∼900 nm), and gives a better quality images
for the observation of very distant objects than previous surveys with the spatial
resolution of 0.′′263 per pixel and the depth of i = 22.51 (Abbott et al., 2018).

A DES survey image has more than 500M pixels. Each tile is 1/2 sq.-deg. The
coadd (tile) images are 10000 by 10000 pixels in size with a pixel scale 0.′′263. The
total number of the data in this subset is around 1.87 million galaxy stamps with
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photometric redshift, and photometry information in 308 i -band coadd images.

In order to train our machine learning algorithm, we match the DES data with
the visual morphological classifications from the Galaxy Zoo 1 project (GZ1,
hereafter)2 (Lintott et al., 2008, 2011). We only exploit the visual classifications
which have agreements (votes rates) over 80 percent and have been bias corrected
by Bamford et al. (2009) for both Ellipticals and Spirals in GZ1. However, the
matching of DES data with visual classifications from GZ1 only gives 2,862 ob-
jects in total, with the number ratio between Ellipticals and Spirals being 1 to 3.
Their magnitude ranges from ∼12.5 to 18 in i-band, and the redshift z≤0.25 (peak
at z∼0.1). To avoid overfitting while carrying out the ML training, we apply data
augmentation in the pre-processing procedure in our study (Section 2.2.1.1). To
improve the performance of our machine learning methods, we apply other tech-
niques including feature extraction, i.e. Histogram of Oriented Gradient (HOG)
(Dalal and Triggs, 2005) to extract other informative features from galaxy stamps
(Section 2.2.1.3).

2.2.1 Pre-Processing

Before data pre-processing, we separate our 2,862 galaxies with DES data and
the GZ1 classification randomly into training sets, and testing set, to prevent
repeated galaxies in both sets. Our data pre-processing has four main steps: (1)
data augmentation; (2) stamps creation; (3) feature extraction; (4) rescaling. The
details are shown below.

2.2.1.1 Data augmentation

Data augmentation is of great importance while using pixel inputs in machine
learning. Since Dieleman et al. (2015), data augmentation by rotating images
has been widely used within CNN for the morphological classification of galaxies.
In this study, we have 2,862 galaxies with visual classifications from GZ1, 759
Ellipticals and 2,103 Spirals, respectively, to train and test our methods. In
order to prevent over-fitting during training, we rotate each galaxy image by
10 degrees differences from 0 to 350 degrees to increase the number of training
samples. Hence, the available number of training samples increases to ∼100,000.
After rotation, we add Gaussian noise to the rotated images (Huertas-Company
et al., 2015). This noise is small enough to not to influence the visual appearance
and structures of the galaxies (namely, remain the same visual classification), but
it is big enough to make a detectable change of pixel values.

Although data augmentation through rotating images is a well known method
used in machine learning application (e.g., Dieleman et al., 2015; Huertas-Company
et al., 2015), the effect of these rotated images is unexplored. Therefore, we in-
vestigate the difference of performance between partially and fully using rotated
images in the datasets in Section 2.4.2.

2https://data.galaxyzoo.org/
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2.2.1.2 Creation of the galaxy stamps

Fig. 2.1 shows the pre-processing procedure used in our study. Using the galaxy
catalogue from DES, we cut the coadd images with units of size 10000 by 10000
pixels into millions of galaxy stamps with sizes of 50 by 50 pixels. The size of
galaxy stamp is based on the size distribution of galaxies in the DES Y1 GOLD
data (stripe 82), where over 99% of galaxies are smaller than a threshold of 25
by 25 pixels. Therefore, the size of our stamp is 50 by 50 pixels, which is twice
as large as the threshold in the size distribution of galaxies.

Fig. 2.1 shows that before chopping the stamp to the size of 50 by 50 pixels, we
create the galaxy stamps with an initial size of 200 by 200 pixels when the galaxy
size is smaller than 30 by 30 pixels, and 400 by 400 pixels when the galaxy size is
larger than 30 by 30 pixels. For smaller galaxies, we rotate the 200 by 200 pixels
stamps first, then reduce them in size to 50 by 50 pixels; for larger galaxies, we
rotate 400 by 400 pixel stamps, reduce them in size to 200 by 200 pixels, then
downsize them to 50 by 50 pixels by calculating the mean value of pixels in a
size of 4 by 4 pixel cell. This procedure is designed to prevent empty pixel values
showing up at the corner of stamps when we rotate images with non-90 degrees
rotations.

2.2.1.3 Feature Extraction

In our study, we apply the Histogram of Oriented Gradients (HOG) on both our
original and rotated stamps to investigate the impact of this feature extractor on
supervised machine learning. The HOG is a feature extractor which is able to
extract the distribution of gradients with their direction from each pixel value.
It is useful for characterising the appearance and the shape of objects (Dalal and
Triggs, 2005). It calculates the gradients of the horizontal (x) and vertical (y)
direction of stamps. The magnitude and orientation of the gradient are calculated
as below,

|G| =
√
G2
x +G2

y, θ = arctan

(
Gy

Gx

)
(2.1)

where |G| is the gradient magnitude of each pixel, Gx is the gradient magnitude
measured in x-direction, Gy is the gradient magnitude measured in y-direction,
and θ is the orientation of the gradient for each pixel in the images. It then
measures the contribution of gradients from each pixel in the cell with the size
of 2 by 2 pixels, and uses a histogram to describe the contribution of gradient
magnitude to each orientation of gradient. The input of HOG image is the direct
output of this feature extraction process, and we rescale the pixel value to the
range between 0 and 1 (Section 2.2.1.4). Examples of HOG images are shown in
Fig. 2.2.

HOG is very popular within pattern recognition studies, e.g., human detection,
face recognition, and handwriting recognition (e.g., Dalal and Triggs, 2005; Shu
et al., 2011; Kamble and Hegadi, 2015, etc); however, it is not popular yet in
astronomy studies for the usage of machine learning algorithms. One of the ap-
plications is the detection of gravitational lensing images (Avestruz et al., 2019a),
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Figure 2.2: Examples of images from Histogram Oriented Gradient (HOG) with
the cell size of 2 by 2 pixels. Left: HOG images. Right: original images in linear
scale. Top: Spirals. Bottom: Ellipticals.

and a few previous works on the galaxy morphology (e.g., The Galaxy Zoo chal-
lenge Chou, 2014). However, none of these studies have examined the influence of
HOG on the performance of machine learning algorithms. In this study, we apply
HOG on our images to investigate not only the effect of it on automated mor-
phological classification of galaxies, but also the impact of it on the performance
of different machine learning algorithms (Section 2.4.4).

2.2.1.4 Rescaling

Rescaling is a very important process in the application of machine learning.
Different galaxies have different brightness due to their different properties and
their distances, so the pixel values of each image have significant variation between
galaxies. This would cause difficulties for machine learning algorithms when
defining the boundaries between different classes. Therefore, we rescale the pixel
values of each image (raw and HOG images) to the range between 0 and 1 through
normalising by the maximum and minimum pixel value of each image. We are
aware that intrinsic brightness can be a classification criteria, including surface
brightness. However, in this study we are interested in the structure only and
not on other properties that might correlate with a class of galaxy such as surface
brightness.

2.2.2 The datasets

In this study, we create 4 different datasets (see Table 2.2). The first two datasets
(1 & 2) contain both the original images and the rotated images, and the last two
(3 & 4) contain only the rotated images. This setting is used for investigating
the influence of rotated images on the performance (Section 2.4.2).
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labels i (raw), ii (HOG), iii (combination, for CNN)

1 original images+rotated images E:S∼1:3, Training=10,448
2 original images+rotated images E:S∼1:1, Training=11,381
3 only rotated images E:S∼1:3, Training=11,448
4 only rotated images E:S∼1:1, Training=12,381

Table 2.2: The arrangement of training datasets in this chapter. The content
included in the datasets are shown in the second column, and the third column
shows that the ratio between Ellipticals and Spirals and the total number of
training data in each dataset.

On the other hand, the datasets 1 & 3 are unbalanced which contain more
spiral galaxies than elliptical galaxies in the datasets while the datasets 2 & 4
have an equal number of spiral galaxies and elliptical galaxies in each dataset. We
balance the number of each type by adding different numbers of rotated images
to each type. For example, we rotate images of the Ellipticals 7 times, but only
2 times for the images of Spirals in the dataset 2, and 3 times for both types in
the dataset 1. We use this setting to investigate the effect of the balance between
the number of each type in training samples (Section 2.4.3). In addition, we
also reduce the differences in the number of total training samples between each
dataset to reduce the probable bias from this.

On the other hand, we have 2 (or 3 in CNN) different types of input data (i, ii,
iii). The first type (i) is the raw image with linear scale, and the second type (ii)
is the HOG image from feature extraction. The third type, ‘combination input
(iii)’, is special for CNN due to the characteristic structure of CNN that we can
combine both the raw images (i) and HOG images (ii) as input without increasing
the number of features. This is an new way to combine data using CNN whereas
people used to restore the images with different colours in the third dimension of
CNN in previous studies. We then also investigate the effect of this combination
input (iii) and compare it with the other two types (i & ii) (Section 2.4.4).

For the testing set, we randomly pick 500 galaxies from 2,862 galaxies for
each type (Ellipticals and Spirals). The rest of unselected galaxies are training
set. Therefore, we have 1,000 galaxies in total for testing and the ratio between
Ellipticals and Spiral is 1:1.

2.3 Models of Machine Learning

The concept of machine learning can connect with the invention of calculators
(Turing, 1950) that we program machine to obtain the information we want
through the input numbers or characters (features). More introduction for the
background history of machine learning is shown in Section 1.2. The break-
through of machine learning applications in visual pattern recognition started
from Fukushima (1980) and Fukushima et al. (1983). However, it was not until
the 1990s, the machine learning stood on the stage of astronomical applications
(e.g., Odewahn et al., 1992; Storrie-Lombardi et al., 1992; Weir et al., 1995, etc).
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There are two main types of features, ‘parameter input’ and ‘pixel input’, that
can be fed into machine. In the studies of galaxy morphological classification, the
‘parameter input’ is where we use parameters, which have clear correlations with
galaxy types (e.g., Storrie-Lombardi et al., 1992; Naim et al., 1995; Lahav et al.,
1996; Ball et al., 2004; Huertas-Company et al., 2008, 2009; Banerji et al., 2010;
Huertas-Company et al., 2011; Sreejith et al., 2018). For example, the ‘parame-
ter’ input can be surface brightness profile, colour, CAS systems (Concentration,
Asymmetry, Smoothness/Clumpiness), Gini coefficient, M20, etc (e.g., Abraham
et al., 2003; Conselice, 2003; Lotz et al., 2004; Law et al., 2007).

On the other hand, the ‘pixel input’ means that we treat each pixel of an image
as a feature to feed machine learning algorithms. The ‘pixel input’ is the most
straightforward feature used between the two for machine to learn, although it
significantly increases the number of features for computation. Nonetheless, it is
uncommon in previous studies of automated classification of galaxy morphology
to use ‘pixel input’ (e.g., Maehoenen and Hakala, 1995; Goderya and Lolling,
2002; de la Calleja and Fuentes, 2004; Polsterer et al., 2012) until the application
of CNN become popular in recent years (e.g., Dieleman et al., 2015; Huertas-
Company et al., 2015; Domı́nguez Sánchez et al., 2018; Walmsley et al., 2020,
etc).

We use ‘pixel input’ for each method in this study to investigate the effect
of ‘pixel input’ on different machine learning algorithms (Table 2.1). The Re-
stricted Boltzmann machine (RBM) (Smolensky, 1986; Hinton, 2002; Salakhut-
dinov et al., 2007), shown in Table 2.1, is the simplest neural network with one
hidden layer, which we treat as a feature extractor for some methods in this study
(Section 2.3.1).

All of the codes in this study are built on python. The main packages we
use in this study are scikit-learn3 (Pedregosa et al., 2011) for most of meth-
ods; theano4 (Al-Rfou et al., 2016), lasagne5 (Dieleman et al., 2015), and
nolearn6 (Nouri, 2014) for CNN.

2.3.1 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM) (e.g., Smolensky, 1986; Hinton, 2002;
Salakhutdinov et al., 2007) contains one hidden layer which is the simplest neural
network architecture (more explanation for the architecutre of neural network in
section 2.3.6). This is a useful algorithm for dimensionality reduction and feature
learning; therefore, in this chapter, the RBM is used as a feature extractor to
connect each feature for some machine learning methods (Table 2.1). It extracts
the features which are more interlinked with each other before we feed them to
other machine learning algorithms. The combination of machine learning algo-

3http://scikit-learn.org/stable/
4http://deeplearning.net/software/theano/
5http://lasagne.readthedocs.io/en/latest/
6https://pythonhosted.org/nolearn/
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rithms such as logistic regression (Chopra and Yadav, 2017) and RBM is actually
widely used in face and handwriting recognition.

In this study, the setting of RBM is identical amongst all methods that we apply
a fixed learning rate (=0.001), 1,024 numbers of hidden units, and 500 iterations
for RBM in training, where the learning rate determines how far to move the
weights each time towards the local minimum of loss function. The number of
iteration is approximately determined by where the maximum of log-likelihood is
shown.

2.3.2 k-Nearest Neighbours (KNN)

K-nearest neighbours (KNN) is the simplest non-parametric machine learning al-
gorithm (e.g., Fix and Hodges, 1989; Cover and Hart, 1967; Short and Fukunaga,
1981; Cunningham and Delany, 2007). This is one of the most common methods
in pattern recognition and has several applications in clustering and classification
problems (in astronomy e.g., Kügler et al., 2015). The concept of KNN is to find
highly similar data, where similarity is defined by the ‘distance’ in the feature
space between data. Parameter k is the number of nearest neighbours counted in
the same group. This factor controls the shape of the decision boundary for the
distribution of data.

Increasing the value of k decreases the variance in the classification but also
increases the bias of the classification. We chose the value of k by plotting the
accuracy (Equation 2.7) versus different values of k, and the value we ultimately
use is k=5. The distance metric for calculating the distance between each data is
defined by the Minkowski metric,

d =

(
m∑
i=1

(∣∣∣xi − x′i∣∣∣)q
)1/q

. (2.2)

The x and x
′

represent the input data, and the xi and x
′
i values here are the

features of input data. The m is the number of features. The value of q is equal
to 2 in this study, namely, the metric we use is the Euclidean metric.

2.3.3 Logistic Regression (LR)

Logistic regression (LR) is a generalised linear model (McCullagh and Nelder,
1989) which uses the sigmoid function 1

1+e−x (or logistic function) to output the
probability of classification. The application in astronomy such as Huppenkothen
et al. (2017) studies the variability of galactic black hole binary. The combination
of LR and RBM is commonly used in face and handwriting recognition (Chopra
and Yadav, 2017). The improvement of this combination is rather significant in
LR while using ‘pixel input’ because of the characteristics of neural networks (See
section 2.4).
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2.3.4 Support Vector Machine (SVM)

The concept of support vector machine (SVM) algorithm is to find a hyperplane
defined as below,

~w · ~x− b = 0, (2.3)

where ~w is a weighted vector, ~x is the input data, and b is the bias, with the max-
imum distance to the nearest data for each type (support vector): |~w · ~x− b| = 1
(Vapnik, 1995; Cortes and Vapnik, 1995). For example, see the top of Fig. 2.3,
where in a 2-class classification, {~xj, yj}, ~xj is a vector which represents in-
put data, and yj represents the classification. The j means the j-th data.
yj ∈ {1(circle),−1(square)}. While the parameter b

‖~w‖ determines the distance
between the hyperplane to the support vectors, finding the maximum of this pa-
rameter is finding the minimum ‖~w‖. After determining the decision boundary,
data above the boundary: ~w · ~x − b ≥ 1 is classified as a circle, the below one:
~w · ~x− b ≤ −1 is classified as a square.

When using a non-linear SVM, the algorithm uses a kernel function K to the
data:

(
~x, ~x

′) → K
(
~x, ~x

′)
to map the data. The bottom of Fig. 2.3 shows a 2D

illustration of an example of non-linear SVM with a circular transformation. In
this example, we assume each point is (ak, bk), and we transform the data into
a new feature space which is defined as c =

√
a2
k + b2

k (circular transformation);
therefore, the decision boundary is shown as the circular shape in the input space
(i.e. a− b space), but shown lines in feature space (c space). In this study, we use
a non-linear SVM, in particular, the Radial Basis Function (RBF) kernel function

(Orr and Science, 1996):
(
~x, ~x

′)→ K
(
~x, ~x

′)
= exp

(
−γ
∥∥~x− ~x′∥∥2

)
.

SVM was expected to be an alternative option for the neural network due to the
capability of dealing with high-dimensional data (Zanaty, 2012). The application
of this in astronomy is very popular, e.g., Gao et al. (2008); Huertas-Company
et al. (2008, 2009); Kovács and Szapudi (2015). There are two standard regular-
isation hyper-parameters for SVM: C-SVM and Nu-SVM (Scholkopf and Smola,
2001) methods. Both C and Nu are the hyper-parameter of regularisation which
are related to the number of support vectors and the number of misclassification.
The range of C can be any positive value, but the range of Nu is limited to 0 and
1 which is easier to control. Therefore, in this study, to get a better control of the
hyper-parameter, we use Nu-SVM and apply the package from scikit-learn -
NuSVC. The value of nu is determined by the package GridSearchCV (Hsu et al.,
2003).

2.3.5 Random Forest (RF)

Random forest (RF) is an ensemble learning method developed by Breiman (2001)
which aggregates the results from a number of individual decision trees to decide
the final classification (Fawagreh et al., 2014). Each tree is trained by a randomly
picked subset from the training set. The RF is a well known machine learning
technique applied in Astronomy using ‘parameter input’ (e.g., Dubath et al., 2011;
Beck et al., 2018) but the application that directly using pixel such as our study
is untested.



2.3. Models of Machine Learning 19

margin

Feature space

margin

Input space

ma
rgin

Linear SVM

Non-linear SVM Non-linear SVM

Figure 2.3: Illustration of the linear and non-linear SVM method. Different
markers represent two different classifications. Top: linear SVM. Bottom Left:
non-linear SVM in input space. Bottom Right: non-linear SVM in feature space
(kernel space).

We use RandomForestClassifier from the scikit-learn module. The num-
ber of trees (n estimators) used in this study is determined by plotting the
accuracy (Equation 2.7) versus different values of n estimators, and we ulti-
mately use 200 trees. The maximal number of features to consider for each
split (max features) is equal to

√
Nf , where Nf is the total number of features.

Each tree grows until all leaves are pure or all leaves contain the number of leaves
less than 2.

2.3.6 Multi-Layer Perceptron Classifier (MLPC)

Multi-layer perceptron classifier (MLPC) is a supervised artificial neural network
with multiple hidden layers (Rosenblatt, 1958; Fukushima, 1975; Fukushima et al.,
1983). Hidden layers which have several hidden units are invisible layers between
input and output layer in neural networks, and are used to connect input features
with each other. Each hidden unit is an activation function calculated by the
product of weights and input. Using a neural network with one hidden layer
as an example (Fig. 2.4), X1 and X2 are input features, f1 and f2 are the
activation functions of hidden units calculated by (using f1 as an example) f1 =
f (w0 · 1 + w1X1 + w2X2), where w are weights and f represents an activation
function as well. Through the calculation, it connects each input feature with
hidden units by weights. Therefore, more hidden layers and more hidden units
in each hidden layer can form more complicated connections of input features;
however, the architecture with more hidden layers and hidden units is more time-
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Input Layer    Hidden Layer    Output Layer

1

X1

X2

1

f1

f2

f1’

f2’

Y1

Y2

w0
w1

w2

Figure 2.4: Illustration of a neural network. This structure is for illustration only
and this includes one hidden layer, and two hidden units. Two input features, X1
and X2, work with the activation functions, f1 and f2, then obtain the outputs,
Y 1 and Y 2.

consuming and can lead to overfitting problems. Similarly, the output layer also
can be calculated from this concept.

MLPC uses a back-propagation algorithm (Werbos and John, 1974; Rumelhart
et al., 1986), which returns the error of predicted classification compared with
the true label to the algorithm when the neural network is activated and the
preliminary output is obtained. Algorithm adjusts the weights through the error
until the error is lower than the tolerance which we set 10−5. There are two
hidden layers and 1,024 hidden units for each hidden layer in MLPC method we
used. The learning rate is fixed to 0.001.

2.3.7 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) started from the design of LeNet-5 (Lecun
et al., 1998). However, CNN were not applied to the morphological classification
of galaxies utill Dieleman et al. (2015) in the Galaxy Zoo Challenge7. There
are two main differences between artificial neural networks (e.g., MLPC) and
CNN. One is that CNN has convolutional layers which are able to extract notable
features from the input images by applying several filter matrices, and the other
difference is the dimension of the input.

Most machine learning algorithms are designed for dealing with 1D array input
(e.g., parameter input), but some of them (e.g., SVM and neural networks) are
able to deal with higher dimension data. However, the input still needs to be
reshaped to 1D arrays for SVM and MLPC. On the contrast, CNN is designed
for image input with three dimension arrays which means that in addition to the
image itself, CNN has an extra dimension to store more information of image
such as colours (RGB).

Fig. 2.5 shows the architecture of CNN that we use in this study. The input
size of image is 50 by 50 pixels (Section 2.2.1.2). We have 3 convolutional layers
with filter sizes of 3, 3, 2, respectively, and each of them is followed with a pooling

7https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
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Figure 2.5: The schematic overview of the architecture of CNN. The architecture
starts from an input image with size 50 by 50 pixels, then three convolutional
layers (filter: 32, 64, and 128). Each convolutional layer is followed a pooling
layer. Two hidden layers with 1,024 hidden units for each are following the third
convolutional layer. One dropout (p=0.5) follows after the third convolutional
layer and the other follows after the second hidden layer. At last, there are two
outputs in our CNN, ‘Ellipticals’ and ‘Spirals’.

layer with size 2. These are then connected with two hidden layers with 1,024
hidden units for each layer. Additionally, two dropout layers are used to prevent
overfitting, one follows the third convolutional layer (pooling layer), and the other
comes after two hidden layers. The rectification of non-linearity is applied for
each convolutional layer and hidden layer, and the softmax function is applied
to the output layer to get the probability distribution of each type (all from
the package lasagne.nonlinearities). We use Adam Optimiser (Kingma and
Ba, 2014), Nesterov momentum, and set momentum=0.9 according to Dieleman
et al. (2015), and the learning rate 0.001 and maximum 500 iterations for the
CNN training.

2.4 Results

2.4.1 The evaluation factors for models

We use the Receiver Operating Characteristic curve (ROC curve) (Fawcett, 2006;
Powers, 2011) to examine the performance of each method and dataset. On a
ROC curve the y-axis is the true positive rate and the x -axis is the false positive
rate; therefore, the closer the ROC curve gets to the corner (0,1), the better the
performance is. The definition of true positive and the false positive are shown
in Fig. 2.6 in terms of the confusion matrix. Therefore, the true positive rate
(TPR) and false positive rate (FPR) are defined as below,

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
. (2.4)
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Figure 2.6: The confusion matrix. The x -axis label is the predicted label and the
y-axis label is the true label. The ‘0’ means negative as well as Ellipticals type
while ‘1’ represents positive signal and Spirals type in this study.

The definition of TPR is identical to ‘recall (R)’ in statistics which represents
the completeness that shows how many true types have been picked, while ‘pre-
cision (Prec)’ indicates the contamination which means how many picked types
(predicted types) are true types. We are doing binary classification - positive:
Spirals and negative: Ellipticals. Therefore, the recalls for Spirals and Ellipticals
are shown below,

Prec =
TP

TP + FP
; (2.5)

R (1) =
TP

TP + FN
; R (0) =

TN

TN + FP
. (2.6)

Additionally, we also use the factor - the area under the ROC curve (AUC) as a
performance evaluation for machine learning (Bradley, 1997; Fawcett, 2006). The
meaning of AUC is the probability that a classifier ranks a randomly chosen pos-
itive example greater than a randomly chosen negative example. This factor also
indicates the separability - how well the classifications can be correctly separated
from each other.

2.4.2 The impact of rotated images

The ROC curves of each method and datasets are shown in Fig. 2.7. We show the
results of raw images input (i) in this figure. Different colours represent different
datasets such that the yellow, orange, cyan, blue lines represents datasets 1, 2,
3, 4, respectively (Table 2.2). The datasets 1 and 2 contain both the original
images and the rotated images, and the datasets 3 and 4 only contain the rotated
images. Meanwhile, the datasets 1 and 3 have an unbalance number of each
type, conversely, the datasets 2 and 4 have an identical number for each classifi-
cation. The lighter colour shadings are the scatters defined by the minimum and
maximum over three reruns. The black diagonal dashed line indicates a random
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classification.

First, the results of the LR and SVM methods, with and without combining
with neural network, RBM show an improvement for LR and SVM when combin-
ing with RBM in Fig. 2.7. On the contrary, the performance of RF+RBM method
shows slightly worse performance than the one of the RF method. Secondly, the
scatters of the three reruns show small variance for each dataset, confirming the
consistency of the reruns with each other. Additionally, as can be seen there are
not large differences in the results between the different datasets. However, the
slight shifts of the ROC curve occur within a few methods between the different
datasets (e.g., MLPC). These are due to the slight differences in the total number
of training samples for different datasets (Table 2.2). For example in MLPC, the
dataset 4 has the maximum number of training data within the 4 datasets used
(∼12400 galaxies), so the performance of this dataset is the best in MLPC; the
datasets 2 and 3 have very similar number of training data (the differences in
number is only 67), thus they have a similar performance to each other. The
dataset 1 has the least number of training data (∼10400 galaxies), therefore, the
performance is relatively worse. The shifts seen are also influenced by the con-
dition of the balance between the ratio of each type (e.g., SVM and RF), for
example, the datasets 1 and 3 are the unbalanced training data, so the shape of
their ROC curve are similar to each other. This is also the case for the datasets 2
and 4. To summarise, from Fig. 2.7, data augmentation through rotated images
works fair to improve the performance of classification with machine learning.

2.4.3 Balance or Unbalance?

Here we investigate the influence of the balance between the number of each
type in training data. Fig. 2.8 shows the recalls of Ellipticals and Spirals for the
different datasets using the different methods. The colour representation is the
same as the ROC curve of Fig. 2.7, and the different methods are marked by the
different shape markers. We obtain the value of the recall from Equation 2.6 for
Fig. 2.8 by averaging the values from the three reruns. Different pattern types
represent different types of input. The colour-filled points are the raw images
input (i) while the points with diagonal-filled marker are the HOG images (ii),
and with dotted-filled marker are the combination input (iii). The black diagonal
dashed line shows the condition that R(0) = R(1) (Equation 2.6), and the black
dotted lines show that the recall differences between these two types are within
±0.1.

We observe that the unbalanced training dataset 1 (yellow) and dataset 3
(cyan) are all above the upper dotted line which means that these two datasets
generally have relatively higher recalls for Spirals compared to Ellipticals, and the
differences of the recalls between Spirals and Ellipticals are larger than 0.1. For
example, the result of the LR with the raw images input (i) (using the dataset
3 as an example shown as the leftmost cyan square in Fig. 2.8) has the recall
of (0.34, 0.81) for Ellipticals and Spirals, respectively. We also observe that the
LR, LR+RBM, SVM, and SVM+RBM methods have more seriously unbalanced
results than other methods when using the unbalanced datasets (close to top-left
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Figure 2.8: The recalls of the Ellipticals and Spirals for all methods and the
different types of the input data used. The colours represent the different datasets,
while the different shape markers are the different methods. The different types of
filled-points represent the different types of input. The fully-colour-filled markers
are the raw images only (i), the diagonal-line-filled markers are the HOG images
(ii), and those with dots are the combination input of the raw and HOG images
(iii) which is only for CNN. The black dashed line represents the condition that
R(0) = R(1) (Equation 2.6). The black dotted lines indicate that the differences
in the recalls between these two types are within ±0.1. The error bars are from
the standard deviation of the three reruns.
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in Fig. 2.8). This situation is due to the characteristics of these methods. For
example, LR simply uses logistic functions to determine the decision boundary
which can be easily shifted by unbalanced number of each type. On the other
hand, Wu and Chang (2003) discusses the skewed decision boundary of SVM
caused by an unbalanced data such that the decision boundary is likely to be
dominated by the support vector for the majority class.

On the other hand, most of the balanced dataset 2 (orange) and dataset 4
(blue) are located within two dotted lines which implies that these two datasets
have similar recalls between Ellipticals and Spirals (the differences are smaller
than 0.1). However, a few results of the balanced datasets in KNN have a higher
recall of Ellipticals, but a relatively lower recall of Spirals (the orange and blue
stars which are below the lower dotted line). The KNN algorithm obtains the
similarity between two images by calculating the ‘distance’ between each pixel of
two images (Section 2.3.2). Spirals have various shapes (e.g., different numbers
of the spiral arms) while Ellipticals have a relatively simple appearance similar to
one another. Therefore, it is easier for KNN to recognise Ellipticals than Spirals
when we have the same numbers of both types within the training data.

We apply ten different common machine learning algorithms in this study and
they show the consistent result in their balance except for KNN which we have
discussed above; therefore, according to this discussion, the balance between the
number of each type in training process is of great importance while using pixel
input in most machine learning algorithms. In this figure, we also observe that the
CNN method with a balanced datasets obtains the best recalls of both Ellipticals
and Spirals.

2.4.4 The effect of different types of input data

Here we show the comparison results between the different types of input for each
method (Fig. 2.9). We have 2 (3 for CNN) different types of input - the raw images
(i) , the HOG images (ii), and the combinations input (iii) (for CNN only). Differ-
ent colours in Fig. 2.9 indicate different types of input such that cyan, orange, and
blue are for the raw images (i), the HOG images (ii), and the combination input
(iii), respectively. According to the discussions in section 2.4.2 and section 2.4.3,
the results of the balanced datasets 2 and 4 are basically equivalent, and are
better representations in our four datasets (Table 2.2). Therefore, we show the
averages of the balanced datasets 2 and 4 after three reruns in Fig. 2.9, and the
lighter colour shadings show the scatters defined by the standard deviation of the
three reruns.

Fig. 2.9 shows that the HOG images input successfully improves the perfor-
mance in most of methods, except for KNN. Although the HOG image is able to
extract the characteristics of the morphologies according to the value of the gra-
dients, it also loses some of the detailed information (i.e. the smaller fluctuations
or gradients) and the smooth structure as well. Therefore, for KNN, the loss of
the smooth structure in HOG images causes difficulties in determining the correct
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decision boundary. This result can be significantly improved by combining KNN
with RBM when using the HOG images.

On the other hand, we observe that the application of HOG images shows an un-
apparent effect when combining RBM in LR+RBM, SVM+RBM and RF+RBM.
We infer that this phenomenon is caused by the fact that the RBM interlinks with
the HOG features which have less information in the images than the raw images
input. Therefore, it ‘annihilates’ the effect of RBM and HOG which leaves an
unapparent change in these three methods. This effect is shown in both MLPC
and CNN as well such that the HOG images input shows only a slight improve-
ment in these two methods as well. However, increasing the number of hidden
layers or more neurons in the neural networks helps to connect the HOG features
with each other. Therefore, the improvements with HOG images in MLPC and
CNN are qualitatively better than LR+RBM, SVM+RBM, and RF+RBM. A
more qualitatively significant improvement is shown in CNN when we combine
both the raw images input and the HOG images input (blue colour in CNN plot
of Fig. 2.9).

2.4.5 Comparison between methods

The definition of the accuracy used in Fig. 2.10 is shown below,

Accuracy =
TP + TN

TP + FP + TN + FN
, (2.7)

such the meaning of this is defined as how many successfully classified samples
there are out of all the samples tested. The comparison of the accuracy for the
different datasets and the different methods is shown in Fig. 2.10. Through this
figure we can observe the same situations as we have discussed in section 2.4.4
such that most methods have a better performance when using the HOG images
as input, except for the KNN where the HOG image input slightly reduces the
performance, and the LR+RBM, SVM+RBM, and RF+RBM methods which
the HOG images input gives no apparent improvement in performance. We also
make another comparison of efficiency between all methods (Table 2.3). Most
methods were run on the 2.3GHz Intel Core i5 Processor with 16GB 2133 MHz
LPDDR3 memory except for the ‘CNN (GPU)’ which was run on the NVIDIA
GeForce GTX 1080 Ti GPU.

Interestingly, the performance of RF wins the performance of MLPC with a
faster computation time (Table 2.3) using raw images which was totally unex-
pected. The further investigation for the capability of the RF on imaging data
will be very helpful considering both the computing speed and a high accuracy
the RF can reach. On the other hand, we can see that KNN and MLPC need less
computation time but can reach a relatively good accuracy compared to other
methods. Therefore, KNN and MLPC can be a good option when using pixel
input. Additionally, although the KNN method has lower accuracy than MLPC,
it applies raw images input which saves the preprocessing time that generates the
HOG images (or other types of scaling).
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Methods Training time Testing time accuracy

KNN ∼ 0.2 sec ∼45 sec 0.782±0.027 (raw)
KNN+RBM ∼3000 sec ∼45 sec 0.830±0.007 (HOG)

LR ∼7-8 sec ≤ 1 sec 0.682±0.040 (HOG)
LR+RBM ∼3000 sec ≤ 1 sec 0.810±0.012 (HOG)

SVM ∼800 sec ≤ 8 sec 0.764±0.029 (HOG)
SVM+RBM ∼3000 sec ≤ 8 sec 0.762±0.001 (HOG)

RF ≤1 sec ≤ 5 sec 0.913±0.009 (raw)
RF+RBM ∼3000 sec ≤ 5 sec 0.870±0.031 (raw)

MLPC ∼18 sec ≤ 3 sec 0.857±0.010 (HOG)
CNN ∼3000 sec ≤ 5 sec 0.951±0.005 (comb)

CNN (GPU) ∼360 sec ≤ 5 sec 0.951±0.005 (comb)

Table 2.3: The comparison of the computing time (per ∼1000 galaxies) for each
method. The ‘accuracy’ is the best accuracy shown in Fig. 2.10. The first ten
methods were run on the 2.3GHz Intel Core i5 Processor with 16GB 2133 MHz
LPDDR3 memory, while the sixth method ‘CNN (GPU) was run on the NVIDIA
GeForce GTX 1080 Ti GPU.

The most successful methods when using pixel input in our study according
to both the ROC curve (Fig. 2.9) and the comparison of accuracy (Fig. 2.10)
between each method is certainly CNN. Both of these two figures indicate that
the HOG image input helps the performance of CNN (Table 2.4).

Additionally, we create a new way to utilise the third dimension in CNN when
we combine the raw image (i) with the HOG images (ii) which together we call a
‘combination input (iii)’. This shows a slight but qualitatively great improvement
when using the combination input (iii) to do training in CNN (see CNN plot in
Fig. 2.9). With the combination input (iii) and the balanced datasets, we can
reach ∼0.95 accuracy with CNN using pixel input in this study (Table 2.4).

On the other hand, Sreejith et al. (2018) proposes an ‘unanimous disagreement’
indicating an object that all the classifiers agree with each other but disagree
with the visual classification. In our study, we found only 3 galaxies out of
1,000 galaxies show an unanimous disagreement when considering all classifiers.
These galaxies are all labelled as Spirals by the Galaxy Zoo 1 classification (GZ1)
but classified as Ellipticals by our classifiers. We also visually confirmed that
these galaxies are indeed Ellipticals. This unanimous disagreement is more likely
caused by the debias process applied in GZ1 to statistically adjust the population
of galaxies at a higher redshift rather than a simple visual misclassification.

2.5 Conclusion

In this chapter, we have examined ten supervised machine learning methods to
determine the most successful method for classifying galaxies into ellipticals and
spirals with the imaging data from the Dark Energy Survey (DES) using only pixel
input on a single band (i-band). As part of the investigation, we have also tested
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Input Types accuracy R01

raw (i)
dataset 2: 0.924±0.013 0.933
dataset 4: 0.906±0.018 0.907

HOG (ii)
dataset 2: 0.943±0.016 0.940
dataset 4: 0.940±0.003 0.940

comb (iii)
dataset 2: 0.945±0.004 0.947
dataset 4: 0.951±0.005 0.953

Table 2.4: The comparison between the different types of input in CNN when
using the datasets 2 and 4 (Table 2.2). The total number of testing images is
1,000 galaxies. The definition of the accuracy is according to Equation 2.7. The
value of R01 is the recall value of Ellipticals and Spiral (Eqaution 2.6) after taking
a weighted average, and the value of this is shown in the table as the three reruns
average of R01.

how using rotated images to augment our data influences on our classification. In
addition, we also confirmed that the balance between the number ratio of each
type is rather important when using pixel input in machine learning.

We show that the machine learning algorithms, logistic regression (LR) and
support vector machine (SVM) improve the performance of machine learning
when combining with neural networks features, such as Restricted Boltzmann
Machine (RBM). On the other hand, we find that using the image input along
with the the Histogram of Oriented Gradient (HOG image) helps the perfor-
mance in most methods, except for k-nearest neighbour (KNN). Additionally,
we also observe that the application of HOG images gives less help when com-
bining with a neural network (e.g., LR+RBM, SVM+RBM, RF+RBM) because
the RBM interlinks the HOG image features which have less information than
the raw images. However, increasing the number of hidden layers and neurons
qualitatively helps the connection between the HOG image features according to
the performance of multi-layer perceptron classifier (MLPC) and convolutional
neural networks (CNN).

According to the Receiver Operating Characteristic (ROC) curve, the com-
puting accuracy and the efficiency of each method, the performance of RF is
comparable with a neural network (i.e. MLPC) with a faster computation time.
In addition to RF, both the KNN and MLPC are alternative options can be
considered when using pixel input because both of them have a relatively good
accuracy with much less computing time than other conventional machine learn-
ing algorithms (e.g., LR, SVM) shown in this study (Table 2.3).

The most successful method within the ten methods we test is the convolutional
neural networks (CNN) with the combination input of raw images and HOG
images and when using a balanced training data. Through this we are able
to reach an initial accuracy of ∼0.95 using ∼12,000 galaxies (including rotated
images) as the training set. A further investigation of the application of CNN on
the morphological classification of galaxies using the DES imaging data is carried
out in Chapter 3.
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Morphological Classification of Dark Energy
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Abstract

In this chapter we present a further study of the application of the convolutional
neural networks (CNN) method to the morphological classification of Dark En-
ergy Survey (DES) galaxy images. The CNN method was identified as the most
optimal supervised machine learning method among the ten methods tested in
Chapter 2. We use a sample of ∼ 2, 800 galaxies with visual classifications from
GZ1 and show that, using the maximal available number of the training data -
which includes rotated images - and a probability threshold p = 0.8, we are able
to improve the accuracy of our results from ∼ 0.95 to ∼ 0.99 when classifying
galaxies into Ellipticals and Spirals.

As a part of the work, we investigate the galaxies that have a mismatched label
between machine learning and visual classification, but with a high predicted
probability from our CNN method. Some of them show a spiral structure in the
DES imaging data that did not appear in the SDSS images. We also find that the
galaxies having a low probability of being either Spirals or Ellipticals are visually
Lenticulars (S0). This result demonstrates that supervised learning is able to
rediscover that this galaxy class is distinct from both Ellipticals and Spirals. In
our datasets, we confirm that ∼2.5% galaxies are mislabelled by GZ1 when using
the DES imaging data. After correcting these galaxies’ labels, we improve our
CNN performance to an average accuracy of over 0.99.
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3.1 Introduction

Since the work of Dieleman et al. (2015) from the Galaxy Zoo Challenge, convolu-
tional nerual networks (CNN) have been widely applied in a variety of astronom-
ical studies such as strong lensing (e.g., Lanusse et al., 2018; Pearson, J. et al.,
2019), star-galaxy classification (e.g., Kim and Brunner, 2017), galaxy mergers
(e.g., Pearson et al., 2019; Bottrell et al., 2019; Ferreira et al., 2020), and galaxy
morphology (e.g., Huertas-Company et al., 2015, 2018, 2019; Domı́nguez Sánchez
et al., 2018; Walmsley et al., 2020). These studies have shown the capability
of CNN in capturing meaningful features from images and their usefulness for
processing a variety of astronomical imaging data.

In Chapter 2, we also concluded that the best method in terms of classification
accuracy using imaging data from all of the supervised machine learning methods
tested (Table 2.1) is CNN. Our CNN (see details in Section 2.3.7) provides a
preliminary accuracy of ∼0.95 for classifying galaxy morphology with the imaging
data from the Dark Energy Survey (DES) and the visual classification from the
Galaxy Zoo 1 project (GZ1; Lintott et al., 2008, 2011) when using a balanced
training set (see Table 2.2 in Section 2.2) with a mixture of raw images and the
images processed through the feature extractor, ‘Histogram of Oriented Gradient’
(HOG images; Section 2.2.1.3).

The DES imaging data has a better resolution and is deeper than images from
the Sloan Digital Sky Survey (SDSS; see Section 2.2). With our CNN, these
properties of DES data help us to build a larger, deeper, and better catalogue of
galaxy morphologies containing the largest sample to date (Chapter 4). We will
also investigate misclassification issues when comparing machine-learning results
with Galaxy Zoo 1 (GZ1) labels, particularly for galaxies with high predicted
probabilities from the CNN method.

In this chapter, we further analyse the CNN results obtained from Chapter 2,
and improve the performance of our CNN by increasing the number of training
data and applying a probability threshold. The analysis is shown in Section 3.2.
As part of the work, we also investigate galaxies which ’fail’ by our CNN algo-
rithms in Section 3.3. The conclusion is drawn in Section 3.4.

3.2 Analysis of Convolutional Neural Networks

(CNN)

Here we discuss in more details for the results of our CNN classification from
Chapter 2. We used a default criterion for the classification in CNN such that
the probability (p) > 0.5 is the criterion for classification; namely, Ellipticals
or Spirals with p > 0.5 will be classified as that type in Chapter 2. We then
change the criterion to p ≥ 0.8, namely, any types with p ≥ 0.8 are classified
as the predicted type, and if both types have p < 0.8 then that galaxy will be
classified as ‘Uncertain type’. With this criterion, we separate our testing data
into three different classes: Ellipticals, Spirals, and Uncertain. Furthermore,
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accuracy R01 Nclassifiable Nuncetain

dataset 2 (p ≥ 0.8) 0.974±0.004 0.973 912 88
dataset 4 (p ≥ 0.8) 0.974±0.003 0.973 927 73

Max (p ≥ 0.8) 0.987±0.001 0.99 958 42

Table 3.1: The average result of the classification success with the classification
criterion p > 0.8 through using CNN for dataset 2, dataset 4 (Table 2.2), and
the result of the maximum available number of training data in our study with
the combination input (iii) which includes both raw and HOG images. The total
number of testing galaxies is 1,000. The definition of accuracy (Equation 2.7)
and the meaning of R01 are same as in Table 2.4. Nclassifiable and Nuncertain are
the number of testing data which are classifiable (namely p ≥ 0.8) and uncertain
(probabilities of both types (p) < 0.8), respectively.

with the combination input (iii), the accuracy of classification increases to ∼0.97
(Table 3.1).

Secondly, increasing the number of training samples should intuitively improve
the performance; however, we investigate whether this assumption is correct. We
increase the number of our training samples by the rotated images, and keep the
balance between the number of both types of galaxies. The maximum balanced
number of the training data used in this study is 53,663 (S: 26,839; E: 26,824).

In Fig. 3.1, we observe that the increased rate of accuracy remains basically
positive, but this decreases as the number of training data increases. This shows
that there is likely a maximum accuracy limitation within the CNN method for
galaxy classification. This figure also shows that our combination input (iii)
(Table 2.2) has a better performance than the other two types of input data as
we increase the number of training data, and the combination input (iii) is the
only one which is able to reach over the accuracy of ∼0.97 without any condition.

Finally, we apply the maximum number of our training data (53,663) with the
combination input (iii) to do the training, and combine it with the classification
criterion p = 0.8. We then obtain a high accuracy of ∼0.987 in the morphological
classification of galaxies. The result is shown in the third row of Table 3.1.

3.3 Origin of Classification Failures

As shown in the above section, we are able to reach a high classification accu-
racy of ∼0.987 by using CNN with the maximum number of the training data
with a combination of input (iii) (Table 2.2), and the criterion of the probabil-
ity p ≥ 0.8. However, the < 100 percent accuracy indicates that there are a
few galaxies misclassified but with high predicted probabilities (p ≥ 0.8). On
the other hand, there are also a few galaxies (∼42 out of 1,000 testing galaxies)
which are non-classifiable (lower predicted probability p < 0.8 in both Ellipti-
cals and Spirals). Table 3.2 shows the fraction of the samples within a range of
probability (out of 1,000 testing galaxies), and the number of misclassification



3.3. Origin of Classification Failures 36

Figure 3.1: The accuracy versus the number of training data with different types
of input. Different colours show different types of input such that cyan, orange,
blue are for the raw images (i), the HOG images (ii), and the combination input
(iii), respectively. The lighter colour areas show the scatters of the standard
deviation calculated by the five reruns, and the lines inside shadings show the
average of the five reruns. The two dotted horizontal lines indicate the accuracy
of 0.95 and 0.97.



3.3. Origin of Classification Failures 37

probability sample fraction misclassification

p ≥ 0.8 0.958 0.0142
0.7 ≤ p < 0.8 0.0184 0.239
0.6 ≤ p < 0.7 0.0302 0.132
0.5 ≤ p < 0.6 0.0114 0.368

Table 3.2: The fraction of the samples out of 1000 testing galaxies, and the
fraction of misclassification within a certain probability range calculated by being
divided by the sample number. The results are the average of five reruns.

out of the galaxies within a probability range. It indicates that the classifications
with higher probabilities (p ≥ 0.8) are much less often misclassified. However, it
also shows that galaxies with the predicted probabilities between 0.7-0.8 have a
higher misclassified rate than the predicted probabilities between 0.6-0.7. This
means that there are some galaxies with relatively higher predicted probabilities
but which have different morphology labels compared with the GZ1.

In this section, we define two types of failures by our CNN. One is the mis-
classification that are galaxies which were classified with high probabilities with
CNN (p ≥ 0.8) but which later turned out to have a different classification in
Galaxy Zoo. The other type of ‘failed’ classification are those galaxies with low
predicted probabilities (p < 0.8 in both types) of being either elliptical or spiral.
We then investigate the origin of these ‘failures’ in this section.

3.3.1 The failure with high probability: the misclassifica-
tion of the classifiable galaxies

We rerun five times the best combination of our method (i.e. the CNN trained
by the maximum balanced number of training data and the combination input
(iii) (Table 2.2), and classified by the criterion p = 0.8), and we then collect all
the misclassification of the classifiable galaxies from these five reruns together,
obtaining 22 galaxies in total (Fig. 3.2). Misclassification in this sense is that
what we get from our CNN analysis differs from the Galaxy Zoo classification.
Most of these 22 galaxies are repeatedly misclassified between these five reruns,
in Fig. 3.2, objects 1-7 only show up once, objects 8-17 are repeated more than
twice, and objects 18-22 are repeatedly showing up in five reruns.

There are two main probable reasons for these misclassifications with a high
probability through our CNN method. One is that we use the galaxy images with
linear scale (including HOG images) on our CNN training, so in some cases, even
if it shows the feature of Spirals in logarithmic scale, it is just a point source,
a round object, or a large bright area in linear scale. Therefore, they prefer to
be classified as Ellipticals rather than Spirals in our CNN. This will be further
discussed in the section 3.3.3. The other reason for the differences is due to
the incorrect labels from the GZ1 which revealed because of a better imaging
data used in this study. We apply visual classifications which have over 80%
agreement between volunteer classifiers in the GZ1 catalogue in which we use to
label our data from the Dark Energy Survey (DES). When we compare the Sloan
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Digital Sky Survey (SDSS) imaging to the DES imaging, we can see some GZ1
classifications based on the SDSS data were simply wrong. Some examples are
shown in Fig. 3.3. Most of them are revealed to be misclassifications due to the
better resolution and deeper depth of the DES data than the SDSS data. With
higher resolution of the DES data, we reveal more detailed structure than the
SDSS data (e.g the number 4 and 8 in Fig. 3.3 which show clear spiral structures
in the DES data but nothing in the SDSS data). We will further discuss this in
Section 3.3.4.

On the other hand, we also discover that some galaxies with large, bright,
and oval structure are easy to misclassify using our method. These galaxies
are lenticular galaxies when examined on the DES imaging. The main reason
for their misclassifications is because there is not a class for lenticular galaxies
in the Galaxy Zoo 1 project. Lenticular galaxies are difficult to see by visual
classification and typically require high resolution and deep imaging, even for
nearby galaxies. Some of them are therefore classified as Spirals, and some of
them are recognised as Ellipticals in the GZ1 catalogue. The details will be
discussed in the next section (Section 3.3.2) as most of these galaxies generally
have lower predicted probabilities of being either elliptical or spiral.

3.3.2 The failures at low probability: Uncertain type

In this section, we investigate the galaxies with lower predicted probabilities
(p < 0.8) for classification as either elliptical or spiral in the five reruns of our
best method. The majority of the samples with lower probabilities are repeated
between five reruns, and some of them also show up in the previous section (Sec-
tion 3.3.1) which are misclassified but with high probabilities. The probabilities
of these galaxies vary significantly between each rerun.

The appearance of these galaxies can be separated into two types. One type
are the galaxies which look large, oval, and bright (Top 1-12 in Fig. 3.4), and
the other type are those which do not appear this way, e.g., galaxies which are
relatively fainter or with large bulge and spiral structure at the same time, or the
target galaxy is shifted significantly away from the centre of the image (Bottom
1-12 in Fig. 3.4).

The galaxies with large and oval structure are lenticular galaxies which we
discussed in the previous section (Section 3.3.1). As discussed there is not a
lenticular galaxy class in the GZ project, nor can these types be easily seen in
SDSS data, therefore, the classification of these galaxies in the GZ1 catalogue are
such that half of them are classified as Spirals, and half of them are classified as
Ellipticals. Because lentinculars are neither spirals or ellipticals, their structure
confuses our CNN such that it gives lower probabilities for these galaxies to be of
either type. This is a ’rediscovery’ of lenticulars, and shows the power of machine
learning for discovering new types of galaxies, as we did not expect this to occur.
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Figure 3.2: The misclassified galaxies with high probabilities (p ≥ 0.8) comparing
the classification of Galaxy Zoo 1 and our CNN. On the top of the images shows
the probabilities of being Ellipticals, E(0) and Spirals, S(1) by our CNN. The
line below the image shows the ID number of the galaxies in Dark Energy Survey
(DES), and the second row shows the classifications by Galaxy Zoo and our CNN.
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Figure 3.3: Examples of the incorrect label from GZ1 with SDSS imaging. The
figures under each number show the galaxy images of DES and SDSS, and their
ID numbers. The label of ‘CNN’ shows the predicted label from our method, and
which of ’GZ’ shows the label from the Galaxy Zoo 1 catalogue.
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Figure 3.4: Examples of the galaxies with low probabilities of classification as
either spiral or elliptical. Top 1-12: these objects are turned out to be lenticular
galaxies (S0) in cluster inspection. Bottom 1-12: the other types of galaxies.
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combination input(iii)
log image +log image

accuracy R01 accuracy R01

dataset 2 0.950±0.006 0.947 0.952±0.006 0.950
dataset 4 0.954±0.004 0.953 0.964±0.007 0.967
Maximum 0.973±0.002 0.970 0.971±0.005 0.973

Max (p ≥ 0.8) 0.987±0.004 0.987 0.987±0.003 0.987

Table 3.3: The comparison of the accuracy (Equation 2.7) and the recalls (Same
as Table 2.4) between the inputs of the log images and the combination of log
images and combination input (iii) by using the dataset 2, dataset 4 (Table 2.2),
and the maximum number of training data.

3.3.3 Combined with logarithmic scale images

According to the discussion in section 3.3.1, we investigate the impact on our
classification with CNN when using images with a logarithmic scale (hereafter,
log images) to train our CNN algorithm by using datasets 2 and 4 (Table 2.2). In
addition to the log images, we also combine the log images with our combination
input (iii) as the input to train our CNN. The comparison of the results are shown
in Table 3.3.

Comparing Table 3.3 with Table 2.4 shows a significant improvement when
using the log images, and the combination of the log images and our combina-
tion input (iii) shows a better accuracy than just using the log images as input.
However, comparing the row of ‘Max (p ≥ 0.8)’ Table 3.3 with Table 3.1 shows
that there are not significant differences in the performance when we train our
CNN through the maximum available number of the training data and apply a
classification threshold of p = 0.8. This means that there is an intrinsic limitation
of our method. This limitation can also be seen in Fig. 3.1 in Section 3.2.

We conclude that although adding the log images as input helps the perfor-
mance, it still has no apparent difference from our result when we apply the
maximum number of training data to our CNN.

3.3.4 The advantage of Dark Energy images and the mis-
classifications by Galaxy Zoo project

We have discussed the incorrect labels by Galaxy Zoo in previous sections. As
discussed, the main reason to reveal the misclassification by SDSS imaging Galaxy
Zoo is because of the better resolution (0.′′263 per pixel) and deeper depth of DES
data (i = 22.51) (Abbott et al., 2018).

These wrong labels not only influence the results of our CNN, but also contam-
inate the training set. Therefore, we remove the potential misclassified galaxies
from the training set. We purify our training set by excluding the suspected
misclassified galaxies then use the criteria shown in Table 3.4 to confirm or dis-
miss our suspected misclassifications. We then rerun our CNN classification five
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Criteria:
Confirmed (1) Appearing ≥ 4 times in total failures.

(2) Appearing at least once in the high-p failures.

Suspected (1) Appearing ≥ 2 but ≤ 4 times in total failures.
(2) Does not satisfy the criteria for ‘confirmed’.

Not misclassification (1) Appearing ≤ 1 time in the test of new models

Table 3.4: The criteria for selecting the suspected misclassified galaxies by the
Galaxy Zoo project and purifying the training set.

times on each new training set and obtain five new CNN models on the new
classifications. After carrying out this purification twice, and then retraining and
updating our list of suspects, we obtain two lists of these galaxies: one is the con-
firmed misclassified galaxies by the Galaxy Zoo, and the other are the suspected
misclassified galaxies.

The images of these systems are shown in Fig. 3.5 and Fig. 3.6. There are
∼ 2.5% misclassified galaxies in the Galaxy Zoo 1 catalogue out of 2,800 in our
study as revealed by using DES images and our CNN, and ∼ 0.56% are suspected
candidates in our study. We then correct our training set according to these two
lists. We change the label of the confirmed misclassified galaxies, and exclude the
suspected misclassified galaxies from the training set, then do the training with
the maximum available number which is 53,141 galaxies in total (E: 26,344; S:
26,797). We then change the label of the confirmed misclassified galaxies in the
testing set as well.

The results are shown in Table 3.5. The first row of Table 3.5 is the testing
result excluding 8 suspected misclassified galaxies out of 1,000 testing galaxies.
Comparing this result with the results in Table 3.1, our new models predict the
highest accuracy, and end up having a resulting fewer number of uncertain type
(about half the original number) than the previous results. Therefore, Fig. 3.7
shows the best testing result in our study. In this result, we change the label
of the confirmed misclassified galaxies and exclude the suspected misclassified
galaxies in testing set. We obtain the accuracy of 0.994 for the best model within
five reruns, and the average accuracy of five reruns is 0.991.

The second and third rows of Table 3.5 show the results including suspected
galaxies which retain the initial label from the Galaxy Zoo in test and change
the label of them to the opposite label, respectively. We have lower accuracy in
these two conditions than the result of the first row. This indicates that part of
our suspected galaxies have incorrect labels in Galaxy Zoo catalogue, and part of
them are not, based on our CNN. Some examples of the successful classifications
by the purified CNN training are shown in Fig. 3.8 and Fig. 3.9.
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Figure 3.5: The confirmed list of the misclassified galaxies in the Galaxy Zoo 1
catalogue. The first row underneath the images is the ID numbers of galaxies,
and the second row shows the classification by Galaxy Zoo (GZ) and our CNN
(CNN).
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Figure 3.6: The suspected list of the misclassified galaxies in the Galaxy Zoo 1
catalogue. The first row underneath the images is the ID numbers of galaxies,
and the second row shows the classification by Galaxy Zoo (GZ) and our CNN
(CNN).

accuracy R01 Nclassifiable Nuncetain

No suspected galaxies 0.991±0.003 0.990 976 16
with suspected galaxies 0.989±0.001 0.990 981 19

label changed 0.987±0.003 0.986 981 19

Table 3.5: The testing result after using the purified training set. The meaning of
each column are same as Table 3.1. There are 8 suspected misclassified galaxies
out of 1,000 testing galaxies. The first row is the testing result excluding suspected
galaxies. The second row shows the result with the suspected galaxies which
retain their initial labels from the Galaxy Zoo catalogue. The third row is the
result with the suspected galaxies but their initial labels changed – for instance,
the label changes to Elliptical if the initial label was Spiral.
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Figure 3.7: The best testing result which we changed the label of the confirmed
misclassified galaxies and excluded the suspected misclassified galaxies in both
training and testing set. Top: Confusion matrix. The ‘0’ means Ellipticals and ‘1’
represents Spirals. The colour bar shows the fraction of each true label (Galaxy
Zoo), and the number shows the corresponding number of the fraction. Bottom:
The ROC curve of this testing result.
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3.4 Conclusion

In this chapter, we further analyse the convolutional neural networks (CNN)
algorithm used in Chapter 2 and successfully improve the performance of our
CNN from an accuracy of ∼0.95 to ∼0.99 by investigating the impact of the
number of training data and the ‘classification failures’ by our CNN.

When using a classification criterion for the probability of the predicted type,
p > 0.8, we firstly increase the accuracy to ∼0.97 and we are able to separate
the classification into three types - Ellipticals, Spirals, and Uncertain. In the
final test of this part, when we apply the available maximum number of training
data to train our CNN, and classified our testing galaxies by the criterion p >
0.8, we reach a very high accuracy of ∼0.987 in the automated morphological
classification of Ellipticals and Spirals.

Furthermore, we investigate the probable reasons for the failures in a small
number of our classifications. We separate the failure into two situations - galax-
ies with high probabilities but still misclassified according to Galaxy Zoo, and
galaxies with lower probabilities of being either elliptical or spiral. Most of galax-
ies in these two situations are repeated between the five reruns we do; therefore,
these galaxies have some features in common which cause the difficulties within
our CNN algorithm.

We conclude that these ‘failures’ are not true failures of the CNN. First of all,
there is not a class for lenticular galaxy classification in the Galaxy Zoo catalogue,
therefore, the confusion of lenticular galaxies with various labels cause difficul-
ties to our CNN, resulting in low probability classifications for both ellipticals
and spirals. Secondly, the better resolution (0.′′263 per pixel) and deeper depth
(i =22.51) of the data from the Dark Energy Survey (DES) compared to the data
from the Sloan Digital Sky Survey (SDSS) reveals a more detailed structure of
our sample of galaxies. Ultimately, this reveals incorrect labels from the Galaxy
Zoo 1 (GZ1) catalogue, due to the lower resolution and shallower depth of that
data. As a result we find a few misclassifications by the Galaxy Zoo 1 project,
identified through our machine learning. We find that about 2.5% of the Ellipti-
cals and Spirals are mislabelled out of ∼ 2, 800 galaxies from Galaxy Zoo. After
correcting the labels of these confirmed misclassified galaxies by Galaxy Zoo, we
reach an average accuracy of over 0.99 (0.994 in the best result within five reruns,
Fig. 3.7) on the classification of Ellipticals and Spirals by our CNN.

In summary, the purpose of the studies in Chapter 2 and Chapter 3 is to
pick the most successful machine learning method through pixel input for future
usage in DES. With this method, we can quickly classify millions of galaxies
in the DES data using a pre-trained model. The most optimal method found
amongst the 10 methods used in Chapter 2 is convolutional neural network (CNN;
Section 2.3.7). With this result, in Chapter 4, we apply our CNN models trained
by corrected GZ1 labels of galaxies on DES data to build the largest morphological
catalogue ever with machine learning classifications. There is not a catalogue of
morphological classification of galaxies for DES yet. Therefore, this catalogue
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as a reference will be useful for a comparison or further investigation with other
studies.

On the other hand, we look forward to developing unsupervised machine learn-
ing techniques (UML) for galaxy classification using images (Chapter 5 and Chap-
ter 6). Supervised machine learning needs a certain amount of training data and
may be biased by the way labels are assigned and the composition of the train-
ing sets (Rosenfeld et al., 2018). On the contrary, UML has no need for (much)
pre-labelled data. This advantage saves time and effort for data preparation as
well as reduces the potential biases from humans and simulations. Therefore, it
will be interesting to explore the evolution of galaxies and galaxy morphologies
with UML (Chapter 6).



Chapter 4

The Largest Catalogue of Galaxy Morphological

Classification for the Dark Energy Survey Year

Three Data

This chapter is based on unpublished material by Ting-Yun Cheng, under the
supervision of Christopher J. Conselice, and Alfonso Aragón-Salamanca.
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Abstract

We present in this chapter one of the largest galaxy morphological classifica-
tion catalogue to date, including over 20 million galaxies, using the Dark Energy
Survey Year 3 data based on Convolutional Neural Networks (CNN). A binary
classification, ellipticals and Spirals, is provided with an analysis of the confi-
dence level of our predictions. Monochromatic i-band images with linear, log-
arithmic, and gradient scales, matched with debiased visual classifications from
the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. As stated
in Cheng et al. (2020a, Chapter 3), a correction is applied to the GZ1 labels
due to the better imaging quality of the DES data, which reveals more detailed
galaxy structures. Training with the corrected debiased GZ1 labels makes our
CNN classifier self-debiased and provides a more reliable morphological labels
to the galaxies that humans have difficulties classifying correctly. For example,
the CNN classifier correctly categorises disky galaxies with rounder and blurred
features while humans often incorrectly classify them as Ellipticals. The CNN
classifications show an accuracy of over 99% when comparing with the GZ1 classi-
fications. As a part of the validation, we carry out one of the largest examination
of non-parametric methods including ∼100,000 classifications with morpholog-
ical measurements from Tarsitano et al. (2018) using the most confident CNN
predictions in our study. We then reassure the robustness of the Gini coefficient
in discriminating Ellipticals and Spirals in this study. Given the largest num-
ber of galaxy morphology classifications to date, this catalogue will provide an
invaluable resource to DES and the galaxy evolution community.
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4.1 Introduction

Galaxy morphology is linked to the stellar populations of galaxies, providing
essential clues to their formation history and evolution. Hubble’s system (Hub-
ble, 1926) initially had two broad galaxy morphological type: early-type galaxies
(ETGs) and late type galaxies (LTGs), based on their appearance in optical light
(Section 1.3). These two broad categories connect galaxy morphology with a va-
riety of stellar and structural properties. For instance, ETGs are dominated by
older stellar populations and have no spiral structure, while LTGs usually contain
a younger stellar population and often have spiral arms. These differences in stel-
lar properties indicate that galaxies with different morphologies follow different
formation and evolution paths. Therefore, the availability of galaxy morphologies
for very large samples is of great importance when studying the formation and
evolution of galaxies.

Visual assessment is the main method of galaxy morphological classification
(e.g. de Vaucouleurs, 1959, 1964; Sandage, 1961; Fukugita et al., 2007; Nair and
Abraham, 2010; Baillard et al., 2011). However, individual visual classification
can be extremely time-consuming. Since around 2000 there has been a significant
growth in the size of imaging data sets and increasingly complex ones from e.g.,
the Hubble Space Telescope (also see Section 1.1). Due to this and the devel-
opment of computational capacity, non-parametric methods were developed such
as the CAS system (Concentration, Asymmetry, and Smoothness/Clumpiness),
the Gini coefficient, and the M20 parameter (Abraham et al., 2003; Conselice,
2003; Lotz et al., 2004; Law et al., 2007). There are good indications that these
parameters, which make no assumptions about the galaxy, are largely free from
subjective biases. However, even these computational methods become challeng-
ing to apply when the astronomical data become too large and we have to use
Big Data techniques and machine learning (Section 1.1).

Before this work, one of the largest galaxy morphological classification cata-
logue was built using the power of the citizen science - the Galaxy Zoo projects
(Lintott et al., 2008, 2011; Willett et al., 2013, see Section 1.1) and contains up
to ∼900,000 galaxies. In this study, we apply the convolutional neural networks
(CNN) investigated in Chapter 3 to predict binary galaxy morphological clas-
sification for the DES Year three GOLD data (hereafter, DES Y3 data). This
project allows us to build one of the largest catalogue of galaxy morphological
classification to date which includes ∼20 million resolved galaxies.

The arrangement for this chapter is as follows. The data sets are described in
Section 4.2, and we introduce the CNN used in this work in Section 4.3. Other
catalogues used for validating our CNN predictions are introduced in Section 4.4.
The content of our classification catalogue is presented in Section 4.5, while the
validation of the predictions are shown in Section 4.6. Finally, we summarise this
study in Section 4.7.
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4.2 Data Sets

The Dark Energy Survey (DES; DES Collaboration, 2005; DES Collaboration
et al., 2016), as mentioned in Section 2.2, is a wide-field optical imaging survey
covering 5000 square degrees (∼1/8 sky) which partially overlaps with the survey
area of the Sloan Digital Sky Survey (SDSS), but has a better imaging quality
than the SDSS images. The spatial sampling of the DES images is 0.′′263 per
pixel. These images are taken in natural seeing conditions and reach a depth of
22.51 AB magnitudes in the i-band (Abbott et al., 2018).

To create the galaxy stamps for this chapter, we follow the guideline shown in
Section 2.2.1 (see Section 4.2.1) to preprocess both the training set (Section 4.2.2)
and the DES Y3 data (Section 4.2.3).

4.2.1 Pre-processing

The data preparation we use closely follows the procedure described in Chapter 2.
There are two main parts of the data preparation: (1) stamp creation and (2)
image processing. Fig. 4.1 shows the pre-processing procedure used in this study.
Using the DES GOLD catalogues, we cut the original coadd images, which have
a size of 10000 by 10000 pixels, into many different ‘postage stamp’ images –
creating millions of galaxy stamps with sizes of 50 by 50 pixels (approximately
13′′× 13′′). When a galaxy size, as given in the DES catalogue, is larger than the
size threshold (30 by 30 pixels), a larger 200 by 200 pixel stamp is cut from the
images, and then re-sampled to produce a 50 by 50 pixel image by calculating the
mean value in 4 by 4 pixel blocks. This is done for a very small fraction of the
galaxy sample since over 99% of all DES galaxies are smaller than 25 by 25 pixels.
Additionally, when creating stamps for the training set, each image is rotated by
different angles to increase the number of training images (see Section 2.2.1.1 and
Section 4.2.2).

In the second step, we create two extra images which are both included in
training our CNN models. One is an image with gradient features that we ob-
tain by a feature extraction technique called the Histogram of Oriented Gradient
(HOG; Dalal and Triggs, 2005, see details in Section 2.2.1.3). The HOG, as a fea-
ture extractor, is a well-known technique within pattern recognition studies, e.g.
human detection, face recognition, and handwriting recognition (e.g., Dalal and
Triggs, 2005; Shu et al., 2011; Kamble and Hegadi, 2015, etc). In astronomy, it
has already been used in a few of studies such as spectral lines observation (Soler
et al., 2019), gravitational lensing detection (Avestruz et al., 2019a), and galaxy
morphological classification such as our previous work (Cheng et al., 2020a). The
key feature of HOG is to characterise the local appearance and the shape of ob-
jects based on local intensity gradients. We rescale the HOG output images so
that their pixel values are between 0 and 1 (hereafter, HOG images), and use
them as one of the inputs to train our CNN models.

In addition to the HOG images, the other input we use is the image itself with
a logarithmic scale (hereafter, log images). In Section 3.3.3, we tested the impact
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of using log images to train our CNN algorithms. It initially showed a clear
improvement compared with the results using linear images or HOG images only,
but decreased in its impact when the number of the training data increased to
the maximal available number in the work. To have as complete a set as possible
using different significant features in our images we decided to include the log
images with rescaled pixel values betwen 0 and 1 when training the final CNN
models for the task of catalogue construction.

4.2.2 Training Data

The training data used throughout are described in Chapter 3, which is the subset
of the first year DES GOLD data (DES Y1 data), the DES observation of SDSS
stripe 82, selected at magnitude i < 22.5 and redshift z < 0.7 (Drlica-Wagner
et al., 2018) and matched with the visual binary classifications from the Galaxy
Zoo 1 project (hereafter, GZ11; Lintott et al., 2008, 2011). Monochromatic i-
band images are used to select the optimal method for the task as described in
Chapter 2. In this work, the morphological classification catalogue is built based
upon monochromatic i-band images only, considering the cost in computational
time and memory on the enormous size of the DES Y3 data.

We directly used the visual classification provided in Lintott et al. (2011),
giving us 2,862 galaxies in total to train our machine. The magnitude range of
the overlap data goes from ∼12.5 to 18 in the i-band, and their redshifts are at
z ≤ 0.25 (peak at z ∼ 0.1). However, in Chapter 3, we found that the better
resolution and deeper depth of DES data reveal more detailed structures such
as spiral arms that did not show in the data used in GZ1 from the SDSS. This
condition resulted in a few mismatches between our CNN predictions and the
GZ1 labels.

Additionally, we note that the morphological flags provided in Lintott et al.
(2011), as clarified on the website of the GZ1 data release1, are constructed using
the bias correction flags based upon the Ellipticals/Spirals ratio (hereafter, E/S
ratio) after applying a vote fraction threshold of 0.8 when counting galaxies in
each type. Using this correction shows a worse bias than the one based on the
E/S ratio using the likelihoods directly (the ‘debiased votes’ provided in Lintott
et al. (2011)). In Chapter 3, some galaxies with less accurate morphological flags
after the bias correction from the GZ1 also showed a questionable label when
comparing with our CNN predictions. Therefore, through repeated tests of our
CNN and visual assessment, we corrected the labels for ∼ 2.5% of our sample
galaxies, and excluded ∼ 0.56% galaxies that have suspected labels according to
our test in Chapter 3. We then train our final CNN models with the corrected
GZ1 labels which better correspond to the ones based upon the ‘debiased votes’
in Lintott et al. (2011). Therefore, when comparing our CNN predictions with
the GZ1 classifications we use the ‘debiased votes’ in the GZ1 catalogue to deter-
mine the final morphology types for comparison purposes (See Section 4.4.1 and
Section 4.6.1).

1https://data.galaxyzoo.org/
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Selection Flags

EXTENDED CLASS COADD = 3
EXTENDED CLASS WAVG = 3
FLAG FOOTPRINT = 1
FLAG FOREGROUND = 0
bitand(FLAGS GOLD,120) = 0
bitand(FLAGS BADREGIONS,1) = 0

Table 4.1: The flags used to select data in the DES Y3 GOLD catalogue. The
first two flags guarantee that the astronomical objects which are the most likely
to be a galaxy are selected, and the last four flags indicate the data with a reliable
analysis from the SExtractor (Bertin and Arnouts, 1996).

The training set is prepared following the pipeline shown in Fig. 4.1. To prevent
from overfitting during the training process, important as considering we have a
limited amount of labelled data, an extra process of rotating images is performed
to increase the number of the training data. An extra amount of Gaussian noise
is also added, which is negligible towards causing any impact to the visual ap-
pearance and the structure of galaxies, but able to enhance a detectable change
of pixel values (Dieleman et al., 2015; Huertas-Company et al., 2015). Finally,
we retain the balance between the number of elliptical (E) and spiral galaxies (S)
in the training set; therefore, the rotational operation increases the number of
training data to 54,133 galaxy stamps with the ratio of number of types held to
E/S ∼ 1.

4.2.3 DES Year 3 Data

We build the catalogue of galaxy morphological classifications based on the DES
Year 3 (Y3) GOLD data that are selected with the flags shown in Table 4.1
and within a magnitude range 16 ≤ i ≤ 22. The top two flags guarantee that
astronomical objects selected using these flags are most likely to be galaxies, based
on the analysis from SExtractor (Bertin and Arnouts, 1996). The bottom
four flags are used to select the data with a reliable SExtractor analysis.
This selection provides over 50 million galaxies for the task, with the redshift
distribution of the selected data peak at z ∼ 0.4 with over 99.9% of the galaxies
at z ≤ 1.2. The galaxies in this catalogue have a wider range of magnitudes and
redshifts than those in the training set - the training set galaxies are, typically,
brighter and have lower redshifts. A subsample of about 670,000 galaxies have
magnitudes and redshifts in the ranges covered by the training set.

The selected data is separated into six magnitude bins from i = 16 to i = 22
for further analysis (Section 4.6). The number of galaxies in each magnitude bin
increases exponentially when going fainter. A pre-processing procedure described
in Section 4.2.1 is also applied to the selected data.
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4.3 Convolutional Nerual Networks (CNN)

Convolutional Neural Networks (CNN, Lecun et al., 1998) are a type of neural
network which includes convolutional layers used to extract strongly weighted fea-
tures from input images for a given classification problem (Section 2.3.7). CNNs
were first applied on galaxy morphological classification in Dieleman et al. (2015).
Since then, this technique is widely used in a variety of astronomical studies (see
in Section 1.2).

The architecture of the CNN used throughout this chapter is shown in Fig. 2.5.
This design is inspired by the best performing architecture used in Dieleman et al.
(2015), but with fewer convolutional layers and parameters. The dimension of
the inputs is 50×50×3, with the depth including the linear images, HOG images,
and log images. Three convolutional layers with filter sizes of 3, 3, 2, respectively,
are used in this study, and each of them is followed by a max-pooling layer with
a size of 2. The max-pooling layer is also referred to as a ‘downsampling’ layer,
which is used to reduce the spatial size and the numbers of parameters involved in
the architecture. After the third convolutional layer, two dense layers with 1,024
hidden units for each layer follow. In addition, dropouts (= 0.5) are applied
to reject irrelevant parameters and prevent overfitting in training the CNN. A
dropout follows the third convolutional layer (max-pooling layer), and the other
one comes after the two dense layers.

The activation function used in the convolutional layers and the dense layers is
the Rectified Linear Unit (ReLu; Nair and Hinton, 2010) such that f(z) = 0 if z <
0 while f(z) = z if z ≥ 0. Finally, the softmax funciton (Bishop, 2006), f (z) =
exp (z)/

∑
exp (zj) is applied to the output layer and provides the probability

distribution of each type. For the CNN training, we apply Adam Optimiser,
Nesterov momentum, and set momentum = 0.9 according to Dieleman et al.
(2015). The learning rate is set to 0.001, and the maximum number of iterations
is 500, with an early-stopping mechanism that triggers when the validation set
hits the local minimal loss.

A CNN has the technical advantage of not requiring the pre-processing pro-
cedure commonly used in artificial neural networks. However, in Chapter 2 and
Chapter 3, we have proven that combining pre-processed images such as HOG
images and log images qualitatively improves the performance of our CNN and
reaches a final accuracy of over 0.99. In this study, we independently train the
CNN five times with the same training set. After this, the final prediction is
obtained by averaging the predicted probabilities of these five independent CNN
models for each type, ‘Ellipticals’ and ‘Spirals’.

4.4 Catalogues for Cross-validation

Once we have the morphological predictions from the convolutional neural net-
work (CNN) for millions of galaxies, it is of great importance to validate the
reliability of these classifications. In this study, we compare our CNN predic-
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tions with three different resources: (1) the Galaxy Zoo 1 (GZ1) catalogue using
the galaxies that were not present in the training set (Section 4.4.1); (2) vi-
sual classifications carried out by TC, CC, and AAS2 (Section 4.4.2); and (3)
non-parametric methods using the structural measurements from Tarsitano et al.
(2018) (Section 4.4.3).

4.4.1 The Galaxy Zoo 1 catalogue (GZ1)

The Galaxy Zoo projects are amongst the most successful attempts using citi-
zen science to obtain large numbers of galaxy morphological classifications (Sec-
tion 1.1). A set of questions are asked to the volunteers for each galaxy image.
Based on the answers from the volunteers, the GZ1 statistically provides the mor-
phological classification of ∼ 900, 000 galaxies. Of these, ∼ 670, 000 galaxies with
spectroscopic redshifts have been bias corrected (Bamford et al., 2009).

In this study, we have three main pieces of classification information from
GZ1: raw votes, debiased votes, and morphological flags. The raw votes are the
likelihood calculated directly from the volunteers’ votes for each image. The
debiased votes and morphological flags are derived after applying bias corrections
based upon different assumed E/S ratios (see Lintott et al., 2011).

In GZ1, a correction factor is necessary to account for a classification bias that
depends on the apparent brightness and size of each galaxy. For example, when
viewing a spiral galaxy at higher redshift, its decreasing apparent brightness and
size makes it more difficult to appreciate morphological details such as spiral arms,
resulting in an increased likelihood of it being classified as an elliptical galaxy.
The corrections needed to account for this bias are calculated by assuming that
the morphological mix does not evolve significantly in the narrow redshift range
covered by GZ1 (Bamford et al., 2009). This assumption has been shown to be
a reasonable one (Conselice et al., 2005).

In order to perform this correction, GZ1 use two different values for the E/S
ratio, one to obtain the morphological flags and a different one to estimate the
debiased votes. The morphological flags provided by Lintott et al. (2011) are
determined using the E/S values that only take into account the classifications
with at least a 0.8 morphological vote fraction. On the other hand, the debiased
votes provided by GZ1 are based on E/S ratios that use the raw likelihood.

Our CNN model is trained with the corrected morphological flags based on
DES imaging data (details of this are given in Section 4.2.2). This correction was
performed in Chapter 3 and, when applied, it decreases the number of inaccurate
classifications. These classifications are claimed to be incorrect when compared
with the GZ1 labels due to both the better quality of the DES imaging data than
the SDSS images and the use of the bias correction in the ‘morphological flags’
from the GZ1 catalogue.

2TC: Ting-Yun Cheng; CC: Christopher Conselice; AAS; Alfonso Aragón-Salamanca
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labels primary votes combined votes

0 Ellipticals Ellipticals
1 Early Spirals Sprials
2 Late Spirals
3 Edge-on Spirals
4 Irregulars Irregulars
5 Unknown Unknown

Table 4.2: The classification system we applied in the visual classification carried
out by TC, CC and AAS2. Galaxies are classified into 6 categories (primary votes)
which are then merged into 4 categories, i.e. Ellipticals, Spirals, Irregulars, and
Unknown (combined votes; see text).

For the latter situation, the corrected morphological flags carried out in Chap-
ter 3 better corresponds to the results using the debiased votes. Therefore, we use
the GZ1 classifications based upon the debiased votes as the comparison match
with our CNN predictions.

In summary, in the training phase we use the morphological flags from GZ1 as
corrected in Chapter 3, and test the predictions of our CNN system using the
debiased votes from GZ1 (Section 4.6.1).

4.4.2 Visual classification of randomly selected subsam-
ples

Galaxy morphologies are needed for validation of the CNN predictions at all
magnitudes, but they are not available for faint galaxies (i > 18). Therefore,
visual classification (VIS) was carried out by the author (TC) and her supervisors
(AAS and CC) for a reasonably large number of galaxies. We randomly selected
500 galaxies per magnitude bin from the DES Y3 dataset for galaxies with 16 <
i < 22. For the brightest bins (16 < i < 18), only galaxies in GZ1 were included.
In doing so, we covered the whole magnitude range of the DES sample with a
significant overlap with GZ1 for cross-validation.

The classification system we use is displayed in Table 4.2. We classify galaxies
into six categories: Ellipticals (0), Early Spirals (1), Late Spirals (2), Edge-
on Spirals (3), Irregulars (4), and Unknown (5). To compare with our CNN
predictions, which is a binary classification system, we merge three subcategories
of spiral galaxies into one - Spirals (1), and others retain the original label. The
label with the most combined votes (Table 4.2) from our visual classifiers is set
as the final visual type of a galaxy. The combined vote is the morphological type
which is picked by at least 2 out of 3 of the classifiers. Those galaxies without a
dominant label are categorised into the class of ‘Unknown’; the relative fraction of
these ‘unknown’ types increases with magnitude. The distribution of each visual
type in each magnitude bin is shown in Fig. 4.2.

In order to validate the visual classifications (hereafter called VIS), we com-
pared the classifications of brighter galaxies (i < 18) with the GZ1 classifications
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based upon the debiased votes and raw votes (Fig. 4.3). The raw votes directly
reflect the votes from the volunteers of the GZ1. The debiased votes, as described
in Section 4.4.1, are bias corrected using the E/S ratio measured directly from
the raw likelihood. We apply a threshold of 0.8 to both votes to decide the
morphology type with a higher confidence.

In Fig. 4.3, our VIS classifications show apparently better agreement with the
raw votes from the GZ1 volunteers when comparing with the GZ1 debiased votes.
The majority of the mismatched cases when comparing with the labels based on
the debiased votes occur when a galaxy is classified as Elliptical by our visual
classifications. This indicates that our judgement for galaxy morphology is also
biased by the size, magnitude, and redshift of the galaxies. This gets worse when
a galaxy is fainter which is shown in Fig. 4.2. It is clear that significantly more
galaxies are visually classified as ellipticals.

Although our visual classification suffers from the same type of biases as GZ1,
unfortunately we cannot perform a bias correction similar to the one they carried
out. There are several reasons for this. First, the broader redshift range of
our sample makes the assumption of unevolving morphological mix unreliable.
Second, number of galaxies we have been able to classify is too small to provide
reliable correction statistics. And third, the lack of spectroscopic redshifts would
render any redshift-dependent correction highly uncertain. Therefore, additional
factors such as Sérsic index (Sérsic, 1963, 1968) and colour will be considered to
validate the CNN predictions (Section 4.6.2).

4.4.3 DES Y1 catalogue of morphological measurements

To obtain a reliable analysis of the quality of our CNN labels, in addition to
using visual classifications, parametric factors such as the Sérsic index and non-
parametric coefficients such as CAS system (Concentration, Asymmetry, and
Smoothness/Clumpiness), Gini coefficient, and M20 are used in this study. Tar-
sitano et al. (2018) included 45 million objects selected from the first year DES
data, and provided the largest structural catalogue to date for galaxies. The se-
lected samples from this catalog cover the magnitude range of i ≤ 23. According
to the suggestions from the paper, we apply an initial cut as follow,

• MAG AUTO I ≤ 21.5

• SN I > 30

• SG > 0.005,

where MAG AUTO I represents the cut in i-band apparent magnitude and SN I
is the signal-to-noise ratio in the i-band. The SG is used for optimising the sep-
aration between stars and galaxies while maintaining the completeness. The cut
(SG > 0.005) recommended in Tarsitano et al. (2018) is the optimal compromise
between the completeness and purity of the galaxy sample. These selections pro-
vides 12 million galaxies with 90% completeness in Sérsic measurements and 99%
completeness in non-parametric measurements in the i-band.
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Figure 4.3: The confusion matrices between our visual classifications (VIS) and
the GZ1 classifications based on the debiased votes (first column) and raw votes
(second column) (Lintott et al., 2011). A threshold of 0.8 is applied to both votes
here to select high confidence classifications. Rows are separated by different
magnitude bins: 16 ≤ i < 17 (first row) and 17 ≤ i < 18 (second row).
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The parameters provided from the single Sérsic fits (e.g. Sérsic index, ellipticity,
etc) are measured with Galfit (Peng et al., 2010). We then apply a further cut
suggested in Tarsitano et al. (2018) to select the galaxies that are successfully
validated and calibrated. The calibration is made based upon four parameters:
size, magnitude, Sérsic index, and ellipticity using simulated galaxies generated
with these parameters (Tarsitano et al., 2018):

• FIT STATUS I = 1

On the other hand, the non-parametric parameters (CAS parameters, Gini, and
M20) are measured using the Zurich Estimator of Sturctural Types (ZEST+)
(Scarlata et al., 2007a,b). The calibration is applied with the same procedure
as the parameter fit but uses concentration instead of Sérsic index for non-
parameteric parameters, and the validation is discussed on the Gini-M20 plane as
a function of other morphological measurement such as concentration (C), asym-
metry (A), and clumpiness (S) (Tarsitano et al., 2018). One criterion is applied in
non-parametric coefficients to select the objects with successfully validated and
calibrated measurements.

• FIT STATUS NP I = 1

4.5 Galaxy Morphological Classification Cata-

logue

In this chapter, with the convolutional neural network (CNN) trained with the
subset of the DES Y1 data with the GZ1 labels corrected in Chapter 3 (Sec-
tion 4.2.2), we provide one of the largest catalogue to date with galaxy morpho-
logical classifications for over 20 million galaxies from the DES Y3 data (Sec-
tion 4.2.3). The items provided in our catalogue of morphological types are listed
in Table 4.3. The average predicted probabilities from the five individual CNN
models (Section 4.3) are used as the final probabilities of being Ellipticals (pE)
and Spirals (pS). With the predicted probabilities of both types, we provide the
classification label based on a threshold of 0.8 (MORPH FLAG) for the user’s
convenience. The analysis shown in Section 4.6 uses this most probable morpho-
logical label.

Machine learning is sensitive to image qualities such as the signal-to-noise ra-
tios and resolution, but have a certain level of tolerance for variations within these
effects (Dodge and Karam, 2016). The apparent magnitude of a galaxy, which is
influenced by the redshift, affects the signal-to-noise ratio of the galaxy observed
in the image, which can affect how easily structure can be seen. Additionally,
due to the effects of distance, a galaxy at a higher redshift shows less detailed
structure, namely the resolution of the galaxy images decreases. Therefore, we
statistically investigate the confidence of our CNN predictions at fainter magni-
tudes and higher redshifts by comparing the quality of our morphologies with our
visual assessments, structural measurements such as the Sérsic profile, and galaxy
properties such as colour. The detailed discussion of this is in Section 4.6.2 and
Section 4.6.3. Based on the analysis in Section 4.6.3, we provide a confidence flag
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Col. Keyword Description

1 DES Y3A1 ID DES Y3 ID
2 RA right ascension
3 DEC declination
4 pE probability of being Ellipticals
5 pS probability of being Spirals
6 MORPH FLAG CNN predictions with a

threshold of 0.8
7 MAG I i-band magnitude.

(MAG AUTO I)
8 MAGERR I i-band magnitude error.

(MAGERR AUTO I)
9 ZMEAN photometric redshift.

(DNF ZMEAN MOF)
10 ZSIGMA redshift uncertainty.

(DNF ZSIGMA MOF)
11 confidence flag confidence level of predictions

Table 4.3: Content of the catalogue published with this work. Columns 7 to 10
are quantities which are taken directly from the DES Y3 GOLD catalogue, and
the corresponding column names are highlighted and placed within brackets in
the description.

(column 11 in Table 4.3) which can be used to select CNN classifications with
different confidence levels depending on the science goal. The confidence labels
used for this flag are shown in Table 4.4.

We give a short description of these confidence flags here. We categorise our
CNN predictions into six confidence levels (Table 4.4). The ‘superior confidence’
level are the classifications using the data with the same magnitude and redshift
ranges as the training set, and the detailed analysis is shown in Section 4.6.1.
Other confidence levels are defined based upon the distribution of colour, g−i, and
Sérsic index for galaxies in a specific region of magnitude and redshift. A detailed
discussion is given in Section 4.6.3. We recognise the distribution of galaxies with
the ‘superior confidence’ as the reference. Samples with the ‘high confidence’
show a clear separation in colour and Sérsic index as well as a reasonable peak in
both distributions. The ‘confidence’ label indicates a slightly worse distribution,
e.g., a broader distribution in Sérsic index, etc, compared with the reference.
The ‘less confidence’ label is assigned when at least two significant differences in
distributions compared with the reference are recognised. The ‘*’ label shown in
Table 4.4 is there to represent that only the classifications of Spirals are good
within the assigned confidence level, and the rest are labelled as ‘no confidence’.
Finally, the ‘no confidence’ is for galaxies with a messy distribution, e.g., bimodal
distribution, within a specific range of colour and redshift.

Overall, over 20 million CNN classifications with an assigned confidence level
are included in our final catalogue; of which, ∼670,000 galaxies have a ‘superior
confidence’, ∼5 millions of galaxies are assigned as a ‘high confidence’ classifica-
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labels representation

4 superior confidence
3 high confidence
2 confidence
1 less confidence
1* less confidence (for Spirals only)
0 no confidence

Table 4.4: Content of the confidence flag (column 11) shown in Table 4.3. The
’superior confidence’ flag is for classifications within the same magnitude and
redshift ranges as the training set. The details of other levels are described in
Section 4.6.3.

tion, and ∼7 million galaxies have a ‘confidence’ label. Finally, in columns 7-10 in
Table 4.3 we provide magnitude and redshift information directly from the DES
Y3 GOLD catalogue to allow customised magnitude/redshift cut when applying
our predictions.

4.6 Validation & Discussion

In this section, we carry out the cross-validation of our CNN predictions using
multiple sources. Included among this, we also discuss the confidence levels as-
signed to the predictions and the uses of this catalogue with these confidence
levels. That is, we explain how to use our catalog for determining galaxy mor-
phologies.

4.6.1 Galaxy Zoo 1 catalogue (GZ1)

To validate our CNN predictions, first we compared the CNN classifications with
the GZ1 labels based upon the debiased votes (Section 4.4.1). The distribution of
the DES Y3 data for this test is in the same magnitude and redshift range as the
training set (Section 4.2.2) as shown in Fig. 4.4. Note that there are significantly
fewer faint galaxies at i < 17.3 in our sample with overlapping GZ1 classifications.
Therefore, a cut of i = 17.3 is applied when carrying out this analysis in this
subsection. We then discuss the performance of the CNN predictions below and
above this magnitude limit in later sections.

First, in Fig. 4.5, we show the change in accuracy when applying different likeli-
hood thresholds to the GZ1 debiased votes. The first two columns are separated
by the magnitude cut i = 17.3, and the third column contains all overlapping
data between GZ1 and DES Y3 data used in this work. The accuracy of the
training set is represented by the black lines. One applies a probability threshold
of p = 0.5 to our CNN predictions (dashed line), the other applies a threshold
of p = 0.8 (solid line). The comparison of the results using different likelihood
threshold at various GZ1 debiased votes are shown by the blue lines. The line
styles reflect the same meaning as the black lines. Meanwhile, the second y-axis is
used for the shading bars which show the number of galaxies under the likelihood
threshold.
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Figure 4.4: The magnitude and redshift distribution of the DES Y3 data with the
same coverage as the training set (Section 4.2.2). The gray and yellow shading
represents the DES Y3 data without and with a cut at i = 17.3, respectively.
The solid lines show the overlap region with the GZ1 catalogue, excluding the
training set, while the dashed lines show only the training set.

The GZ1 label, after this correction made in Chapter 3, is used for the training
set. This mostly corresponds to using the debiased votes with a threshold of 0.8.
Using this, we note that the accuracy of our CNN predictions compared with the
GZ1 classifications based upon a debiased likelihood threshold of 0.8 shows a good
consistency with the accuracy of the training set (the first column in Fig. 4.5). In
the second column (17.3 ≤ i < 18), the CNN show a slightly better performance
than the brighter range (16 ≤ i < 17.3) and training set. However, the scatter
for the CNN predictions are larger because there are significantly fewer samples
in the second plot. When taking the scatter into account, the performance of
our CNN predictions in this magnitude range also shows a good consistency with
the training set. Therefore, based upon Fig. 4.5, we interpret that there is a
‘superior confidence’ level to the CNN predictions within the brighter magnitude
range 16 ≤ i < 18 and redshift range z < 0.25. Additionally, in later analysis,
we apply a likelihood threshold of 0.8 to the GZ1 debiased votes to determine
the GZ1 classifications for comparison, as well as a probability threshold of 0.8
to our CNN predictions to reject samples with low predicted probabilities from
the CNN model.

In the first three column of Fig. 4.6, we show confusion matrices within a
certain magnitude range as listed above the graph. The x-axis indicates the CNN
predictions, while the y-axis shows the GZ1 classifications. In this study, we work
on binary classification, namely, Ellipticals (E) and Spirals (S). The numbers at
the bottom of the confusion matrices show the number of galaxies within the
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ranges in each column. For the first three plots, we exclude the training set, and
compare the performance with the training set in the last column. In this figure,
we notice that the two labels (GZ1 and CNN) match well, and the majority of
mismatches occur in the case where the CNN classification is Spiral, but the
debiased GZ1 classification disagrees. Fig. 4.7 showcases the galaxies which are
classified as Spirals by the CNN but Ellipticals by the GZ1. Some galaxies in this
category show disky structures (e.g. [1], [3], [5], [15]) or asymmetric features (e.g.
[8] and [9]) in the DES imaging data. In Chapter 3, we proved that the higher
quality DES imaging data reveals detailed structures that were not detected in
the data from SDSS. This condition is responsible for a significant fraction of the
mismatched classifications in Fig. 4.7.

Ideally, we would have liked to examine the Sérsic index distribution of these
mismatched galaxies to determine whether these misclassified galaxies have par-
ticular structural properties. However, in this case, there are fewer than three
overlapping galaxies with mismatched labels in Tarsitano et al. (2018). Therefore
the mismatched test sample is far too small for any statistically meaningful anal-
ysis. Therefore, we leave this additional cross-validation to future work, when
more structural measurements are measured for the DES Y3 data. We note that,
although we cannot carry out this additional test, we are confident of the excel-
lent performance of our CNN predictions within the magnitude and redshift range
covered by the GZ1 training set. Based on the discussions above and, in particu-
lar, the confusion matrices shown in Fig. 4.6, we conclude that in this magnitude
and redshift range, which includes ∼ 670, 000 galaxies, our CNN classifier has an
accuracy of over 99%.

The last column in Fig. 4.6 shows a Receiver Operating Characteristic curve
(ROC curve, Fawcett, 2006; Powers, 2011) which is used to examine the perfor-
mance of our machine learning technique by comparing the probabilities predicted
by the machine with the true labels (see details in Section 2.4.1). Another im-
portant indicator on the ROC curve is the ‘area under the curve’, AUC, which
shows a better performance of a machine learning model when having a larger
value. From the ROC curve, the CNN predictions within the coverage of the
training sets in magnitude (16 ≤ i < 18) and redshift (z < 0.25) show a per-
fect consistence with the results of the training set. This result doubly confirms
our confidence on these predictions. Therefore, the CNN predictions within this
range are labelled as ‘superior confidence (4)’ in the confidence flag (Table 4.4)
in the catalogue, Table 4.3.

4.6.2 Visual classification

To allow us to test the quality of the CNN classifications of fainter galaxies, we
carried out a visual classification of 500 randomly picked galaxies in each mag-
nitude bin with an interval of 1 magnitude using the DES imaging data. The
first five columns in Fig. 4.8 show the confusion matrices in each magnitude
range, and the ROC curve is shown on the last column. The performance qual-
ity of our CNN method drops with magnitude when comparing with the visual
classifications. Through the confusion matrices, we notice that the majority of
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Figure 4.7: Examples of galaxies that our CNN classified as Spirals while the
GZ1 labelled as Ellipticals. The predicted probability of being Spirals from the
CNN is shown above each stamp (pS).



4.6. Validation & Discussion 72

mismatches happened in the cases where our CNN method classified a galaxy as
a spiral galaxy but we visually classified it as an elliptical galaxy. This situation
is caused by the fact that our CNN is trained with the corrected debiased GZ1
classifications (Section 4.4.1); however, the visual classification used here is a raw
classification. In Section 4.4.2, we pointed out that our visual classifications suffer
from a similar classification bias compared with the raw GZ1 classifications which
are influenced by the magnitude, size, and redshift of the targets. Therefore, in
Fig. 4.9, we combine the Sérsic index and colour of each galaxy to cross-validate
our results. The colour information is from the DES Y3 GOLD catalogue, and the
Sérsic index is from the DES Y1 morphological measurements (Tarsitano et al.,
2018) selected based upon the suggested flags (described in Section 4.4.3). Due
to the applied cut in magnitude up to i = 21.5 used in Tarsitano et al. (2018),
the last column in Fig. 4.9 only shows galaxies within the magnitude range of
21 ≤ i ≤ 21.5.

In Fig. 4.9, the central contour shows the density distribution of the Sérsic
index and the (g-i) colour at each magnitude. The histograms at the top and
the right show their respective normalised frequency distribution. The bottom
and left histograms show the misclassified samples colour-labelled by the visual
classifications. From this figure, it is clear that the majority of misclassified
galaxies labelled as Ellipticals by our visual assessment are in fact diskier and
bluer. Since our CNN is self-debiased by training with the corrected debiased
GZ1 labels, it shows a more sensible classification of the images than humans
have difficulty to classify correctly. That is, our CNN classifications are more
likley to be correct than the visually based ones.

We remind the reader that our CNN classifier is trained with monochromatic
i-band images, without any colour information. Therefore, the strong colour
segregation between CNN-classified Ellipticals and Spirals is reassuring: the con-
nection between CNN morphology and colour is independent, and not based on
the training process – colour and galaxy morphology are linked through galaxy
formation and evolution processes, and are not strongly the result of classification
biases.

For the faintest magnitude range in our study (i ≥ 21), the ‘self bias correc-
tion’ of our CNN classifier is over applied due to the very low signal-to-noise
ratio compared with the training set. This overdone bias correction gives us an
artificially low number of ellipticals classified by the CNN. The ratio of the CNN-
classified ellipticals to Spirals in this magnitude range is ∼0.00006. This is shown
in both the confusion matrix and the colour-Sérsic diagram: no visually classi-
fiable ellipticals is picked out by our CNN classifier (Fig. 4.8), and there is not
a clear separation between ellipticals and Spirals in the Sérsic index distribution
(Fig. 4.9). Interestingly, even though the CNN-classified ellipticals are rare and
do not have the expected Sérsic index distribution, we still find a fairly good
separation in their colour distribution. This indicates that the CNN-classified
ellipticals with 21 ≤ i ≤ 21.5 share some similarities among themselves. There-
fore, this particular class of galaxies might have a different formation history from
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other ellipticals, resulting in a relatively disky structure but redder colours. It
would be interesting to test this hypothesis with multicolour data in the future.

Nonetheless, we exclude the CNN classifications in this magnitude range (i ≥
21) from our final catalogue due to the strong imbalance of the CNN classifications
between the two types and the poor division in the colour-Sérsic diagram.

4.6.3 Confidence level scheme

In order to make our catalogue more accessible and easier to use reliably, we
statistically assess the confidence given to our CNN classifications for each mag-
nitude and redshift range. The confidence scheme is shown in Table 4.4. From
the discussion in Section 4.6.1, our higher confidence class, ‘superior confidence’,
is assigned to the CNN classifications for galaxies with 16 ≤ i < 18 and z < 0.25.

For galaxies with 18 ≤ i < 21, we carry out further statistical analyses by sub-
dividing the galaxies in each magnitude bin into 0.25-wide redshift bins. Galaxies
are excluded from the catalogue if the number of galaxies with a given morphology
type falls below 30 in a given bin since we do not have the necessary statistics to
assess their reliability. The excluded galaxies are generally at the highest redshifts
in their magnitude bins.

Each row in Fig. 4.10 shows the diagrams within a given magnitude range,
while each column presents them in a different redshift bin. We use the ‘superior
confidence’ classifications, top-left diagram, as reference to assess the confidence
level of other ranges. To be qualified as ‘high confidence’, the CNN predicted
classifications need to follow a similar distribution to the reference sample in
both Sérsic index and colour. Specifically, (1) a clear distinction needs to appear
in both quantities between the two galaxy types; (2) the peaks of the distributions
needs to be located at reasonable locations for both morphologies (e.g., the Sersic
index distributions should peak close to ∼ 1 for spirals and ∼ 4 for ellipticals);
and (3) no unusual features should be apparent in any of the distributions (e.g.,
no bimodal or messy distributions). With these criteria, a confidence level will be
allocated to our CNN classifications for galaxies in each specific bin, as discussed
below within the various magnitude bins.

4.6.3.1 Magnitude bins: 16 ≤ i < 18

In Section 4.6.1, we established the excellent performance of our CNN predictions
for galaxies in the same magnitude and redshift ranges as the training set (16 ≤
i < 18 and z < 0.25). On the first column of the first row in Fig. 4.10, we
show this robust conclusion again using a parametric morphology indicator, the
Sérsic index, and a generic galaxy property – its colour. The distributions of both
quantities in this range are used as reference to determine the confidence level of
other ranges.

First, we extend this examination to higher redshift but remain within the same
magnitude range (second column at the first row in Fig. 4.10). A clear distinction
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Figure 4.10: The colour-Sérsic diagrams of different redshift bins for each magni-
tude ranges. The histograms at the top and the right of each diagram show the
normalised frequency distribution of Sérsic index and colour g − i, respectively.
The red shading represents the ellipticals classified by our CNN, while the blue
shading shows the CNN-classified Spirals. The magnitude range is shown at the
left of each row while the redshift range is presented above each graph. The tex-
tual information in the diagrams shows the number of ellipticals (E) and spirals
(S) classified by our CNN and with the DES Y1 morphological measurements
from Tarsitano et al. (2018).
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between two CNN predicted types in the Sérsic index distribution can be seen
within this redshift range, 0.25 ≤ i < 0.5, and the peaks of both types are located
in a sensible region. However, the CNN-classified spirals have a broader distribu-
tion compared with the reference sample; additionally, their colour distribution
shows overlap with the CNN-classified ellipticals. This suggests two possibilities:
(1) our CNN classifier is being less accurate within this range, and/or (2) there
are a fair number of galaxies with the features of spirals but red in colour, par-
ticularly within g − i. Overall, we label the CNN predictions within this range
as ‘less confidence’.

4.6.3.2 Magnitude bins: 18 ≤ i < 19

In the magnitude range 18 ≤ i < 19, we have three redshift bins which include
more than 30 galaxies with morphological measurements within each type: z <
0.25, 0.25 ≤ z < 0.5, and 0.5 ≤ z < 0.75. In the first plot, we notice a good
differentiation between the features of ellipticals and spirals, which is reasonably
consistent with the reference. Therefore, we label the predictions of this range as
‘high confidence’.

The second diagram (0.25 ≤ z < 0.5) shows similar features to the plot in
the same column on the first row; however, it has a cleaner distribution in Sérsic
index for CNN-classified spirals as well as a distinguishable separation in the
colour distribution. Hence, we recognise the CNN classified labels in this range
as ‘confidence’, indicating a slightly better performance than the ones within
16 ≤ i < 18 and 0.25 ≤ z < 0.5.

Finally, although the CNN-classified ellipticals show a representative Sérsic
index distribution, the colour distribution has a clearly bimodal structure. Ad-
ditionally, there is no sharp separation between ellipticals and spirals within the
colour distribution. We thus label the classifications in this range as ‘no confi-
dence’.

4.6.3.3 Magnitude bins: 19 ≤ i < 20

In this fainter magnitude range, we observe an interesting result: a good confi-
dence for our CNN predictions is found in the two higher redshifts bins, 0.25 ≤
z < 0.5 and 0.5 ≤ z < 0.75, than in the lower one. In these ranges, the distribu-
tion of galaxy properties are clearly separated for the different morphologies, and
the peaks of the distributions are also reasonable. We therefore give the mor-
phological classifications for galaxies in these redshift ranges a ‘high confidence’
label.

The low redshift interval (z < 0.25; first column) shows a worse performance.
We find a flat Sérsic index distribution for the CNN-classified ellipticals which
peaks at roughly n ∼ 2. Additionally, although there is a separation in the
colour distribution between the two types, the CNN-classified ellipticals show a
clearly bimodal colour distribution which partially overlaps with the one of the
CNN-classified spirals. Although the performance for ellipticals in this redshift
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range is clearly worse, the behaviour for spirals is significantly better: there is a
fairly good discrimination in both the Sérsic index and the colour distributions.
This means that in this redshift range, our CNN-classified spiral sample has a
high purity but not a high completeness. We therefore label the classifications
made in this range as ‘less confidence’ but with a ‘*’ mark (Table 4.4). The ‘*’
indicates that this confidence level is only defined for CNN-classified spirals, and
the classified ellipticals are labelled as ‘no confidence’. Clearly this sample cannot
be used to find all spirals, but we do have some confidence in the morphologies
for the ones it does classify.

It seems counter-intuitive that a better performance is found for higher redshift
galaxies than for lower redshift ones at these faint magnitudes. However, the
reason is that the fainter galaxies in the training set tend to be at higher redshifts.
Therefore, there is a somewhat better overlap in the properties of faint higher
redshift galaxies than there is for faint lower-redshift ones between the general
DES Y3 sample and the training set.

Finally, for this magnitude range we give a ‘no confidence’ label to the highest
redshift range (0.75 ≤ z < 1.0). This is due to the messy galaxy property distri-
butions reflected in the bimodal colour distributions for both morphological types,
a significantly higher Sérsic index than expected for the CNN-classified ellipticals,
and a relatively low Sérsic index for the CNN-classified spirals. Interestingly, de-
spite the relatively anomalous Sérsic index, a fairly sharp differentiation between
both types is shown in the Sérsic index distributions. For the CNN-classified
ellipticals, it suggests a class of red galaxies which has a higher concentration and
a more peaked surface brightness distribution than expected. This is an interest-
ing conclusion from our CNN classification analysis that deserves to be explored
further in future work.

4.6.3.4 Magnitude bins: 20 ≤ i < 21

As we get to fainter magnitudes using our CNN methodology to classify galax-
ies becomes more of a challenge. From Fig. 4.8, we notice that there are also
significantly fewer galaxies classified as ellipticals by our CNN, such that the
CNN-classified E/S ratio is ∼0.003 in this range, while the ones in other brighter
ranges have a ratio over 0.1. This indicates that the bias self-correction by our
CNN classifier is overdone in this range compared to the brighter ranges. How-
ever, unlike the result shown in the range 21 ≤ i ≤ 21.5 in Fig. 4.9, a better and
clearer separation between both types in Sérsic index and colour is presented.
Hence, we carry out a further investigation within different redshift bins for this
range.

In the first plot on the bottom row in Fig. 4.10, the distributions of CNN-
classified spirals are fairly reasonable. However, a bimodal distribution and in-
correct peak assignment of the Sérsic index occurs within the CNN-classified
ellipticals. Therefore, we decided to assign a class of ‘less confidence’ with * for
this range, where * means this confidence label is for the Spirals (no confidence
to the classification of Ellipticals).
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The second plot for this magnitude range in Fig. 4.10 shows a good separation
between the two types of galaxies in Sérsic index and colour space. Although
a strong imbalance in the number of ellipticals and spirals still exists here, the
differentiation in two types proves a certain degree of confidence to our CNN
predictions. Hence, we label the predictions in this range as ‘confidence’. The
reason for this good separation in this significantly fainter magnitude range is also
due to the effect discussed in Section 4.6.3.3 that the galaxies in this magnitude
(20 ≤ i < 21) and redshift (0.25 ≤ z < 0.5) range have similar galaxy features
and galaxy properties to the reference samples. The shift in magnitude for these
galaxies is due to the change in redshifts.

This situation is also demonstrated within the third plot of Fig. 4.10 (20 ≤ i <
21 and 0.5 ≤ z < 0.75) whereby both types are distinguished in Sérsic index and
colour distributions. However, CNN-classified spirals have a relatively flat colour
distribution, preventing a clear separation. Hence, a class of ‘less confidence’
is assigned to this range. Finally, the last diagram shows a messy distribution.
Therefore, we simply label this range as a ‘no confidence’ class.

4.6.4 Non-parametric methods and galaxy properties

Another examination is carried out using non-parametric methods such as the
CAS system (Concentration, Asymmetry, and Smoothness/Clumpiness), Gini co-
efficient, and M20. In this study, the non-parametric measurements are from
Tarsitano et al. (2018) using the i-band images, and we use the measurements
after applying the selection criteria described in Section 4.4.3.

Furthermore, this validation can work in both directions. We can use the non-
parametric measurements to check the robustness of our CNN-based morpholog-
ical classifications, while also use out most reliable morphological classifications
(those with ‘superior confidence’) to assess the ability of non-parametric meth-
ods to separate the ellipticals and the spirals (Fig. 4.11). Such an analysis of
non-parametric measurements as proxies for morphology has never before been
carried out with samples as large as ours. In this work we include over 100,000
galaxies in the ‘superior confidence’ category from our DES Y1 morphological
classifications.

In Fig. 4.11, we show the pair plots of six different parameters: concentration
(C), asymmetry (A), clumpiness (S), Gini, M20, and Sérsic index. For the A, S
parameters, we only showcase the data with values smaller than 0.2 to focus on
‘typical galaxies’. The Sérsic index is used as a comparison to the non-parametric
methods, and it is one of the main features used to define the confidence level
(Section 4.6.3). It shows a clear separation between the two morphological types
here. In addition to this, we note that only the Gini coefficient shows a consis-
tently distinguished difference between the two types in the histogram.

The Gini coefficient (G) reflects the inequality of the flux distributed among
the pixels of a given galaxy; if G = 1, the light is concentrated in one pixel,
conversely, G = 0 means that the light is uniformly distributed to every pixel.
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Therefore, the Gini coefficient is somewhat analogous to the concept of concen-
tration, and ellipticals generally have a higher value than spirals. Nevertheless,
the concentration does not show a separation as good as the one for the Gini
coefficient. A slight shift between the peaks of the two morphological types is
shown in the histogram of the concentration; however, a large overlapping area is
also shown. Additionally, the difference of the mean concentration values between
both types is relatively small compared with previous studies (Conselice, 2003;
Hernández-Toledo et al., 2008; Hambleton et al., 2011). On the other hand, both
asymmetry and clumpiness also fail to show a consistent distinction between the
two morphological types in our analysis.

Finally, the M20 histogram does not show a clear separation between the two
morphological types neither. However, a clean separation shows in the contour
of the Gini coefficient and M20. The black dashed line indicates a cut used to
separate Ellipticals and Spirals and described in Lotz et al. (2008) such that

G = 0.14M20 + 0.8. (4.1)

Thus we find that the Gini coefficient is a possible better tracer of the overall
structure of a galaxy than any other non-parametric morphological quantities
such as C, A, S, and M20 (Zamojski et al., 2007) when separating ellipticals from
spirals.

4.7 Conclusion

We present in this chapter one of the largest galaxy morphological classification
catalogue produced to date, using the Dark Energy Survey (DES) Y3 data with
over 20 million galaxies. We carry out these classifications using convolutional
neural networks (CNN) trained with the subset of a DES Y1 data. The corrected
debiased labels, which are initially from the Galaxy Zoo 1 (GZ1) catalogue and
corrected in Chapter 3, are used to label our training set (Section 4.2.2). With a
combination of three different types of input, including: linear images, log images,
and HOG images (Section 4.2.1), our CNN classifier reaches an accuracy of over
99% when compared with the GZ1 classifications. The majority of mismatches
occurs in the case when a galaxy is classified as a Spiral by our CNN but as a
Elliptical by GZ1. The reason behind this situation is likely to be the better
resolution and deeper depth of the DES imaging data which reveals unnoticeable
structure in the data used in GZ1 from the Sloan Digital Sky Survey (SDSS)
(Cheng et al., 2020a, Chapter 3).

Additionally, training with the corrected debiased labels, our CNN classifier
is shown to be self-debiased and more accurate in classifying disk galaxies which
human visual classifications have difficulty detecting at faint magnitudes down to
i ∼ 21 (see Section 4.6.2).

Using a cross-validation with the Sérsic index and galaxy colour, we provide
a confidence evaluation scheme to our CNN classifications (Table 4.4) through a
statistical analysis of data in different magnitude and redshift bins (Section 4.6.3).
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Figure 4.11: The pair plots of six morphological parameters: concentration, asym-
metry, clumpiness, Gini, M20, and Sérsic index labelled by the CNN classifica-
tions with ‘superior confidence’. The colour shadings represent the CNN classifi-
cations. The red/orange and blue colour are for Ellipticals (E) and Spirals (S),
respectively. The mean value of each parameter for both types with the standard
deviation is shown below each column. The black dashed line shows a cut from
Lotz et al. (2008) to separate ellipticals and spirals based on the M20 and the
Gini coefficients.
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As a part of the validation, we carry out a large examination of non-parametric
methods such as the CAS system (Concentration, Asymmetry, and Smooth-
ness/Clumpiness), the Gini coefficient, and M20 using over 100,000 classifications
with structural measurements from Tarsitano et al. (2018).

From this we conclude that the Gini coefficient shows the most significant
distinction, as a single parameter, between ellipticals and Spirals within all pa-
rameters tested. This is such that a straight line can be drawn to separate these
two types on a Gini coefficient and M20 diagram (Fig. 4.11). Our new morpholog-
ical catalogue allows a variety of new approaches towards understanding galaxy
properties and evolution that involve morphology that could not be carried out
before. For example, non-parametric analysis methods of galaxy structure can
be assessed using an unprecedented sample not only in size but also in quality.
Our catalogue can also be used to cross-validate other classification methods, and
to explore galaxy properties as a function of morphology with superb statistics.
Such investigations could include, among others, the dependence of the E/S ratio
with redshift and magnitude and studies of galaxy morphology divided into many
divisions of galaxy property and environment.

Scientifically, there are of course a myriad of uses for our catalog, as morphology
is one of the fundamental properties of galaxies. Future work within and outside
the DES collaboration will investigate these issues. For the time being this will
remain one of the largest set of mythologies available for analysis for any survey
done to date. Euclid and LSST will however supersede these numbers but our
methods and tools can easily be applied to this imaging data once it is available.
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Abstract

In this chapter we develop a new unsupervised machine learning technique com-
prised of a feature extractor, a convolutional autoencoder (CAE), and a clustering
algorithm consisting of a Bayesian Gaussian mixture model (BGM). We apply
this technique to visual band space-based simulated imaging data from the Eu-
clid Space Telescope using data from the Strong Gravitational Lenses Finding
Challenge. Our technique promisingly captures a variety of lensing features such
as Einstein rings with different radii, distorted arc structures, etc, without using
predefined labels. After the clustering process, we obtain several classification
clusters separated by different visual features which are seen in the images. Our
method successfully picks up ∼63 percent of lensing images from all lenses in the
training set. With the assumed probability proposed in this study, this technique
reaches an accuracy of 77.25 ± 0.48% in binary classification using the training
set. Additionally, our unsupervised clustering process can be used as the prelim-
inary classification for future surveys of lenses to efficiently select targets and to
speed up the labelling process. As the starting point of the astronomical applica-
tion using this technique, we not only explore the application to gravitationally
lensed systems, but also discuss the limitations and potential future uses of this
technique.
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5.1 Introduction

In previous chapters, we focused on the supervised machine learning applications;
however, labelling data for the use of supervised methods can be extremely time
expensive. Additionally, using the prior knowledge of labels defined by human is
prone to result in classification bias during the training process. Unlike supervised
machine learning, which requires a large amount of labelled data, unsupervised
machine learning can be applied directly to observed data without labelling, this
helps to reduce human bias while training a machine. Therefore, scientists have
started to explore the application of unsupervised machine learning to, e.g., ph-
tometric redshifts (e.g., Geach, 2012; Way and Klose, 2012; Carrasco Kind and
Brunner, 2014; Siudek et al., 2018a), as well as to classification using photometry
or spectroscopy (e.g., D’Abrusco et al., 2012; Fustes et al., 2013; Siudek et al.,
2018b).

The application of unsupervised machine learning becomes more challenging
when using high dimensional data such as images. Hocking et al. (2018) and
Martin et al. (2019) are amongst the first studies of unsupervised machine learn-
ing applications using imaging data applying the Growing Neural Gas algorithm
(Fritzke, 1995). In this study, we explore a different technique from Hocking
et al. (2018) and Martin et al. (2019) in which we apply a convolutional autoen-
coder (CAE, Masci et al., 2011) to do feature extraction before connecting with
unsupervised machine learning algorithms.

We test this proposed unsupervised machine learning method in the task of
identifying galaxy-galaxy strong lensing (GGSL) system. A GGSL system is
a particular case of gravitational lensing in which the background source and
foreground lens are both galaxies, and the lensing effect is sufficient to distort
images of the source into arcs or even Einstein rings. Since the discovery of the
first GGSL system in 1988 (Hewitt et al., 1988), they have been used in many
valuable scientific applications, such as studying galaxy mass density profiles (e.g.,
Sonnenfeld et al., 2015; Shu et al., 2016a; Küng et al., 2018), detecting galaxy
substructure (e.g., Vegetti et al., 2014; Hezaveh et al., 2016; Bayer et al., 2018),
measuring cosmological parameters (e.g., Collett and Auger, 2014; Rana et al.,
2017; Suyu et al., 2017), investigating the nature of high redshift sources (Bayliss
et al., 2017; Dye et al., 2018; Sharda et al., 2018), and constraining the properties
of the self-interaction physics of dark matter (e.g., Shu et al., 2016b; Gilman
et al., 2018; Kummer et al., 2018).

Increasing the statistical power of these applications to gravitational lensing
and improving sample uniformity requires a large increase in the number of known
GGSL systems. Next generation imaging surveys arising from facilities such as
Euclid, the Large Synoptic Survey Telescope (LSST), and the Wide Field In-
frared Survey Telescope (WFIRST) are anticipated to increase the number of
known GGSL systems by several orders of magnitude (Collett, 2015). These
forthcoming datasets present a challenge for identifying new GGSLs using au-
tomated procedures that operate in an efficient and reliable manner. To this
end, a number of algorithms have been developed to detect GGSLs in image
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data by recognising arc-like features and Einstein rings (e.g., Gavazzi et al., 2014;
Joseph et al., 2014; Paraficz et al., 2016; Bom et al., 2017). In addition, instead
of recognising arc-like features, an alternative detection technique that has had
some success is to attempt to fit lens mass models to candidate GGSLs and re-
ject those systems that do not converge (Marshall et al., 2009; Sonnenfeld et al.,
2018).

More recently, efforts to automate GGSL finding have turned to machine learn-
ing algorithms given their strong performance in the general field of image recog-
nition, in particular, the CNN. These algorithms are widely used in categorizing
galaxy morphologies (e.g., Dieleman et al., 2015; Huertas-Company et al., 2015;
Domı́nguez Sánchez et al., 2018; Walmsley et al., 2020), measuring photometric
redshifts (Cavuoti et al., 2017; Sadeh et al., 2016; Samui and Samui Pal, 2017),
and classifying supernovae (Lochner et al., 2016, see also Section 1.2). Recent
work has also shown that CNN can be used to perform lens modelling as a vastly
more efficient alternative to traditional parametric methods (Hezaveh et al., 2017;
Pearson, J. et al., 2019).

The application of CNN to the detection of GGSL systems has reached a high
success rate in binary classification (Jacobs et al., 2017; Petrillo et al., 2017; Os-
trovski et al., 2017; Bom et al., 2017; Hartley et al., 2017; Avestruz et al., 2019b;
Lanusse et al., 2018). However, as mentioned previously, supervised methods
suffer from some degree of classification bias from the labelled data which may
not properly represent the diversity of real GGSL systems observed in future
surveys. Additionally, GGSLs are rare events in the Universe so there are insuf-
ficient homogeneous data for training in supervised machine learning methods.
Although simulated images can be used for training, they are generally lacking
in the complexity of real observed data.

We use our unsupervised machine learning method to provide an alternative
to humans identifying GGSLs without providing the labels needed in supervised
methods. Our system can also be used for the preliminary selection of GGSL
candidates in future imaging surveys. Furthermore, without human bias, we can
explore unique GGSL systems that would not be found without unsupervised
machine learning techniques.

This chapter is structured as follows. The unsupervised machine learning tech-
nique adopted in this study is introduced in Section 5.2. Details about the im-
plementation, including the pipeline and dataset, are described in Section 5.3.
Section 5.4 discusses our findings. Future work is discussed in Section 5.5. Fi-
nally, the conclusions are presented in Section 5.6.

5.2 Methodology

The application of unsupervised machine learning has achieved successes on one
dimensional data in astronomy such as with spectroscopic data or photometric
parameters (e.g., D’Abrusco et al., 2012; Geach, 2012; Way and Klose, 2012;
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Fustes et al., 2013; Carrasco Kind and Brunner, 2014; Siudek et al., 2018a,b).
However, the capability of unsupervised machine learning for high dimensional
data such as imaging data has not been well explored.

The latest astronomical approaches of unsupervised machine learning applica-
tion using imaging data made by Hocking et al. (2018) and Martin et al. (2019)
apply the concept of deep clustering. Deep clustering (e.g., Hsu and Kira, 2015;
Hershey et al., 2015; Xie et al., 2016; Caron et al., 2018) is a clustering method
that groups together the features learned through a neural network. Both Hock-
ing et al. (2018) and Martin et al. (2019) apply a neural network called ‘growing
neural gas algorithm’ (GNG; Fritzke, 1995), which is a type of self-organizing
map (Kohonen map; Kohonen, 1997), to create feature maps from imaging data.
They then connect these feature maps with a hierarchical clustering technique
(Hastie et al., 2009).

In addition to neural networks, studies in computer science also use an architec-
ture of both supervised (CNN) and unsupervised convolutional neural networks
(UCNN) (e.g., Dosovitskiy et al., 2014) to the process of feature learning (com-
puter science: e.g., Dundar et al., 2015; Bautista et al., 2016; Borji and Dundar,
2017).

There are a variety of unsupervised approaching for deep clustering using the
architecture of CNN. However, most of them use alternative unsupervised al-
gorithms (e.g., k-mean) to calculate the weights between layers that reduces the
power of CNN for capturing features fit with human judgement when using imag-
ing data. Therefore, instead of variational CNN, we propose to use a convolutional
autoencoder (CAE, Section 5.2.1) as the feature extractor (Masci et al., 2011) in
this study. This preserves the intrinsic features of the images (Guo et al., 2017;
Li et al., 2017; Dizaji et al., 2017). For the clustering part we apply the Bayesian
Gaussian mixture model (BGM, Section 5.2.2) to images presented by the fea-
tures extracted by the CAE to group the input features in a high-dimensional
feature space.

5.2.1 Convolutional AutoEncoder (CAE)

The convolutional autoencoder (CAE) (Masci et al., 2011) is a kind of au-
toencoder (AE) which is mostly well known for denoising images (Vincent et al.,
2010). The function of an AE is to learn a prior which features best represent
the data distribution. With a limited number of features available, an AE inten-
tionally captures significant features from images rather than the details of the
background noise. The AE can then reconstruct images with this obtained prior.

The CAE improves the performance of an AE by considering the structures
within two dimensional images that are ignored in the AE. Hence, the CAE
preserves spatially localised features from image patches, while the AE can only
obtain the global features.
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The architecture of the CAE used in this study is shown in Fig. 5.1. It includes
two parts: encoder (left) and decoder (right). The encoder extracts the repre-
sentative features from the input image. For an input x, the j-th representative
feature map is given by

hj = f
(
x ∗W j + bj

)
, (5.1)

where W are filters, ∗ denotes the 2 dimensional convolution operation, b is the
corresponding bias of the j-th feature map, and f is an activation function. The
encoder in this study is built with five convolutional layers (filter size: 128, 64, 32,
16, and 8) and three dense layers (units: 128, 64. 32). The activation function
used in the convolutional layers is the Rectified Linear Unit (ReLu) (Nair and
Hinton, 2010) such that f(z) = 0 if z < 0 while f(z) = z if z ≥ 0. Each
convolutional layer is followed by a pooling layer with a size of 2 by 2 pixels. The
pooling layer is also referred to as a downsampling layer which is to reduce the
spatial size and reduce the parameters involved in the CAE.

The decoder then reproduces input images from the representative features;
therefore, the architecture of the decoder is symmetric but reverse to that of the
encoder. We invert the procedure of the encoder to reconstruct the representative
feature maps back to the original shape of the input image by using the following
formula:

y = f

(∑
j∈H

hj ∗
∼
W

j

+ c

)
, (5.2)

where
∼
W is the flip operator that transposes the weights, ∗ denotes 2 dimensional

convolution operation, c is the corresponding bias, f is an activation function,
and H indicates the group of feature maps. The design for the number of filters in
the convolution processes is based on the size of input images to form a symmetric
structure between encoder and decoder.

We have three dense layers (units: 32, 64, and 128), five convolutional layers
(filter sizes: 8, 16, 32, 64, and 128) using the ReLu activation function (Nair and
Hinton, 2010), and an extra convolutional layer (filter: 1) using the softmax func-
tion (Bishop, 2006), f (z) = exp (z)/

∑
exp (zj), as the output for the decoder.

Each convolutional layer apart from the last layer (output) is followed with an
upsampling layer which has the opposite function to the pooling layer that is used
for recovering the resolution.

The central dense layer of the CAE is called the ‘embedded layer (EL)’ (see
Fig. 5.1). This is composed of the final latent representation features used for
the reconstruction of the input images. In section 5.3.2, we explore the number
of units required for the EL.

The CAE extracts the latent representative feature maps by minimizing the
reconstruction error. In this study, we use binary crossentropy in the keras
library1 to calculate the loss function of the CAE which is given by the following

1https://keras.io
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form,

L = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log (1− ŷn)], (5.3)

where N is the number of samples, yn are targets, and ŷn are the reconstructed
images (equation 5.2). We build our CAE using the keras library and the
TensorFlow backend 2 (Abadi et al., 2015a).

5.2.2 Bayesian Gaussian Mixture Model (BGM)

A Gaussian mixture model is a probabilistic model for either density estimation
or clustering using a mixture of a finite number of Gaussian distributions to
describe the distributions of data points on a feature map. Given K components,
the algorithm uses Kmeans to initialise the weights, the means, and the covariances
for the K Gaussian distributions which are given in the form:

p (x) =
K∑
k=1

wkG (x|uk, εk) , (5.4)

where G (x|uk, εk) represents k-th Gaussian, uk denotes the mean of the k-th
Gaussian distribution, εk is the covariance matrix of the k-th Gaussian, and wk
is the prior probability (weight) of the k-th Gaussian where,

K∑
k=1

wk = 1. (5.5)

The algorithm then searches for the best fit of the K Gaussian distributions to
the data distribution through an iterative process.

A two dimensional illustration of the BGM is shown in Fig. 5.2 (Equation 5.4).
The input data are distributed on the feature map (black dots). We use 3 Gaus-
sian distributions in this illustration (coloured ellipses), to fit the data distribution
on the feature map.

In unsupervised learning, expectation-maximization (EM) (Hartley, 1958; Demp-
ster et al., 1977; McLachlan and Krishnan, 1997) is used to find the maximal
log-likelihood estimates for the parameters of the Gaussian mixture model by an
iterative process. The log-likelihood of the Gaussian mixture model is calculated
using the formula:

ln [p (x|u, ε, w)] =
N∑
n=1

{
ln

[
K∑
k=1

wkG (x|uk, εk)

]}
, (5.6)

where N is the number of samples.

2https://www.tensorflow.org
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K=3

Figure 5.2: An illustration of the Gaussian Mixture model we use. The K value
is the number of Gaussian distributions. The black dots show the data distribu-
tion on the feature map, and the coloured ellipses represent the three Gaussian
distribution we applied here to fit the data distribution.

The Bayesian Gaussian mixture model (BGM) is a variational Gaussian mix-
ture model (Kullback and Leibler, 1951; Attias, 2000; Bishop, 2006) which max-
imises the evidence lower bound (ELBO) (Kullback and Leibler, 1951) in the
log-likelihood. In this study, we apply the BGM from the scikit-learn library
3 (Pedregosa et al., 2011).

5.3 Implementation

In this section, we first introduce the datasets used in this study. The feature
learning procedure is discussed in section 5.3.2. Section 5.3.3 presents the clus-
tering and classifying phase which explains how to obtain the predicted lensing
probability for each image. The tests for quantifying the performance of the
classifications are described in section 5.3.4.

5.3.1 Data Sets

The strong lensing data are from the Strong Gravitational Lens Finding Chal-
lenge (Lens Finding Challenge; Metcalf et al., 2019b). The generation of mock
images follows the procedures described in Grazian et al. (2004) and Meneghetti
et al. (2008), and starts with a cosmological N-boby simulation, the Millennium
simulation (Boylan-Kolchin et al., 2009). The background objects are modeled by
the sources from the Hubble Ultra Deep Field (UDF). The detail of the simulation
setup can be found in Metcalf et al. (2019b).

3https://scikit-learn.org/stable/index.html
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Figure 5.3: An example of the training set for Lens Finding Challenge Top: non-
lensing image; Bottom: lensing image.

We use the datasets which mimic the data quality of observations that will be
taken by the Euclid Space Telescope (Laureijs et al., 2011) in the visual (VIS)
band. The pixel size is set to 0.1 arcsec and a Gaussian point spread function
is applied to the images. Additionally, the noise follows a Gaussian distribution
which is added to the final images (Metcalf et al., 2019b).

There are 20,000 labelled images with lenses for training (13,968 lensing images;
6,032 non-lensing images, see Fig 5.3) and 100,000 unlabelled images with lenses
for testing in the Lens Finding Challenge.

We split the training set received from the Lens Finding Challenge into two
parts, our own training set and testing sets. We randomly pick 12,800 lensing
images out of 13,968 lensing images to obtain enough information for feature
extraction. Additionally, we rotate a random set of 3,200 non-lensing images 4
times (0, 90, 180, 270 degrees) to obtain the same number of images as there
are lensing images (12,800 images) for our training set. An extra insignificant
Gaussian noise is added into the rotated images to enhance the difference between
the rotated images and the original images. The ratio between lensing and non-
lensing images is 1 in the training set to make the convolutional autoencoder
(CAE) consider both types equally when extracting features.

The rest of the images are the candidates for the testing sets. In our own
testing sets, we initially have 1,168 lensing and 2,832 non-lensing images, which
are leftover from the selection of the training set. We rotate the non-lensing
images 4 times (0, 90, 180, 270 degrees) and add Gaussian noise to increase the
number of images to 11,328 non-lensing images.

We test several different ratios between the number of lensing and non-lensing
images to mimic a more realistic case. To avoid a biased influence from lensing
images, we use the same set of lensing images in the testing process. We generate
different ratios by randomly and repeatedly picking samples from the set of ro-
tated non-lensing images. The arrangement is shown in Table 5.1 and is based on
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Labels Ratios Number of data in each type

1 1:1 lensing:1168/ non-lensing:1168
2 1:2 lensing:1168/ non-lensing:2336
3 1:20 lensing:1168/ non-lensing:23360
4 1:50 lensing:1168/ non-lensing:58400
5 1:100 lensing:1168/ non-lensing:116800
6 1:1000 lensing:1168/ non-lensing:1168000
7 1:10000 lensing:1168/ non-lensing:11680000

Table 5.1: The arrangement of the testing datasets in this study. The ratios
between lensing and non-lensing images are shown in the second column and the
content included in the datasets are shown in the third column.

15 0.23 0.3 0.38 0.46 0.53 0.61 0.69 0.76 0.84 0.9

Figure 5.4: An example of the denosing process. Left: the original image. Right:
the image after denoising by an alternative CAE architecture described in sec-
tion 5.3.2

the prediction of Collett (2015) which forecasts 2,400, 120,000, and 170,000 de-
tectable galaxy-galaxy strong lenses out of 11 million lenses from their model for
lensing systems in the Dark Energy Survey4, Large Synoptic Survey Telescope5,
and Euclid Space Telescope, respectively. This arrangement for the fractions of
lensing images in the testing sets cover from 50 percent to 0.01 percent.

5.3.2 Feature Learning

There are three steps to take in the application of the techniques used in this
study: (1) denoising the images by the convolutional autoencoder (CAE) with
a simpler structure; (2) extracting the features of the images using the CAE
(Fig. 5.1); (3) identifying clusters using the features extracted from the CAE by
the Bayesian Gaussian mixture model (BGM).

We recognise that the background noise in images influences the result of fea-
ture extraction because the CAE can overfit to the noise. As mentioned in Sec-
tion 5.2.1, an autoencoder learns the prior distribution from the input images
(with noise) which preferentially captures the representatively strong features in

4https://www.darkenergysurvey.org/
5https://www.lsst.org
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images, but ignores insignificant features such as noise. Therefore, the recon-
struction based on the prior distribution learnt through an autoencoder gener-
ates noiseless reconstructed images. We apply a CAE with a simpler architecture
without hidden layers in Fig. 5.1 to generate noiseless images at the first step.

This architecture contains five convolutional layers (filters: 128, 64, 32, 16, 8)
with ReLu activation function for the encoder, five convolutional layers (filters:
8, 16, 32, 64, 128) with ReLu activation function for the decoder, an output
layer with a softmax activation function. Each convolutional layer is followed
with either a pooling layer or an upsampling layer in the encoder or decoder,
respectively. The effect is shown in Fig. 5.4. The left panel is the original image,
and the right panel is the image after denoising. Although the reconstructed
images have lower resolution, they preserve and emphasize the features of lenses
and sources that helps our CAE (Fig. 5.1) to capture meaningfully representative
features from images in the second step.

Secondly, we apply the CAE to carry out feature extraction (Fig. 5.1). The
final representative features are located within the embedded layer (EL) in the
centre of the architecture. Finally, these extracted features are the input for
the third step - clustering using the Bayesian Gaussian mixture model (BGM)
utilising the representative features extracted by the CAE from the images.

The number of clusters, K, when using unsupervised machine learning is gen-
erally unknown and difficult to be determined as there is not yet a reliable opti-
misation process to decide this quantity in unsupervised machine learning.

In Guo et al. (2017), they suggest the number of extracted features to use
should be the same as the number of clusters of datasets used (MNIST6). These
number of clusters are however known in their case. This arrangement ensures
that: (1) the dimension of the embedded layer was lower than the input data,
and (2) the network could be trained directly in an end-to-end manner without
any regularisations.

In contrast, the number of clusters is unknown in our work, and the number of
extracted features is a hyper-parameter which can be controlled. Therefore, we
decided to set the number of clusters, K, using the opposite concept from Guo
et al. (2017), to be the same as the number of extracted features.

We can explain this decision using a simplified condition by assuming each fea-
ture decides one cluster; therefore, the number of features would be the intrinsic
minimal number of clusters used.

The process of feature learning using the CAE is computationally expensive.
Presently, it takes up to 5 days to train 100,000 images running on a NVIDIA
GeForce GTX 1080 Ti GPU. In the future a more complex analysis of this issue
can be carried out once computing power significantly improves.

6http://yann.lecun.com/exdb/mnist/
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5.3.3 Clustering and classifying

After clustering by the Bayesian Gaussian mixture model (BGM), we obtain the
probability of each image belonging to each cluster. These probabilities are used
to calculate the overall probability of each image being a strong lensing system.

With the probability of the n-th image to the k-th cluster, given by P kn and
known fractions of lensing and non-lensing images in the k-th cluster, P k

len and
P k
non, we are able to calculate the predicted probability of different types, lensing

(P n
len) and non-lensing (P n

non) for the n-th image by the formulas:{
P n
len =

∑K
k=1 P

k
len×P kn

P n
non =

∑K
k=1 P

k
non×P kn

. (5.7)

However, our technique is meant to be unsupervised; therefore, P k
len and P k

non are
unknown. Without the label information, the network has no prior knowledge
regarding classes of lensing or non-lensing. Therefore, to be able to compare the
performance of this work and others, we must involve human classification after
the step of the feature learning.

Supervised machine learning methods applied to strong lens finding typically
require tens of thousands of labelled images for training. This is of course too large
for viable human classification and negates the whole purpose of using machine
learning in the first place. Therefore, we propose a vastly streamlined way to
calculate the predicted lensing and non-lensing probability for the n-th image by
assuming the probability of each type for the k-th cluster through looking at the
representative features of each cluster. We assume the lensing probability for the
k-th cluster is 1.0, i.e. P k

len = 1.0, if the representative features of this cluster
have significant lensing features (e.g., Einstein rings, distorted arc, etc) (see the
bottom of Fig. 5.5). If the features of this cluster are convincingly non-lensing
features (e.g., singly isolated and oval object), the lensing probability of the k-th
cluster is set to 0.0, i.e. P k

len = 0.0 (see the top of Fig. 5.5). In the condition
where it is difficult to classify such as those with multiple objects, the probability
is assumed to be 0.5, i.e. P k

len = 0.5 (see the middle of Fig. 5.5).

The summation of the lensing and non-lensing probabilities (equation 5.7)
may not be 1.0 when using assigned probabilities for clusters because the as-
signed probabilities cannot accurately represent the distribution of lensing and
non-lensing images in each cluster. Therefore, we unify the predicted lensing
and non-lensing probabilities as follows: P n′

len = P n
len/(P

n
len + P n

non) and P n′
non =

P n
non/(P

n
len + P n

non).

The combination of assigned probabilities within our unsupervised technique
promisingly reduces the quantitative effort of human judgement on data labelling
whereby experts classify a few images that are grouped based on features rather
than derived by a machine using over 10,000 images. The comparison of the re-
sults using true fractions and assumed probabilities are discussed in section 5.4.1.
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Figure 5.5: Examples of the denoised images from which we assume the lensing
probability for clusters. The ‘p’ value represents the assumed lensing probability
for clusters. Top: the examples of visually non-lensing images (p=0.0). Middle:
the uncertain case (p=0.5). Bottom: the visually lensing images are presented
(p=1.0).
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5.3.4 Examinations

With the information on the lensing and non-lensing probability in each clus-
ter, we can compare the performance of our technique with other supervised
machine learning techniques using the Receiver Operating Characteristic curve
(ROC curve; Fawcett, 2006; Powers, 2011, see details in Section 2.4.1). The def-
inition of the true positive and the false positive are shown in Fig. 2.6 in terms
of the confusion matrix. Different from Chapter 2, the ‘0’ means negative as well
as non-lensing type while ‘1’ represents positive signal and lensing type in this
study. The true positive rate (TPR) and false positive rate (FPR) are defined
the same as Equation 2.4.

With the ROC curve, the ‘area under the Receiver Operating Characteristic
curve’ (AUC; Bradley, 1997; Fawcett, 2006, also see Section 2.4.1) is measured
to evaluate the performance of machine learning algorithms. In this study, the
AUC is used for finding the most optimal number of extracted features within
the EL in the CAE. In Fig. 5.6, the black solid line shows the results trained by
the images in a logarithmic scale, and the lighter orange dashed line presents the
one trained by the images within a linear scale. The lighter shadings show the
variation in training defined by the maximum and minimum of three reruns.

Once the CAE model has been trained, the results of the clustering do not
change as long as we use the same datasets. Therefore, the main uncertainty
in the procedure is from the training process in the CAE. To determine the
variation of results using different training we rerun our CAE three times for
different numbers of features of the EL within the CAE, and use the maximal
and minimal value of the AUC as the uncertainty for each number of features
(Fig. 5.6).

We discover that the CAE cannot reproduce the input images if we have an
insufficient number of neurons in the EL. However, too many neurons cause over-
fitting such that the CAE captures noisy features. We find that the highest value
of the AUC is carried out from the training by using logarithmically scaled im-
ages and the optimal number of neurons in the EL is 24 according to Fig. 5.6.
As such, we adopt this set up for all results presented in this work.

Apart from the ROC curve and the AUC value mentioned in section 5.3.2, we
also use some other evaluation factors such as recall, precision, f1 score, and accu-
racy (also see Section 2.4.1), which are measured based on a probability threshold
p = 0.5. The definition of ‘recall’ is identical to the TPR in statistics which repre-
sents the completeness that shows the fraction of true types correctly identified,
while ‘precision’ indicates the contamination which means the fraction of true
types in the list of candidates predicted. The ‘f1 score’ is a weighted average
of the precision and recall which can be interpreted as the overall performance
considering the contributions from both completeness and contamination. This
is calculated by the formula (Powers, 2011):

f1 = 2× (precision× recall)

(precision + recall)
. (5.8)
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Figure 5.6: The graph of AUC versus the number of extracted features in the
CAE (Section 5.2.1). The black solid line represents the mean value of the AUC
trained by images with a logarithmic scale, and the orange dashed line is trained
by images with a linear scale. The lighter shadings show the variation defined by
the maximum and minimum of three reruns. The two dotted lines are locations
of AUC = 0.80 and 0.85.
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The accuracy is defined as Equation 2.7 such that the meaning of this is defined
as how many successfully classified samples there are out of all the samples.

5.4 Results

In this section, we first compare the results using two different calculations of
the lensing and non-lensing probabilities for each image (section 5.3.3) in Sec-
tion 5.4.1. The capability of our unsupervised technique to distinguish differ-
ent types of lenses, and the performance of classification are presented in Sec-
tion 5.4.2.1. We also analyse our technique on the testing datasets with different
fractions of lensing images; the result of this is shown in section 5.4.2.2. Finally,
we revisit the Strong Gravitational Lens Finding Challenge; we present our com-
parison with other supervised machine learning methods and human inspection
in Section 5.4.2.3.

5.4.1 Comparison of Known and Assumed Probabilities

The comparisons of results with a known fraction of lensing and non-lensing
images and an assumed probability of lensing (P k

len) and non-lensing (P k
non) in the

k-th classification cluster (Section 5.3.3) are shown in Fig. 5.7 using images with
logarithmic scale and 24 units in the embedded layer (EL) of the convolutional
autoencoder (CAE).

The left panel in Fig. 5.7 presents the Receiver Operating Characteristic curve
(ROC curve); the right panel is a comparison of different factors between these
two methods such as recall, precision, f1 score, and accuracy. In Fig. 5.7, the
black solid line shows the mean value of the ROC curve using a known fraction
of lensing images, and the orange dashed line represents the mean value of the
results using an assumed probability. The colour shadings represent the variation
defined by the maximum and minimum within three reruns.

Although the results of the ‘assumed probability’ show larger scatter and
slightly worse performance than the results of the ‘known fraction’, the scatter
of the ‘assumed probability’ method is consistent with the results of the ‘known
fraction’ method. Additionally, the mean values of both methods are close to
each other. Overall, these two methods show consistent results in their general
performance, which is shown through the ROC curve, recall, precision, f1 score,
and accuracy (calculated based on a probability threshold of p = 0.5).

This comparison confirms that the alternative calculation assigning an assumed
probability to the classification clusters can be used to obtain promising lensing
and non-lensing probabilities for each image. Furthermore, this indicates that the
classification clusters obtained by our technique captures representative features
from images and reflects the real lensing fractions in the clusters. Additionally,
this result also shows an advantage of our technique for saving effort on data
labelling by clustering the data before classifying it so that we can classify the
feature of the small number of classification clusters instead of each image itself.
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Figure 5.7: The comparison of two methods to obtain the predicted probability
of each class for each image using a known fraction and an assumed probability
(section 5.3.3). The black solid line represents the mean value using a known
fraction, and the orange dashed line shows the mean value using an assumed
probability of each class. The colour shadings are the variation defined by the
maximum and minimum within three reruns. Left: the ROC curve. Right: the
comparison of different statistic factors, e.g., recall, precision, f1 score, accuracy.

This can be used as a preliminary selection method for future surveys when using
a large amount of data.

5.4.2 Identifying Lenses

5.4.2.1 Initial Results

We begin with the results of binary classification using the predicted lensing
probability obtained using the ‘assumed probability’ method in Section 5.3.3. In
Fig. 5.8, we present the confusion matrix of the training set. The accuracy of our
technique reaches 0.7725 ± 0.0048 and the AUC reaches 0.8617 ± 0.0063 using
a probability threshold of p = 0.5. The error estimation of the accuracy on the
AUC is based on the standard deviation of 3 reruns.

This method promisingly separates features in a way similar to how a human
would. Fig. 5.9 shows examples of the classification clusters with a high fraction
of lensing images (≥0.6). Every classification cluster shown in Fig. 5.9 has its
own characteristic features, which indicates that our technique is able to capture
the visual difference and similarity between images. Additionally, these classi-
fication clusters with a fraction of ≥0.6 contain ∼63 percent of lensing objects
in the training set. The last row in Fig. 5.9 shows an example of the simulated
data without lenses for the classification cluster. It is clear that our technique
captures features such as Einstein rings with different radii, different strength,
and distorted arc structures, etc, and images without lenses. The classification
clusters with significant lensing features such as Einstein rings and arc structures
are easily distinguishable (the fraction of lensing images in these groups is ≥0.8)
in our results.
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Figure 5.8: The confusion matrix of the training set trained with 24 features in
the embedded layer (EL) of the convolutional autoencoder (CAE). The floating
values show the mean of the three reruns and the deviation from the maximum
and minimum. The red and green texts shown below the fraction are the actual
number in the quadrant.
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Figure 5.9: Examples of the classification clusters having a high fraction of lensing
types in individual clusters (denosied images). The top of each column shows the
classification cluster index, the fraction of lensing (lensing) and non-lensing (non)
in the cluster, and the fraction of lensing in the cluster of all lensing images in
the training set (F len). The last row shows the simulated data without lenses
within each column.
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In the same run, there are 7 classification clusters which have a high fraction of
non-lensing images (≥0.7); 6 out of 7 clusters include ≥0.9 fraction of non-lensing
images. The features of these classification clusters are round or oval and isolated
objects (Fig. 5.10). The feature of cluster 0 looks oval and isolated, but has a
relatively lower fraction of non-lensing images than others. It is produced by
visually insignificant arc-like structures in the images that might also be created
through the process of denoising.

The last four columns in Fig. 5.10 which contain images with a fraction of non-
lensing images between 0.6 and 0.7 are visually multiple objects. It is difficult to
distinguish the classification of these types of images without colour information;
however, our data is limited to a single visual band (section 5.3.1) so the decrease
of performance is unavoidable. Additionally, these four classification clusters are
similar to each other, but they are in a different orientation which shows that our
technique cannot take care of rotation invariance at the current stage (also see
Appendix 5.A and the discussion in section 5.5).

The remaining 6 classification clusters are regarded as uncertain types because
the fractions of lensing images in these groups are within the range from 0.4 to
0.6 (Fig. 5.11). Apart from clusters 15 and 23, the features of other classification
clusters are single or double objects with filament or arc-like structures which
might also be generated by the denoising process. The main features of cluster
15 is a round and single object with lenses surrounded by a halo-like structure,
which can occur when the Einstein radius of lensing is equal to or smaller than
the size of lenses. On the other hand, cluster 23 has similar features to clusters 9,
13, 18, and 19 which all show multiple object types in the images. As mentioned
in the previous paragraph, the images shown in the clusters 15 and 23 cannot
be easily distinguished without colour information; therefore their categories are
ambiguous.

Overall, it is more challenging to correctly classify images of lensing and non-
lensing types without significant lensing features, such as Einstein rings, and
highly distorted arc structures seen using our technique with a single band. Our
method obtains classification clusters with lensing features containing ∼63 per-
cent lensed images from all lensed images in the training set (Fig. 5.9). The
remaining lensed images are distributed in the classification clusters with diffi-
cult features (e.g., the last four columns in Fig. 5.10 and Fig. 5.11).

We anticipate that the inclusion of colour will enhance the performance of this
method on the basis that additional diagnostic information would be provided
from other surveys with multiple broad-band filters rather than the single Euclid
Space Telescope with VIS band.

As part of our investigation, we applied our pre-trained CAE on the simulated
data without lenses (central galaxies; Appendix 5.A). Examples are shown in
Fig. 5.16 which confirms that the CAE promisingly captures the structure of
different lensing types: Einstein rings with different radii, incomplete Einstein
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Figure 5.11: Examples of the classification clusters with uncertain classification
(denoised images). The top of each column shows the number of the classification
cluster and the fraction of lensing (lensing) and non-lensing (non) in the cluster.
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Figure 5.12: The ROC curve of the testing sets using different fractions of lensing
images. Different colours represent different fractions (Table 5.1). The dashed
lines show the average of the ROC curves within three reruns and the shading
areas show the variation.

rings, arc structures with different lengths and positions, extended objects, etc,
from these simulated images.

5.4.2.2 Test on datasets with different fractions of lenses

A detectable galaxy-galaxy strong lensing event is an extremely rare event in the
universe, e.g., 0.05 percent of 640,000 early type galaxies in the Canada France
Hawaii Telescope Legacy Survey are strong galaxy-galaxy lenses (Gavazzi et al.,
2014). To be capable of a more realistic case, we test our CAE and pre-trained
Bayesian Gaussian mixture model (BGM) on datasets using logarithmic images
with different fractions of lensing images from 50 percent to only 0.01 percent of
lensing images (Collett, 2015, Table 5.1).

The results are shown in Fig. 5.12. Here we always use the ‘assumed probability’
to calculate the predicted probability of each type for each image (section 5.3.3).
Different colours represent testing sets with different fractions of lensing and
non-lensing images. The dashed lines are the average of the ROC curves and the
shadings are the variation within three reruns.

Fig. 5.12 clearly shows that there is not a significant difference between the
performance of the testing sets with different fractions of lensing images using
our technique. Secondly, Fig. 5.13 shows the accuracy of the classification in
terms of a confusion matrix using the testing set with 0.01 percent of lensing
images; this result is consistent with the results from training (Fig. 5.8).
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Figure 5.13: The confusion matrix of the testing set containing 0.01 percent
lensing images using the pre-trained model with 24 neurons in the embedded
layer (EL) of the convolutional autoencoder (CAE). The floating values show the
mean of the three reruns and the deviation from the maximum and minimum.
The red and green texts shown below the fraction are the actual number in the
quadrant.

Both figures show that our unsupervised machine learning technique can main-
tain its performance even if the lensing events are rare in the data (to 0.01 percent
of lensing images) when the model is well pre-trained.

5.4.2.3 Comparison with Other Methods

To further compare the performance of our technique with other supervised ma-
chine learning methods and human inspection, we revisit the Strong Gravitational
Lens Finding Challenge (Lens Finding Challenge; Metcalf et al., 2019b). The fi-
nal challenge testing data in the Lens Finding Challenge includes 100,000 images,
which are ∼60 percent of non-lensing images and ∼40 percent of lensing images.

A visually detectable lensing feature generally has a high Signal-to-Noise Ratio
(SNR) or has a low SNR but a larger number of correlated lensed pixels. Fig. 5.14
shows the comparison of the SNR and the number of lensed pixels above 1σ
between the training set and the challenge testing data. The value of the SNR in
Fig. 5.14 is calculated by SNR = S

σ
√
N

, where S
σ

represents the intensity (flux) in
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Figure 5.14: The comparison of the Signal-to-Noise Ratios (SNR) and the number
of lensed pixels above 1σ comparing the training set and the challenge testing
data. Left: the comparison of SNR. Right: the comparison of the number of
lensed pixels above 1σ. The dashed lines represents the divide based on a visual
assessment whereby the distribution on the left shows significant inconsistency
between the training set and the challenge data set.

a sigma contributed by the N lensed pixels. This figure shows that the fraction
of the images that are difficult to visually classify has increased from the training
set to this challenge testing data.

In addition to the value of AUC, Metcalf et al. (2019b) apply two other factors:
TPR0 and TPR10 to score the performance of their techniques. The TPR0 is
defined as the highest TPR reached when the FPR=0 in the ROC curve. This
quantity is used to recognise the classifiers whose highest classification levels are
not conservative enough to eliminate all false positives; therefore, the TPR0 of
these classifiers are often equal to 0. The TPR10 is defined when TPR at the
point where less than ten false positive are made.

We apply the same architecture for the CAE as we do for the training set
(Fig. 5.1), followed by the training process shown in section 5.3.2, and the clas-
sifying process shown in section 5.3.3 whereby we are applying the ‘assumed
probability’ to this challenge testing data. The results are shown in Table 5.2.

Our unsupervised machine learning technique using a single band is more sen-
sitive to significant lensing features. However, the challenge testing data contains
the most visually difficult images with lower SNR and fewer lensed pixels result-
ing in poorer performance (‘Unsupervised technique’ in Table 5.2) compared to
the training set (labeled as * at the bottom row in Table 5.2).

To fully test our method, we make a cut at 100 pixel and 50 SNR to exclude vi-
sually difficult images. This cut is determined by Fig. 5.14 and a visual assessment
to the images with these criteria. Applying this cut improves the performance of
our technique from AUC = 0.72 to AUC = 0.83 that indicates that the difference
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Figure 5.15: The comparison of the ROC curve between before and after a cut at
images with sizes greater than 100 lensed pixels and with a Signal-to-Noise Ratio
larger than 50.

in performance (i.e. AUC) between the two highlighted entries in Table 5.2 using
our method is caused by the difference in the distribution of SNR and lensed
pixels between the training and testing data. The comparison between applying
the cut and not doing so is shown in Fig. 5.15.

As in most methods, both TPR0 and TPR10 are equal to 0.00 using the chal-
lenge testing data in our results. However, in Fig. 5.15, both curves have a nearly
vertical line at False Positive Rate ∼0 until True Positive Rate ∼0.1 (before) and
∼0.2 which means that although our technique is not able to eliminate all the
misclassifications when the probability threshold is high (left), there are only a
tiny number of images which were predicted incorrectly.

This comparison gives an idea for the feasibility of this unsupervised machine
learning technique compared with supervised methods. However, unsupervised
machine learning is a qualitatively different method than supervised methods,
such that unsupervised methods can explore data without label limitations and
addresses questions that current supervised methods cannot. Therefore, the per-
formance of unsupervised machine learning methods cannot simply be compared
to supervised methods where the true label information is used.

5.5 Future Work

In this chapter, we describe an unsupervised machine learning technique for the
detection of galaxy-galaxy strong gravitational lensing using simulated data based
on the Euclid Space Telescope from the Strong Gravitational Lens Finding Chal-



5.5. Future Work 110

N
am

e
A

u
th

or
A

U
C

T
P
R

0
T
P
R

1
0

sh
or

t
d
es

cr
ip

ti
on

L
A

S
T

R
O

E
P

F
L

G
ei

ge
r,

S
ch

äf
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lenge (Lens Finding Challenge; Metcalf et al., 2019b). This technique uses feature
extraction provided by a convolutional autoencoder (CAE) and a Bayesian Gaus-
sian mixture model (BGM) clustering algorithm.

This is an initial step in the use of convolutional autoencoders for astronomical
unsupervised learning problems and as such there are many further explorations
and improvements for this technique. For instance, there are other types of au-
toencoders e.g., variational autoencoder (Kingma and Welling, 2013) for feature
learning, and other kinds of clustering algorithms to explore the features and
the properties of the obtained groups e.g., hierarchical clustering such as Ag-
glomerative Hierarchical Clustering (Bouguettaya et al., 2015) and density-based
clustering such as DBSCAN (Ester et al., 1996), etc.

In addition to other approaches that could be taken with different autoencoders
and different clustering algorithms, some other future improvements are discussed
here. First of all, we use the simulated data with a single VIS band in the optical
region for the Euclid Space Telescope from Lens Finding Challenge. As shown in
Section 5.4.2.1, the lack of multiple bands causes difficulty in classifying certain
types of images (Fig. 5.11). In the future, we will apply our pipeline to surveys
with multiple filters, which is expected to improve the performance further.

Secondly, the current state of this technique cannot preserve rotation invariance
which means it categorises images differently when we rotate the images (see
the last four columns in Fig. 5.10 & Fig. 5.16). This condition does not affect
the current results negatively in distinguishing lensing or non-lensing feature.
However, considering the rotation invariance may help to reduce the number of
classification clusters we obtain from this method when applying this technique
on real data.

On the other hand, using an alternative autoencoder, the ‘variational autoen-
coder’ (Kingma and Welling, 2013) which applies Gaussian distributions to map
the extracted features of each images is another potential approach to solve the
issue of this rotation variance of clustering results. Preservation of rotation in-
variance in this way will be left for future work.

Thirdly, in our Appendix 5.A, we show a perfect separation between lensing and
non-lensing using the simulated data without lenses (i.e. central galaxies) within
our technique. Although it is an unrealistic result considering we cannot perfectly
deblend lenses and sources in real data, it is an indication of the improvement we
might see without lenses through a pre-processing procedure of removing central
galaxies.

One of the main issues of this technique is that we need a certain amount
of data with strong features (e.g., lensed images, merger events, feature galaxies,
etc) to let a CAE capture a variety of features from these objects. If the data with
strong features is rare, the CAE would fail to capture the features and reproduce
an inaccurate image.
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The galaxy-galaxy strong lensing systems are relatively rare events in the uni-
verse. We have therefore had to use an amount of simulated data to train on.
This situation could be potentially improved upon by further modification of the
CAE architecture and possible data pre-processing. However, this technique is
likely suitable for the astronomical objects with a relatively balanced distribution
of features, such as the classification of galaxy morphology (Chapter 6). How-
ever, few-shot learning (Li et al., 2006) can be used when the labelled data is
very limited. This could be one direction for improving the issue of having an
extremely imbalanced data set within strong lensing detection scenarios.

On the other hand, the true power of an unsupervised machine learning tech-
nique is to find the hidden patterns or unrevealed characteristics in imaging data
rather than just improving the efficiency or the performance for a known classifi-
cation. To reveal the power of this unsupervised technique, we need to reconsider
the selection method to determine the optimal number of the neurons in the em-
bedded layer (EL) of the CAE to replace the value of AUC (Fig. 5.6) in the future.
Additionally, a forecast for the minimum number of features needed when using
real observed data will be investigated in future work by improving the quality
of the simulations and by adding more categories with realistic contamination.
The ultimate determination for the optimal number of extracted features is also
crucial for future usage when applying this unsupervised technique to observed
data.

5.6 Conclusion

The purpose of this chapter is to introduce an unsupervised machine learning
technique that differs considerably from previous related works on the application
to astronomical data. The unsupervised machine learning technique adopted in
this study is composed of the feature extraction by a convolutional autoencoder
(CAE) and a clustering algorithm - a Bayesian Gaussian mixture model (BGM).
We go beyond previous unsupervised work such as Hocking et al. (2018) and
Martin et al. (2019) who applied Self-Organised Map (neural networks; Kohonen,
1997) and hierarchical clustering to carry out feature extraction and clustering,
respectively.

We use the spaced-based simulated data from the Euclid Space telescope with
a visual band (VIS) from the Strong Gravitational Lenses Finding Challenge
(Lens Finding Challenge; Metcalf et al., 2019b) and revisit this challenge. To
compare our result with other lens-finding approaches, we propose a simple way
to calculate the predicted probability of an image to be within each type - lensing
and non-lensing by classifying the features of each cluster (Section 5.3.3). This
method, which promises to save an extensive effort need for data labelling in
supervised machine learning, reaches an AUC value of 0.8617 ± 0.0063 and an
accuracy of 0.7725 ± 0.0048 on the classification of galaxy-galaxy strong lensing
events using the training set of the space-based survey from the Lens Finding
Challenge.
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The main accomplishment of this study is that our technique captures mean-
ingful features which follow human visual assessment from images without any
initial label information. Additionally, this technique distinguishes a variety of
lensing types (e.g., Einstein rings with different radii, different appearance of arcs)
(Fig. 5.9 & Fig. 5.16) and potentially can detect unusual lensing features. The
discriminating ability is highlighted in Appendix 5.A using a pre-trained CAE
model on the simulated data without lenses.

We then revisit the Lens Finding Challenge by applying our technique on their
challenge testing data (section 5.4.2.3). The results show a degradation in per-
formance from the training set to the challenge testing data which is due to the
difference in the distribution of the Signal-to-Noise Ratios (SNR) and the num-
ber of lensed pixels above 1σ in the lensed images in the challenge testing data.
Therefore, we applied a cut at 100 pixels and 50 SNR to the challenge testing
data, with the results shown in Fig. 5.14. As can be seen, by removing these
systems we improve the performance of our technique.

Another advantage of our technique is that it also retains its discriminating
ability when the fraction of lensing images varies. As is shown in Section 5.4.2.2,
the performance is consistent for the cases of the data holding ∼0.01 percent or
∼50 percent of lensing images, once the unsupervised model is well pre-trained.

The most promising advantage of this technique is the pre-selection in the
process of searching for strong lenses in upcoming large scale imaging surveys. It
reduces the sample size of the dataset needed for the classification by cleaning
up apparent non-lensing systems. Also, our approach can identify rare lensing
systems with unusual characteristics such as multiple Einstein Rings, which can
be identified as non-lenses with a high probability by supervised finders if the
training sets do not contain these features.

In the future, as discussed in Section 5.5, we will try to improve the competi-
tiveness of our approach by adopting different architectures of neural networks,
alternative autoencoders or clustering algorithms. Combining unsupervised and
supervised techniques is another direction we plan for increasing the performance
of the identification of strong lenses. Finally, the development of a quantita-
tive validation tool for unsupervised machine learning techniques such as the
Receiver Operating Characteristic curve (ROC curve) for supervised machine
learning techniques is of great importance for future work. Without such diag-
nostics, it is not possible to objectively compare unsupervised machine learning
approaches.

5.A A Test on Simulated Data without Lenses

As part of our investigation, we test our pre-trained convolutional autoencoder
(CAE; section 5.3.2) on our simulated data without lenses (i.e. central galaxies)
in this study. The result is shown in Fig. 5.16. The purpose of this test is to
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explore the potential usefulness for this technique when deblending of the lenses
from the sources is possible.

The simulated data we used is the training set from the Strong Gravita-
tional Lenses Finding Challenge (Lens Finding Challenge; Metcalf et al., 2019b).
This challenge offered participants images with all possible image types (lenses,
sources, and background noise), images with lenses only, and images with sources
only. The simulated data without lenses (central galaxy, i.e. with source only)
emphasizes the features of the images, thus, we use the pre-trained model trained
by images with linear scale using 20 features (Fig. 5.6) in the embedded layer
(EL) of the CAE.

The result reconfirms our results in section 5.4.2.1. We ordered the clusters
based on the appearance of the images in the cluster in Fig. 5.16 such that it is
easier to see the trend. Above the first row in Fig. 5.16 shows the cluster ID and
the fraction of both lensing (lensing) and non-lensing (non) in the cluster.

The first column (cluster) contains all the non-lensing images, which are shown
as empty images when there are no lenses in the images. From the second to the
eighth column in Fig. 5.16 show the structure of Einstein rings with different radii
and from the ninth column in Fig. 5.16 to Fig. 5.17 show the arcs structure with
different features such as positions, lengths, or the radii of arcs.

We also reconfirm that the rotation invariance cannot be preserved using our
current technique (the last four columns of Fig. 5.10 in section 5.4.2.1). The
characteristic of the CAE is to minimize the difference between input and output
images; therefore, arcs with similar radii and lengths but located at different
positions are identified as different clusters by our unsupervised technique at the
current stage. Although this rotation variant has no significant effect on the final
result, the improvement on considering rotation invariance might be helpful to
reduce the complexity of extracted features when applying this technique to real
data.

Additionally, the lensing and non-lensing images are perfectly separated in
this test. Although it is unrealistic, we might be able to significantly improve
the performance and strengthen the usefulness of this technique by approaching
the condition of the images in this test through a pre-processing procedure of
removing central galaxies which is possible.



Chapter 6

Beyond the Hubble Sequence - Exploring

Galaxy Morphology with Unsupervised Machine

Learning

This chapter is based on unpublished material by Ting-Yun Cheng, under the
supervision of Marc Huertas-Company, Christopher J. Conselice, and Alfonso
Aragón-Salamanca.

117



118

Abstract

In this chapter, we apply an unsupervised machine learning technique composed
of a feature extractor with a vector-quantised variational autoencoder (VQ-VAE)
and a hierarchical clustering algorithm (HC) to explore unsupervised deep learn-
ing classifications of galaxy morphology. We propose a new methodology includ-
ing: (1) consideration of the clustering performance simultaneously when learning
features from images; (2) to allow different distance thresholds used in the HC
algorithm; (3) to transform the feature of galaxy orientation in the dataset into
a cut to determine the number of clusters. This setup provides 27 clusters which
are separated based on galaxy shape and structure (e.g., Sérsic index, concen-
tration, asymmetry, Gini coefficient). The given clusters are well correlated with
physical properties such as the colour-magnitude diagram, and show an evolution
of the mass-size relations between different machine-defined galaxy morphologies.
When we merge the given clusters into two preliminary clusters to provide a bi-
nary classification, an accuracy of ∼ 87% is reached using the imbalanced dataset
which includes 22.7% early-type galaxies and 77.3% late-type galaxies. Compar-
ing the given clusters with the Hubble types (ellipticals, lenticulars, early spirals,
late spirals, and irregulars), we conclude an intrinsic vagueness existed in vi-
sual classification systems, in particular galaxies with transitional features such
as lenticulars and early spirals. Based on this, the main result in this work is
not how well the unsupervised method can match visual classification, but that
the method provides an independent classification that may be more physically
meaningful than the visual one.
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6.1 Introduction

As introduced in Section 1.3, galaxy structure and visual morphology display a
strong connection with their stellar population properties, such as surface bright-
ness, colour, and the formation history of galaxies (Holmberg, 1958; Dressler,
1980). The dominant visual morphological classification system in use today was
first constructed by Hubble (1926, 1936, Fig. 1.1). Since then, a number of de-
tailed classification systems were proposed such as ones including the notation
for the inter and outer ring structure (de Vaucouleurs, 1959) and different arm
classes (Elmegreen and Elmegreen, 1982, 1987), among others.

However, visual classification systems can be intrinsically biased due to the sub-
jective judgement of different human classifiers. These human errors are unavoid-
able and sometimes cannot be reproduced for carrying out a statistical analysis.
This greatly limits the ability to use galaxy classification in a formal quantita-
tive way. These issues led astronomers to search for a quantitative description
of galaxy structure based on the shape, structure, and physical properties of
galaxies which can in principle be connected with visual morphology. For ex-
ample, the Principal Component Analysis (PCA) was applied to determine the
number of dominant features to reproduce the variance shown in observation in
Whitmore (1984) as well as to provide an objective procedure for analysing galaxy
properties (also see Conselice, 2006). Other studies such as non-parametric meth-
ods, e.g., concentration, asymmetry, smoothness/clumpiness, and gini coefficient
(Conselice et al., 2000; Bershady et al., 2000; Abraham et al., 2003; Conselice,
2003; Lotz et al., 2004; Law et al., 2007), and parametric methods, e.g., Sérsic
profile (Sérsic, 1963, 1968) for measuring galaxy structure were also proposed
to provide a more objective and quantitative classification systems than visual
assessment alone.

Even though quantitative measures of galaxy structure are extremely useful
for measuring properties such as the merger history (e.g., Conselice, 2003), mor-
phological ‘classifications’ into types is still an important and complementary
process. However, it is not clear if indeed we know what these best ‘types’ are.
Thus, in this study we build a galaxy morphological classification system that
does not involve human bias through a machine learning approach. For this pur-
pose, we use unsupervised machine learning which is trained without any prior
knowledge (e.g., galaxy labels, such as Hubble types). This approach is able
to give us the classifications from the machine’s perspective based upon input
features. However, with an unsupervised machine learning technique it becomes
more challenging to have a ‘sensible’ classification, that is one with more consis-
tency with human opinion, when the dimensionality of a feature space becomes
high (curse of dimensionality, Bellman, 1954; Keogh and Mueen, 2017). In as-
tronomical studies, unsupervised machine learning applications have been mostly
used in the studies of spectroscopic data which is less dimensional than applying
to imaging data (e.g., Geach, 2012; Krone-Martins and Moitinho, 2014; Carrasco
Kind and Brunner, 2014; Siudek et al., 2018a).
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There are currently several types of astronomical studies that apply unsu-
pervised machine learning techniques to images which reach reasonable results,
including: galaxy morphology (Hocking et al., 2018; Martin et al., 2019), strong
lensing identification (Cheng et al., 2020b, Chapter 5), and anomaly detection
(Xiong et al., 2018; Margalef-Bentabol et al., 2020). For example, Hocking et al.
(2018) and Martin et al. (2019) apply a technique called Growing Neural Gas
algorithm (Fritzke, 1994), which is a type of Self-organising Maps (SOMs, Koho-
nen, 1997), to extract features from images. These features are then connected
with a hierarchical clustering algorithm (Hastie et al., 2009). On the other hand,
Cheng et al. (2020b, Chapter 5) use a fundamentally different approach by using
a convolutional autoencoder (Masci et al., 2011), which includes an architecture
of convolutional neural networks, for feature extraction. This method connects
the extracted features with a Bayesian Gaussian mixture model from which a
clustering analysis can be done.

In this study, we apply an architecture consisting of a convolutional autoen-
coder, considering convolutional neural networks have demonstrated their capa-
bility for capturing representative and meaningful features from images (Krizhevsky
et al., 2012). We do not use the same convolutional autoencoder as Cheng et al.
(2020b, Chapter 5), but we apply a newly developed technique by Google Deep-
Mind (van den Oord et al., 2017; Razavi et al., 2019) called ‘Vector-Quantised
Variational Autoencoder (VQ-VAE)’. This technique includes a vector quantisa-
tion method that accelerates the time-consuming process of feature extraction
when using a convolutional autoencoder, as explained in Cheng et al. (2020b,
Chapter 5). On the other hand, for clustering algorithms, we decide to apply
a modified hierarchical clustering method to group the data (see details in Sec-
tion 6.2) in order to explore connections between the distances amongst extracted
features in feature space, and the number of classification clusters.

In this chapter, we use this unsupervised machine learning technique to develop
a galaxy morphology classification system defined by a machine, and compare it
with traditional visual classification system such as the Hubble sequence. We
furthermore also compare our machine developed classification with galaxy phys-
ical properties, such as stellar mass, colour, and physical size of galaxies. We use
monochromatic images throughout to focus only on the impact of galaxy shape
and structure on morphological classifications in this chapter. The methodology
we develop is introduced in Section 6.2, while the detailed description of how to
approach using our method and the data used in this study are shown in Sec-
tion 6.3. Section 6.4 presents the results in this study. Finally, we conclude the
work in Section 6.5.

6.2 Methodology

In this section we explain our unsupervised machine learning methodology that
is used throughout this chapter. We give a brief overview here, before going into
detail in the following subsections.
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Our unsupervised machine learning technique includes a feature learning phase
with a vector-quantised variational autoencoder (VQ-VAE; Section 6.2.1 and Sec-
tion 6.2.2) and a clustering phase using a hierarchical clustering algorithm (HC;
Section 6.2.3). Several novel approaches for unsupervised machine learning ap-
plications are made in this work: (1) the VQ-VAE considers both reconstruction
and preliminary clustering results in the feature learning phase (Section 6.2.2
and also see Section 6.3.3); (2) multiple different distance thresholds are used to
draw the decision lines on the merger tree in the clustering process (see details
in Section 6.2.3).

6.2.1 Vector-Quantised Variational Autoencoder (VQ-VAE)

The vector-quantised variational autoencoder (hereafter, VQ-VAE) was built by
Google DeepMind (van den Oord et al., 2017; Razavi et al., 2019) and was orig-
inally used for high-fidelity image emulation. The task of image emulation is
to learn the distribution of the data given a set of training images, and then to
reproduce the images with the learnt distribution. In details, the structure of an
autoencoder (Fig. 6.1) contains an encoder with a posterior distribution q (z|x)
and a prior distribution p (z) where x is the input data and z represents latent
variable, and a decoder with a distribution p (x|z) for reproducing the input data.

The VQ-VAE is a type of autoencoder which includes the structure of convo-
lutional neural networks and applies a vector quantisation process (van den Oord
et al., 2017) to make the posterior and prior distribution become categorical. By
using a categorical distribution, the computational time for training an autoen-
coder is significantly reduced compared to other machine learning methods. For
example, in Cheng et al. (2020b, Chapter 5), it takes up to 5 days to train 100,000
images by a convolutional autoencoder running on a NVIDIA GeForce GTX 1080
Ti GPU, while a VQ-VAE takes up to a few hours to train the same amount of
data with the same device. This is an enormous difference and shows the power
of the VQ-VAE method.

Following the top coloured area in Fig. 6.1, the posterior categorical distribution
q (z|x) is defined as (van den Oord et al., 2017; Razavi et al., 2019):

q (z = k|x) =

{
1 for k = argminj‖ze (x)− ej‖2

0 otherwise
, (6.1)

where ze (x) is the output of the encoder (the blue part at the left in the figure),
the value ej represents a vector in the codebook which is used for vector-quantising
the ze (x), and k is the index for the vector used in the selected codebook (the
top box of the yellow part in the figure). We then measure the vector-quantised
representation zq (x), which is the input of the decoder (the blue shading at the
right side in the figure), through Equations 6.1 and 6.2.

zq (x) = ek, where k = argminj‖ze (x)− ej‖2. (6.2)



6.2. Methodology 122

The vector quantisation process is shown as the yellow part in Fig. 6.1. The
output of an encoder, ze (x) can be represented by a combination of the index
of different vectors, k, in the codebook (the square in the middle of the yellow
part). For example, in Fig. 6.1, a three dimensional ‘pixel’ in the output of an
encoder is represented by a vector, e3, after the vector quantisation. We then
use the index of these vectors to build a two dimensional index map. For the
pixel used in our example the value is 3. With this index map, we can rebuild
the distribution, zq (x), with the same dimension as ze (x) but in this case each
‘pixel’ in zq (x) is quantised to one of the vectors shown in the codebook. For
our example, the vector e3 is used for the pixel. The distribution of zq (x) is then
used as the input for the decoder to reconstruct the images.

The loss function of the original VQ-VAE contains three parts: reconstructed
loss, codebook loss, and commitment loss. An additional penalty is considered
later in the modified version of the VQ-VAE (see Section 6.2.2). The recon-
structed loss is measured by comparing the reconstructed images with the input
images. The codebook loss is used to make the selected codebook, ej, approach
the output of the encoder, ze (x), while the commitment loss is applied to encour-
age the ze (x) to be as close as possible to the chosen codebook from the previous
epoch. With these definitions, the loss function, L, for the VQ-VAE is defined as
(Razavi et al., 2019):

L = log p (x|zq (x)) + ‖sg [ze (x)]− e‖2
2 + β‖ze (x)− sg [e]‖2

2, (6.3)

where the value sg is the stopgradient operator and β is used for adjusting the
weight of the commitment loss. The study of van den Oord et al. (2017) found
that these results correlate with the value of β, and no apparent change occurs
when β ranges from 0.1 to 2.0. Therefore, we set β = 0.25 in this study which
follows the setting in van den Oord et al. (2017).

The details of the VQ-VAE architecture is shown in Table 6.1. Four convo-
lutional layers are used in both the encoder and decoder, and residual neural
networks (ResNets, He et al., 2016) are used in this architecture to create a
deeper neural network with less complexity. The activation function applied in
the convolutional layers is the Rectified Linear Unit (ReLu) (Nair and Hinton,
2010) such that f(z) = 0 if z < 0 while f(z) = z if z ≥ 0. The VQ-VAE code is
based upon the example provided in sonnet library (DeepMind, 2018)1 which is
built on top of TensorFlow (Abadi et al., 2015b)2. To train the VQ-VAE, we
apply the Adam Optimiser (Kingma and Ba, 2014) and the learning rate is set to
0.0003 which is used in Razavi et al. (2019).

6.2.2 Modified VQ-VAE

In this study, we apply a modification to our original VQ-VAE to consider both
image reconstruction and a preliminary clustering result when extracting the
representative features from images (Fig. 6.1). To achieve this goal, a penalty

1https://github.com/deepmind/sonnet
2https://www.tensorflow.org
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Figure 6.1: The schematic architecture of the modified VQ-VAE used for feature
extraction of images. The top aspect with a coloured background is the main
architecture of the VQ-VAE, which is then modified to consider the silhouette
score calculated using the two preliminary clusters given by k-medoids clustering
as a part of the loss function when training VQ-VAE (see details in Section 6.2.2).
The blue shading at the left and right represents the encoder and the decoder,
respectively while the yellow part shows the vector quantisation process. The
details of each layer are shown in Table 6.1

Type #channel kernel size stride size activation function

Encoder
Conv2D 1 64 4×4 2×2 ReLu
Conv2D 2 128 4×4 2×2 ReLu
Conv2D 3 128 4×4 2×2 ReLu
Conv2D 4 128 3×3 1×1 ReLu
ResNets

Pre-VQ
Conv2D 4 64 1×1 1×1

Decoder
Conv2D 5 128 3×3 1×1 ReLu
ResNets

Conv2DTranspose 1 128 4×4 2×2 ReLu
Conv2DTranspose 2 64 4×4 2×2 ReLu
Conv2DTranspose 3 1 4×4 2×2

ResNets
Conv2D res1 32 3×3 1×1 ReLu
Conv2D res2 128 1×1 1×1 ReLu

Table 6.1: The hyper-parameters for the setup of the VQ-VAE used throughout
this study.
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defined by silhouette score (Rousseeuw, 1987) is added (Equation 6.5). The
silhouette score indicates how well clusters are separated from each other and
is defined by the formula,

s =
b− a

max (b, a)
, (6.4)

where a represents the mean intra-cluster distance while b is the distance between
a cluster and its nearest neighbour cluster. Therefore, a larger silhouette score
indicates a better separation between clusters in feature space. To train our
VQ-VAE, we minimise the final loss function combining the loss described in
Equation 6.3 and the penalty defined as,

Ls = (1− s)λ, (6.5)

where s represents the silhouette score and λ is a constant used for making the
magnitude of this penalty of the same order as other losses used in the VQ-VAE
(Section 6.2.1). The value of λ is equal to 0.1 in our case.

As shown in Fig. 6.1, during the training of the VQ-VAE, we interpolate
an instance-based clustering algorithm called ‘k-medoid clustering’ (Maranzana,
1963; Park and Jun, 2009) to obtain two preliminary classification clusters using
a flattened index map. The two clusters are then used for measuring a silhou-
ette score to evaluate the performance of the clustering. The Hamming distance
(Hamming, 1950) is used as the distance metric as our data is represented by the
indices of the vectors in the codebook whereby the number itself only represents a
category rather than a real value of the vector (more description in Section 6.2.3).
The ‘k-medoid clustering’ is used here for a fast evaluation; in the main cluster-
ing process after feature extraction, we appy hierarchical clustering algorithms
(Section 6.2.3).

6.2.3 Uneven Iterative Hierarchical Clustering

In this section we describe our hierarchical clustering procedure for identifying
different types of clusters. Hierarchical Clustering (HC; Johnson, 1967; Hastie
et al., 2009), in particular agglomerative HC (called sometimes ‘bottom-up’),
first assigns each input as an individual group, then merges two nearest (the most
similar) groups together based upon the measured pair distance in the feature
space, recursively. The ‘bottom-up’ HC structure allows a different number of
datapoints in clusters because it starts with individuals (Fig. 6.2). Other kinds of
clustering such as ‘top-down’ HC and K-medoid clustering used in Section 6.2.2
start with clusters themselves, which are more difficult to provide a starting point
for an uneven number of datapoints for the initial clusters.

The distance (similarity) measured in this study is the Hamming distance
(Hamming, 1950). As stated in Section 6.2.2, our data is represented by the
index of the vectors selected from the codebook. This is such that an index indi-
cates a category rather than the real value of a vector. We compare two data sets
represented by a set of features labelled with indices. The Hamming distance is
defined as the number of mismatched indices between the pair over the number
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1 2

3

Figure 6.2: The schematic dendrogram of the HC process. Datapoints are shown
on the x-axis, and gradually merge with each other based on the distance (sim-
ilarity) at the y-axis. Each solid line represents a branch and each black circle
indicates a stopping point for the corresponding branch (see Section 6.3.4). The
dashed lines represents the leaves (clusters) after the stopping points. The gray
dotted line indicates a cut suggesting the number of clusters in a branch (also see
Section 6.3.4; the results are shown in Section 6.4.2).
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of features used to represent the data. For example, assuming that an image can
be presented by four different features labelled with the indices: 1, 2, 3, 4, after
VQ-VAE; in this case the Hamming distance is 0 if the other image is represented
as 1, 2, 3, 4 as well, and the Hamming distance is 1 if it is represented by 4, 3, 2,
1.

For further clarification, Fig. 6.2 illustrates the clustering process. Each solid
line is a ‘branch’ while each black circle is a stopping point for the branch (Sec-
tion 6.3.4). The dashed lines below circles are leaves (clusters) where the gray
dotted lines indicates the distance for the number of clusters in a branch (Sec-
tion 6.3.4).

Within this study, we realise that when all the data are considered, the merging
point can be less accurate due to the mixture of blindly measured distances from a
great variety of extracted features in images. Therefore, we carry out an iterative
clustering process with a reverse concept that we control the data used for doing
HC from the top to bottom. We first make the HC merge all data into two top
parent branches, then apply the second round of HC to the data of a parent
branch to obtain two children branches, and apply the same procedure again to
the sub-data of a child branch to get two grandchildren branches, and so on.
The iterative action stops when it reaches a certain condition (the black circle in
Fig. 6.2; see Section 6.3.4).

In a typical HC, a uniform distance is used to determine the final clusters.
However, a uniform distance threshold is not appropriate considering that galax-
ies’ appearance in different morphological types have different complexity, such
that spiral galaxies have a larger diversity in appearance than elliptical galaxies.
Therefore, in this study, we propose to allow a different stopping point/distance
threshold for each branch depending on the complexity of the objects in the
branch (see Section 6.3.4). For example, a branch which consists of galaxies
which can look very different within a class may continue for many iterations,
while others may reach the stop criteria with fewer iterations due to a relatively
monotonous structure within the data of the branch. For example, spiral galaxies
can have a variety of spiral arms appearances, e.g., different number of arms, dif-
ferent positions of arms, etc. Therefore, the distance between spiral-like galaxies
are generally larger than the distance between two elliptical-like galaxies. This
consideration is sensible and is of great importance in morphological classification
of galaxies; however, this is neglected in a typical HC algorithm. Therefore, to
distinguish it from a typical HC algorithm, we call this setup ‘uneven clustering’
which provides us with a more precise distinction in galaxy shape, structure, and
morphology.

6.3 Implementation

The pipeline of this study includes three main steps: (1) feature selection; (2)
feature learning (using the modified VQ-VAE); and finally (3) clustering process.
The data used in this study are introduced in Section 6.3.1. The feature selection
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This work E S0 eSp lSp Irr
E S0−, S0 S0/a - Sab Sb - Sdm Irr

DS18 -3 -2, -1 0 - 2 3 - 8 10

Table 6.2: The classification scheme used in this work and in Domı́nguez Sánchez
et al. (2018, DS18; presented in T-Type). In DS18, they define the T-Type of
-3 for ellipticals (E), -2 for lenticulars at the early stage (S0−), -1 for lenticulars
at the intermediate to late stages (S0), 0 for S0/a, and the positive values of
T-Type are for different stages of spirals. Finally the T-Type of 10 represents
irregular galaxies (Irr).

is described in Section 6.3.2, and the setup for the feature learning process using
the modified VQ-VAE (Section 6.2.2) is discussed in Section 6.3.3. Finally, in
Section 6.3.4 we explain the details of the clustering process we use to classify
galaxies.

6.3.1 Data Sets

The imaging data used throughout this work is from the Sloan Digital Sky Survey
(SDSS) Data Release 7 (York et al., 2000; Abazajian et al., 2009) with a redshift
cut of z < 0.2. In order to focus on the impact of galaxy shape and structure
to morphological classifications, we utilise monochromatic r-band images. An
extension including colour and other factors is some to consider for the future.
Here we are focused on single-band morphological classification on features seen
and not in general a physical classification that might result from considering
galaxy colours and colour distributions.

To examine what types of systems our classification clusters contain, as well
as to have the flexibility within the data distribution in our datasets, we use
morphology labels defined by T-Type (de Vaucouleurs, 1964) and the probability
of being a barred galaxy (Pbar). The two quantities are both obtained using
deep learning techniques from Domı́nguez Sánchez et al. (2018, hereafter, DS18).
We define eight labels including barred galaxies that contain significant features
shown in the Hubble morphological system: ellipticals (E), lenticulars (S0), early
spirals (eSp), late spirals (lSp), irregulars (Irr), barred lenticulars (SB0), early
barred spirals (bar eSp), and late barred spirals (bar lSp).

The comparison of the classification scheme is shown in Table 6.2; in which,
S0, eSp, and lSp are separated into barred and non-barred galaxies based on the
value of Pbar. We additionally include labels of irregular galaxies from three other
works: Fukugita et al. (2007), Nair and Abraham (2010), and Oh et al. (2013)
to provide more irregular galaxies in our database. The morphological labels in
our datasets are not used for training our machine, but to prepare an appropriate
dataset with a specific data distribution, and as a way to examine the obtained
clusters in terms of these types.

To investigate the differences in the classification systems defined by humans
and those from a machine, as well as potential application within our unsupervised



6.3. Implementation 128

machine learning technique in future surveys, we prepare two different datasets:
which are ‘balanced’ and ‘imbalanced’. In the balanced dataset, we artificially
allocate the same number of galaxy images to each morphological type. The
eight human defined morphological types have visually distinctive differences from
each other; therefore, the purpose of this arrangement is to allow our VQ-VAE
consider fairly the characteristics of each morphology type when extracting the
representative features from input images. Otherwise it is possible that some
type of bias would result if the distribution of the types we select are input into
our VQ-VAE in the same fraction as they are found in the nearby universe. In
this case we would find that the late-type disks would dominate over early disks
and ellipticals (e.g., Conselice, 2006).

On the other hand, it is of great importance to know how an unsupervised ma-
chine learning technique can be applied in future surveys to explore a large scale
of unknown galaxies’ morphology in an ‘as is’ situation. That is, we need to know
how our VQ-VAE performs when galaxies are inputted from imaging observations
of the real universe with no balancing. For this goal, we set up the ‘imbalanced
dataset’ with a realistic distribution in terms of galaxy morphological types which
follows the distribution of nearby galaxies at z=0.033-0.044 as presented in Oh
et al. (2013). The type distributions of the balanced and imbalanced dataset are
shown in Fig. 6.3.

6.3.2 Feature Selection

In this section we discuss a preprocessing procedure to reject irrelevant informa-
tion from images. The feature selection procedure is used to select the pixels in
images that are significant and which reflect the shape or structure of the targets.
Cheng et al. (2020b, Chapter 5) showed that the background noise can result in
an overfit to the noise when training the convolutional autonencoder. To solve
this, Cheng et al. (2020b, Chapter 5) applied a simplified convolutional autoen-
coder to denoise the images and emphasise the pixels from the targets themselves
before the main task is computed. However, a denoising process by another au-
toencoder is time-consuming and could potentially add artificial structure when
reconstructing the images. Therefore, in this study, we simply use a one sigma
clipping of pixel values measured through the background noises as our selection
threshold. Any pixel value is below this criterion the pixel value is set as 0 (Mar-
tin et al., 2019). Whilst this will remove noise, it will also potentially remove
outer fainter portions of the galaxies themselves. However, this will retain the
brighter portions of the inner parts of galaxies where classification is done in any
case. Removing this fainter light does not have an effect on our measurements as
it would if we were measuring for example surface brightness profiles.

6.3.3 Feature Learning

As described, in this study, we apply a modified vector-quantised variational
autoencoder (VQ-VAE) (see Section 6.2.2) to carry out our unsupervised learn-
ing. Our VQ-VAE basically learns the representative features from our images.
It considers a preliminary clustering result by including an additional penalty
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(Equation 6.5) in the VQ-VAE (Section 6.2.2). This modification helps to find
not only better representative features for image reconstruction, but also the
features that can be well separated into two initial groups in feature space.

The main advantage of the VQ-VAE technique is to accelerate the unsupervised
feature extraction process which is over 30 times faster than using a typical convo-
lutional autoencoder (e.g., Cheng et al., 2020b) without a significant trade-off to
the reconstruction accuracy (Razavi et al., 2019). This is achieved by quantising
the values used for reconstruction (Section 6.2.1).

The hyper-parameters setting used in this study follows the setup described
in Razavi et al. (2019) except for the codebook size. It determines the number
of vectors available in the quantisation process (Section 6.2.1). This number of
vectors decides the ‘resolution’ of the reconstructed images. Namely, the more
available vectors, the more details can be presented in images. Razavi et al. (2019)
use 512 vectors in their codebook to generate high-fidelity emulated images of
different animals, e.g., dogs, cats. However, with a different goal from emulation
in our study, we realised through out analysis that a larger codebook size leads
to a worse clustering result. This is because the machine with a larger codebook
uses too many details of the images into account when carrying out the clustering.
These details help to complete the puzzle when emulating images but they blur
the boundary in the feature space when doing clustering. In this study, after a
series of tests, we choose a size of 16 for our codebook, which forces the machine
to use the provided vectors on the most significant features while still retaining
a certain level of the reconstruction quality. This number of 16 was determined
through experimental method, and is not based on any basic principles related to
galaxies or machine learning. It may, and probably does, differ within different
instances of use.

6.3.4 Clustering

Within the clustering task, we apply an uneven iterative hierarchical clustering
(Section 6.2.3) on the data represented by a set of vector-quantised features ob-
tained after the VQ-VAE.

In this study, we propose a new approach to decide the number of clusters
within unsupervised machine learning applications. This approach can be used
in other instances beyond using a VQ-VAE. Part of this is inspired by the fact
that the clusters can be highly sensitive to galaxy orientation. The concept we
use is to take the threshold measured by the features of galaxy orientation on
the merger tree to find where the effect of galaxy orientation in a branch starts
to appear (e.g., gray dotted lines in Fig. 6.2). In other words, this threshold also
provides the number of classification clusters that are not separated based on the
galaxy orientation. This threshold is defined by the average distance between the
artificially rotated images in a branch (drot),

drot =

∑N
i

∑N
j dij

N (N − 1)
, (6.6)
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where N is the number of datapoints in the branch, and dij represents the distance
between an image i and image j. The distance, dij, is measured through the
Hamming distance.

In this process we stop a branch and decide the number of clusters within that
branch when one of two criteria is satisfied: (1) the drot suggests fewer than two
clusters (≤ 2) in a branch; (2) the difference between the drot measured using the
data of a parent branch and the data of a child branch are smaller than 0.015:
that is, dp,rot − dc,rot ≤ 0.015.

The first criterion indicates that galaxy orientation is considered when having
more than two clusters (> 2) in this branch (e.g., circle 1 and 2 on Fig. 6.2).
Two clusters are the minimal number to split; therefore, we stop the iterative
clustering in a branch when this criterion is satisfied. On the other hand, the
second criterion is used to decide whether a branch (the parent branch) should
have more sub-branches (the child branches). The variation between branches is
less significant when the difference in the distance between the data of a parent
branch and a child branch is small (≤ 0.015). Therefore, there is no need to split
a parent branch when the second criterion is satisfied. The suggested number of
clusters by the drot of the parent branch is then the number of clusters in the
branch without having the effect of galaxy orientation. For example in Fig. 6.2,
the branch stops at the circle 3 by satisfying the second criterion, and the drot
(gray dotted line) suggests three clusters without showing the effect of galaxy
orientation in this branch.

6.4 Results and Discussion

6.4.1 Unsupervised Binary Classification

Starting with a simple examination, we enforce our machine to merge all galaxies
in the balanced dataset into two preliminary clusters. Examples of galaxies within
the two clusters are shown in Fig. 6.4. Galaxies in one cluster have clearly more
features (featured group; e.g., arm structure) than the galaxies of the other cluster
(less featured group; more elliptical). We examine the morphological distribution
in both clusters (left column in Fig. 6.5); one cluster has ∼ 96% late-type galaxies
(LTGs) and the other one has ∼ 60% early-type galaxies (ETGs).

Due to an unequal number between the ETGs and the LTGs in the balanced
dataset (Fig. 6.3), the fraction of ETGs and LTGs in each cluster might be
biased. We examine another quantity, ‘dominance’, which represents the ratio
between the fraction of a certain type in a given cluster to the fraction of this
type within the dataset (right column in Fig. 6.5). This quantity removes the
statistical influence from different number of types used in the input datasets;
hence, it shows a better representation of the galaxy features emphasised in the
cluster. Through the dominance distribution, we observe that the featured and
less featured group are clearly dominated by the features of LTGs and ETGs,
respectively.
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featured group less featured group

Ba

Figure 6.4: Examples of galaxies found within our two preliminary clusters using
the balanced dataset. Galaxies in one cluster have more features (left left), and
galaxies in the other group have relatively fewer features (right).

We further investigate the potential structural factors considered when sepa-
rating the two clusters. With the analysis of the two clusters, we can decide what
are the major structural factors in the clustering process. First of all it is clear
that with our unsupervised learning we obtain a separation into two main clus-
ters where one correlates with late-type galaxies and the other with early-type
galaxies. This verifies with a machine this basic dichotomy which has existed in
classification schemes for over 100 years.

However, we also want to compare our clusters with more quantitiative mea-
sures. In Fig. 6.6, we compare a variety of structural measurements such as
concentration, asymmetry, smoothness/clumpiness, Sérsic index, Gini coefficient,
M20, apparent half-light radius (Re, arcsec), and r-band apparent magnitude
(mr) between the two clusters. These measurements, except for the r-band mag-
nitude, are provided from the catalogue of Meert et al. (2015), and the r-band
magnitudes are from Simard et al. (2011). Within these measurements, the asym-
metry, Sérsic index, Gini coefficient, and M20 show a clear separation between the
two clusters in Fig. 6.6. This indicates that our machine takes galaxy structure
which correlates with measurable strcutural parameters (asymmetry, Gini coef-
ficient, M20) and light distribution (Sérsic index) into account rather than the
apparent size and the apparent brightness of galaxies, when categorising galaxies
into the two clusters. This is good, as it shows that our method does not depend
on distance or the apparent sizes of galaxies but on the inherent morphologies
and structures of the galaxies themselves.

Note that the concentration and smoothness distributions show fewer differ-
ences between the two clusters. These two quantities also do not have apparent
differences between the LTGs and ETGs in our dataset, because the galaxies in
our datasets are relatively faint (∼ 74% galaxies fainter than mr = 16) and the
image resolution is limited by the ground-based seeing (> 1 arcsec; the image
sampling is 0.396 arcsec per pixel). Although we cannot straightforwardly con-
firm the correlation between the two clusters and the concentration parameter,
the Gini coefficient and M20 provide a connection with the concept of concentra-
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tion.

Based on our visual assessment, we proceed to associate the featured group to
LTGs and the less featured group to ETGs in order to compare these machine-
predicted labels with the catalogue labels. Using the balanced dataset, the
machine-predicted and the catalogue labels agree with an accuracy of ∼ 0.75
in this binary classification. The accuracy is defined as the number of the correct
matches between the machine labels and the catalogue labels from all galaxies in
the dataset.

In Fig. 6.7, we present the T-Type distribution between the two clusters. It
shows that the main confusion in binary classification by our machine happens
when classifying early spirals into either ETGs or LTGs, in particular, Sab galax-
ies (T-Type=2). When we exclude early spirals from the balanced dataset, the
accuracy increases to ∼0.87 for binary classification.

We discuss some plausible reasons for this ‘failed’ classification by our machine.
For example, one uncertainty originates from the provided labels which combine
the uncertainty of both visual classifications and machine learning predictions.
Second, from our machine’s perspective, in addition to the potential machine
learning uncertainty, another possible uncertainty is caused by the reconstruction
inaccuracy in the VQ-VAE, particularly within spiral galaxies with insignificant
arm structures. However, although these causes are unavoidable, these conditions
exist only in a fairly small fraction of the data in the input imaging dataset. The
main reason for the mixture of early spirals in both clusters is due to the intrinsic
difficulty of classifying this type into either ETGs or LTGs based only on galaxy
structure. The ‘early spirals’ in fact include a wide range of transitional features
which are difficult to accurately define. The separation may become better when
including colour information; however, with our method, we state the difficulty
to discriminate early spirals when considering only galaxy appearance/structure
in a unsupervised machine learning methodology.

6.4.2 Machine Classification Scheme

In the previous section, we enforce our machine to provide two initial clusters for a
preliminary examination. However, the main motivation for this study is to inves-
tigate the classification system a machine would suggest when ‘looking’ at galaxies
and classifying them through machine learning. We use the proposed method in
Section 6.3 with the balanced dataset to let the machine explore freely and sug-
gest the number of clusters to categorise the galaxies in the dataset. Galaxies in
our dataset are categorised into 27 classification clusters by our machine. Com-
paring with previous work on unsupervised learning which produced 160 clusters
(Martin et al., 2019). Our method suggests significantly fewer number of galaxy
morphology classifications which is more in line with what one would surmise
is a more accurate number of classes for galaxies. In addition to the different
implementations applied in both works, the difference in the number of obtained
clusters might be due to the fact that we only consider monochromatic images
to investigate the impact of galaxy structure in this study, while Martin et al.
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Figure 6.7: The T-Type distribution between the two preliminary clusters within
the balanced dataset. The corresponding visual morphology class is shown in
Table 6.2. The blue shading shows the distribution of the featured group, while
the light orange colour represents the less featured group.

(2019) used coloured images. Additionally, to have more available measurements
of galaxy structure and properties, we choose to use the imaging data from the
Sloan Digital Sky Survey (SDSS; York et al., 2000; Abazajian et al., 2009) which
has a worse resolution and image sampling (0.396 arcsec per pixel) than the one
used in Martin et al. (2019, 0.168 arcsec per pixel). This may be a reason for the
resulting fewer number of clusters obtained in our work. To further investigate
galaxy morphology classifications, the colour information and images with better
resolutions will be considered in future work.

Examples of images from each of the 27 clusters are shown in Fig. 6.8. The
number shown on the bottom left is the average value of the T-Type in the
clusters and the identification number of the cluster is shown on the top right.
The identification numbers of groups are generated on the merger tree from left to
right; therefore, they are simply labels without physical meanings. Table 6.3 lists
the characteristics of each cluster in structural measurements, galaxy properties,
and statistics. This can be used to co-examine the figures shown from this section
to Section 6.4.4. Through visual assessment in Fig. 6.8, we observe that galaxies
in some clusters show bars (e.g., g15 and g16 in Fig. 6.8) or show more elongated
in shape than in others.

In Fig. 6.9, we re-examine the influence of the major structural parameters
such as the Sérsic index, asymmetry, Gini coefficient, and M20 (Section 6.4.1), in
separating clusters. Each coloured circle represents one cluster and is coloured
by the average value of the T-Type in the cluster. We confirm again a clear
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Figure 6.8: Examples of images from each cluster listed in the order of the average
value of the T-Type within that cluster (Table 6.2). The number shown at the
left bottom corner is the average value of the T-Type in the cluster. At the right
top corner, the identification number of the belonging cluster for the image is
presented.

correlation between our machine classification clusters and major structural fea-
tures. Additionally, the given clusters show a transition along with the T-Type.
This suggests the clusters are correlated with the visual morphology roughly from
early-types to late-types.

6.4.3 Machine Classifications versus Human Visual Clas-
sifications

It is important to note that the goal of this work is not to find a perfect agreement
between our machine-based classification and the visual morphologies. Our goals
are to understand the features used by our method to categorise galaxy images,
and to introduce a novel classification scheme ‘proposed’ by our machine. That
is, we want to develop a scheme whereby galaxies are classified by a reproducible
and scientific computational way and not by human opinion.
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Group <Sérsic n> <Gini> <M20> <A> < g − r > < Magr > <logM∗ > < Re > Ng Dg Fg,bar Dg,bar

ID (M�) (kpc) (Fg) (Fg,D) (Dg,nobar)

g1 1.3 0.48 -1.84 0.16 0.63 -21.16 10.31 6.98 896 eSp/lSp 0.54 1.45
(1.4%) (0.97) (1.22)

g2 1.6 0.47 -1.91 0.16 0.71 -21.5 10.47 9.48 441 eSp/lSp 0.68 1.82
(0.69%) (0.93) (0.83)

g3 1.68 0.46 -1.85 0.15 0.71 -21.61 10.56 9.83 287 eSp/lSp 0.74 1.97
(0.45%) (0.87) (0.7)

g4 1.63 0.5 -1.92 0.14 0.73 -21.32 10.46 6.92 2924 eSp/lSp 0.34 0.91
(4.57%) (0.79) (1.75)

g5 1.17 0.46 -1.84 0.13 0.52 -20.19 9.79 6.52 2141 lSp 0.46 1.22
(3.35%) (0.76) (1.3)

g6 1.08 0.5 -1.85 0.14 0.63 -20.53 10.12 6.06 2463 eSp/lSp 0.14 0.37
(3.85%) (0.8) (2.17)

g7 1.35 0.51 -1.73 0.19 0.46 -20.31 9.8 5.05 3055 lSp/Irr 0.16 0.42
(4.77%) (0.78) (0.67)

g8 0.82 0.44 -1.55 0.14 0.38 -19.45 9.37 3.98 510 Irr 0.02 0.04
(0.8%) (0.97) (0.03)

g9 1.26 0.47 -1.64 0.16 0.36 -19.82 9.49 5.26 1291 lSp/Irr 0.16 0.43
(2.02%) (0.94) (0.13)

g10 1.13 0.48 -1.65 0.19 0.42 -20.31 9.75 5.15 946 lSp/Irr 0.29 0.78
(1.48%) (0.94) (0.47)

g11 1.27 0.48 -1.66 0.18 0.36 -19.88 9.49 5.2 1130 lSp/Irr 0.17 0.44
(1.77%) (0.88) (0.29)

g12 1.33 0.46 -1.73 0.15 0.55 -20.99 10.22 7.32 1054 lSp 0.74 1.99
(1.65%) (0.85) (0.5)

g13 1.01 0.46 -1.75 0.14 0.51 -20.43 9.92 6.01 941 lSp 0.51 1.37
(1.47%) (0.81) (1.27)

g14 1.39 0.52 -1.83 0.14 0.63 -20.62 10.16 5.7 2079 eSp/lSp/Irr 0.12 0.32
(3.25%) (0.86) (1.76)

g15 1.85 0.48 -1.87 0.14 0.69 -21.64 10.61 8.9 1397 eSp/lSp 0.73 1.94
(2.18%) (0.87) (0.64)

g16 2.87 0.51 -2.02 0.15 0.83 -22.04 10.81 11.5 776 S0/eSp/lSp 0.8 2.12
(1.21%) (0.8) (0.51)

g17 1.47 0.48 -1.8 0.15 0.65 -21.43 10.46 7.15 989 eSp/lSp 0.65 1.72
(1.55%) (0.93) (0.87)

g18 1.82 0.53 -1.79 0.18 0.65 -20.95 10.2 6.51 553 eSp/lSp/Irr 0.27 0.72
(0.86%) (0.79) (0.98)

g19 1.43 0.5 -1.69 0.13 0.57 -20.59 10.0 6.4 1013 Irr 0.17 0.46
(1.58%) (0.59) (0.64)

g20 1.53 0.5 -1.69 0.15 0.54 -20.63 9.96 6.76 982 lSp/Irr 0.22 0.58
(1.53%) (0.71) (0.53)

g21 2.56 0.53 -1.9 0.12 0.76 -21.29 10.46 7.8 2138 S0/eSp/lSp/Irr 0.29 0.76
(3.34%) (0.68) (1.39)

g22 4.64 0.57 -2.09 0.1 0.94 -22.03 10.94 7.32 12733 E/S0 0.3 0.81
(19.9%) (0.78) (0.87)

g23 4.71 0.57 -2.09 0.11 0.94 -21.93 10.87 7.18 8474 E/S0 0.4 1.07
(13.24%) (0.8) (0.67)

g24 3.17 0.53 -2.04 0.13 0.81 -21.82 10.73 9.14 6420 S0/eSp/lSp 0.69 1.85
(10.03%) (0.69) (0.56)

g25 3.81 0.56 -2.05 0.12 0.94 -21.67 10.78 6.26 3485 S0 0.23 0.61
(5.45%) (0.62) (1.77)

g26 2.62 0.53 -2.02 0.13 0.85 -21.52 10.62 7.36 2056 S0/eSp/lSp 0.27 0.72
(3.21%) (0.88) (1.89)

g27 2.53 0.52 -1.99 0.14 0.85 -21.64 10.69 8.08 2826 S0/eSp 0.53 1.41
(4.42%) (0.71) (1.21)

Table 6.3: The table lists the average values of structural measurements [Sérsic
index, Gini coefficient, M20, Asymmetry (A)] and galaxy properties [g−r, r-band
absolute magnitude (Magr), stellar mass (logM∗), physical size (Re, kpc)] in each
machine-defined cluster. Additionally, the statistics of each cluster are presented
in the last four columns where Ng shows the number of galaxies in the cluster and
Fg indicates the percentage of total samples. The Dg lists the dominated types
in each cluster, which are selected based on the dominance of each morphology
type, and Fg,D shows the fraction of the dominated types in a cluster. The Fg,bar
is the fraction of barred galaxies in a cluster. Finally, Dg,bar and Dg,nobar is the
dominance of barred galaxies and non-barred galaxies in a cluster, respectively.
The ordering follows the group IDs which are simply labels for convenience.
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To better understand our machine-based classes, we compare them with visual
morphological classes such as the Hubble sequence, and discuss the visual features
extracted by our machine. To do this comparison, we associate each cluster with
one or a mix of Hubble types based on the dominance of each type within each of
the clusters (Fig. 6.10). As mentioned in Section 6.4.1, the ‘dominance’ of each
type is the ratio between the fraction of a given morphology type in the cluster
to the fraction in the dataset. We associate a given cluster with one or several
morphology types when the dominance of a certain type is > 1. This selection
indicates which kinds of visual features considered in a visual morphology type
are dominated in a cluster.

In Fig. 6.10, we show the accumulated distribution of the classification clusters
to one or a mix of visual morphology types. Each coloured bar represents one
cluster and the deeper bluer colours indicate more barred galaxies than non-
barred galaxies within that given cluster. In Fig. 6.10, the darkest blue represents
a cluster with the strong bar dominance, Dg,bar ≥ 1 and the non-bar dominance,
Dg,nobar < 1 (see the last column in Table 6.3; e.g., g16 in the table). The
medium blue is for a cluster with both bar and non-bar dominance ≥ 1 (weak
bar dominance; e.g., g27 in Table 6.3). This criterion indicates that the features of
a barred galaxy are not distinctive in a cluster. The lightest blue is used when the
bar dominance is Dg,bar < 1 (no/less dominance; e.g., g14 and g19 in Table 6.3).
Through the highlight of the bar dominance in clusters in Fig. 6.10, our machine
is shown to successfully discriminate between barred and non-barred galaxies.
Examples of clusters with different bar dominance are shown in Fig. 6.11.

We observe in Fig. 6.10 that no cluster is dominated by either elliptical galaxies
or early spirals only. The features of elliptical galaxies are recognised to have a
great similarity to some lenticular galaxies by our machine. Visually, we separate
ellipticals and lenticulars mainly based on the disk structure. However, compared
to the cluster dominated by only lenticulars (the g25 in Table 6.3) in Fig. 6.12,
the galaxies in the two clusters dominated by E/S0 (g22; g23) lack significant
disk structure, whereas ‘g22’ represents the 22th cluster, and so on (also see
Fig. 6.8 and Table 6.3). However, clusters with more disky galaxies, such as g27
(blue solid line in Fig. 6.12), are dominated by a mix of S0 and eSp. This is
likely an indication for an uncertainty in distinguishing ellipticals, lenticulars,
and early spirals in the visual classification system we use and not a defect of
our unsupervised learning. Only the lenticulars with a moderate range of Sérsic
index (peaks at ∼ 3; yellow solid line in Fig. 6.12) can be separated from other
morphology types.

Additionally, as stated in Section 6.4.1, early spirals are difficult to categorised
into either ETGs or LTGs, and as such it is difficult to have a distinctive cluster
dominated by only this morphology type (Fig. 6.10) due to the broad transitional
features in this type. This again indicates the intrinsic difficulty of visually sep-
arating early spirals from other morphology types, such as lenticulars and late
spirals.
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Most of our clusters have a mixture of different Hubble types within them which
indicates galaxies with similar features in appearance can be visually classifying
into a variety of morphology types (see examples in Fig. 6.13). In other words,
a mix of galaxy structure in fact exists in a visually defined morphology type.
This result reveals an intrinsic vagueness of the visual classification systems such
that they are not always accurately defined, with many galaxies not optimally
classified as a certain T-Type due to the diversity of properties beyond a guess
at morphology.

One exception from the above discussion is our cluster 21 (g21 in Table 6.3
with a mix of four morphology types (S0, eSp, lSp, Irr). This cluster is shown
to have galaxies with bright companions which overwhelms the brightness of the
central objects (the ‘g21’ row shown in Fig. 6.13). After the feature selection and
normalisation in Section 6.3.2, the central objects might become negligible to the
machine learning compared to the companions. This can result in difficulty for
our machine to capture the structure of the central objects as well as group these
galaxies correctly. On the other hand, galaxies with companions are more likely
to experience galaxy mergers, and thus this cluster can be used as an indication
to find potential merger events or compact groups of galaxies.

6.4.4 Machine Classifications versus Physical Properties

In previous sections, we show that our machine learning classifications trained
with monochromatic images are categorised based on structural features (Sec-
tion 6.4.2) and visual features (Section 6.4.3). In this section, we use the machine
classification scheme to study the correlation of galaxy physical properties and
galaxy morphology using the colour-magnitude diagram and the mass-size rela-
tion of galaxies.

In Fig. 6.14, we examine our the machine classification clusters plotted on the
colour-magnitude plane (left) and the mass-size plane (right). The colours and
physical sizes are again taken from Simard et al. (2011) while the stellar mass
originates from Mendel et al. (2014). Each circle represents one cluster, coloured
by the average value of the stellar mass of the galaxies in the cluster for the
colour-magnitude diagram and by the average value of colour for the mass-size
relations. These two plots show that each galaxy cluster as defined by the machine
has distinctive physical properties in galaxy colour, absolute magnitude, stellar
mass, and physical size. Additionally, our machine classes show a clear transition
between galaxy morphology and galaxy properties on both the colour-magnitude
diagram and the mass-size relations. Each star shows the average value of the
data with a certain visual morphology type (written in black) for comparison. The
machine-defined morphology types fill in the gap within the correlation of galaxy
morphology and galaxy properties along with the Hubble types. This indicates
that the machine classification scheme can complete the missing morphologies in
the visual classification systems without involving human potential bias. It will be
interesting to investigate the correlation of these machine-defined classifications
with galaxy environment and other galaxy properties, but this will be left to
study in a future work.
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Figure 6.11: Examples of the clusters with different bar dominance levels. Each
row shows five randomly picked examples in the cluster, where ‘g6’ represents the
6th cluster, and so on. From top to bottom, examples of no/less, weak, strong
bar dominance are presented, respectively. The galaxy morphology information
is shown below each image.

Figure 6.12: The Sérsic index distribution for the clusters dominated by E/S0
galaxies (g22: red solid line; g23: red dashed line), S0 (g25: yellow solid line),
and S0/eSp (g27 : blue solid line), where ‘g22’ represents the 22th cluster, and
so on.
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Figure 6.13: Examples of images of galaxies from clusters with a mix of many
visual morphology types. Each row shows five randomly picked examples within
the cluster, where ‘g22’ represents the 22th cluster, and so on. The morphology
information is shown below each image.
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eSp
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Irr

lSp
eSp

S0

E

Figure 6.14: Left: the colour-magnitude diagram of the classification clusters
where the x-axis is the average values of the r-band absolute magnitude (Magr)
and the y-axis represents the average value of the galaxy colours (g − r) within
each plotted cluster. Each circle represents one classification cluster from our
unsupervised machine and coloured by the average value of the stellar mass (M∗).
Right: the mass-size relation of the given clusters where the x-axis and y-axis is
the average values of the stellar mass (M∗) and the average values of the galaxy
physical sizes (Re, kpc), respectively. Each circle is coloured by the average value
of galaxy colour (g − r). In both graphs, each star shows the average values of
these quantities for the traditional Hubble types for comparison, where the type
of each is written in black.

Additionally, we notice on the mass-size diagram (right in Fig. 6.14) that the
five orange clusters above the eSp star-label are dominated by barred galaxies, in
particular, the top cluster with the largest average size has ∼ 80% barred galaxies
in the cluster (g16 in Table 6.3). Galaxies in this cluster have larger sizes, larger
stellar masses, and are redder in colour than other clusters with a mix of typical
spiral galaxies.

6.4.5 Dataset with a realistic distribution

To test the capability of our method on a realistic data distribution, we apply
our method to the imbalanced dataset (Fig. 6.3) which follows the distribution of
intrinsic morphology for nearby galaxies (Oh et al., 2013, Section 6.3.1). In this
section, we examine the performance using this dataset for: (1) binary classifi-
cation (Section 6.4.5.1) and (2) multiple classification clusters (Section 6.4.5.2)
using the imbalanced dataset, and compare the results with the one using the
balanced dataset.

6.4.5.1 Unsupervised binary classification

Similar to Section 6.4.1 for the balanced dataset, we merge the imbalanced dataset
into two preliminary clusters (Example of galaxies in each is shown in Fig. 6.15).
Although the imbalanced data has a significantly different distribution in galaxy
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Im

featured group less featured group

Figure 6.15: Examples of galaxies within the two preliminary clusters using the
imbalanced dataset. Galaxies in one cluster are with more features (left), and
galaxies in the other group are with relatively fewer features (right).

types from the balanced dataset, our machine obtains two preliminary clusters
with similar features to the two clusters provided using the balanced dataset
(Fig. 6.4). As before, one cluster is dominated by galaxies with many distinct
features while the other has galaxies with significantly fewer features.

Fig. 6.16 shows the morphological fractions of different types (left column) and
the dominance of each morphology type in each cluster (right column). The dom-
inance is, again, the ratio between the morphological fraction in the cluster to
the fraction in the dataset. This quantity removes the impact of the imbalanced
numbers between each type, and indicates the visual features emphasised in a
cluster. The two clusters are clearly dominated by LTGs and ETGs, respectively.
Additionally, the dominance distribution of the imbalanced dataset is completely
consistent with that of the balanced dataset (Fig. 6.5). This confirms that no
matter which data distribution is used, our machine is capable of separating the
two clusters based on the specific features existing in the corresponding morphol-
ogy types.

Additionally, applying our method to the imbalanced dataset we get an initial
accuracy of ∼0.87 in separating ETGs from LTGs. The accuracy is again defined
as the number of correct matches from the total samples. The reason for a higher
accuracy compared with the balanced dataset is due to a lower fraction of early
spirals in the imbalanced dataset (∼ 8%) than the balanced dataset (∼ 25%).
When we exclude the early spirals from the imbalanced dataset, the accuracy
barely changes, and it is consistent with the accuracy obtained when using the
balanced dataset (accuracy: ∼0.87; Section 6.4.1). These results show the ability
of our method to achieve reliable binary morphological classification for large
surveys with unknown morphological mixes.

6.4.5.2 Multiple classification clusters

Following Section 6.3.4, and using the imbalanced dataset, we obtain the same
number of clusters, 27, as when we used the balanced dataset through our method
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of determining the number of clusters (Section 6.4.2). The clustering results for
both datasets are very close to each other, with only very minor differences. For
example, 7 clusters are separated under the less featured group using the balanced
dataset while 8 clusters are obtained using the imbalanced dataset. Conversely,
we obtain 20 clusters for the featured group using the balanced dataset, and 19
using the imbalanced dataset.

In Fig. 6.17, we associate the classification clusters for the imbalanced, realistic,
data set with Hubble types based on the dominance of each type. We find no
clean clusters for ellipticals (E), lenticulars (S0), early spirals (eSp), irregulars
(Irr) when using the imbalanced dataset. The lack of clusters for E and eSp
is due to the same reasons for the balanced dataset discussed in Section 6.4.2:
these two visual morphologies are intrinsically difficult to separated from other
morphology types. Additionally, in Section 6.4.2, we conclude that to get a clean
S0 cluster, galaxies have to show a moderate disk structure (Fig. 6.12). However,
there is not a sufficient number of lenticulars with the relevant features due to
the low fraction of this type in the imbalanced dataset (Fig. 6.3). It is impossible
for the machine to classify a galaxy that does not exist in some abundence within
the dataset; therefore, we miss the pure S0 cluster when using the imbalanced
dataset. On the other hand, irregular galaxies do not have a specific structure;
therefore, it is easy to be confused with some late spirals with less structured
appearances by our machine, based on only galaxy structure and without the
prior knowledge of ‘late sprials’ or ‘irregulars’. They also suffer from the similar
cause of the missing S0 cluster: the insufficient number of irregular galaxies in
our imbalanced set decreases the possibility of the distinctive irregulars to be
picked out by our machine.

Similar to the results of the balanced dataset, the separation between clusters
might ‘improve’ in terms of being closer to a more physical classification when we
consider colour information in our machine. Therefore, this will be an important
part in future work.

6.5 Conclusion

In this chapter, we present an unsupervised machine learning technique by ap-
plying a combination of a feature extractor - a vector-quantised variational au-
toencoder (VQ-VAE) and a hierarchical clustering algorithm (HC). This method
involves a vector quantisation process which provides a rate of classification with
a feature extractor in the learning phase at least 30 times faster than a typical
convolutional antoencoder used in Cheng et al. (2020b, Chapter 5) on the same
device.

To sensibly explore galaxy morphologies and investigate the number of galaxy
morphological classes, we propose some novel modifications to the machine learn-
ing algorithms used in this work (Section 6.2). First, we include a preliminary
clustering result in the VQ-VAE architecture during the feature learning process.
This helps to extract features that can not only reproduce the input images but
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also be well separated into two preliminary clusters in feature space. Second,
different distance thresholds are used within each branch in the merger tree in
the HC process rather than a single distance threshold for a whole tree. This
flexibility prevents the creation of unnecessary clusters separating galaxies with
few features, while allowing more clusters for galaxies that show larger varia-
tion. Another innovation is to use galaxy orientation (a potential problem when
classifying galaxies) to our advantage, helping to decide the number of clusters
(Section 6.3.4).

Using the monochromatic images from the Sloan Digital Sky Survey (SDSS),
we first explore galaxy classifications using a dataset with a balanced number
of galaxies in each morphological class (Section 6.3.1). This is done to reduce
potential biases associated with number imbalances. Using this method we ob-
tain 27 clusters within this balanced dataset. We find that our method separates
the classification clusters based on galaxy shape and structure (e.g., Sérsic index,
asymmetry, Gini coefficient, M20). We then associate our classification clusters
with the Hubble sequence based on the dominance of each type in a given cluster
(Section 6.4.2). Clusters with barred, weak-barred, and non-barred galaxies are
well distinguished by our machine. However, when using the balanced dataset,
no clean clusters are found for ellipticals or early spirals (Fig. 6.10). Additionally,
most clusters are associated with a mixture of Hubble types. We thus conclude
that there is a fundamental difficulty in separating accurately galaxies with tran-
sitional features such as lenticular galaxies and early spirals with a machine. This
applies both to visual and machine classifications.

In addition, we find that each machine classification cluster has characteris-
tic galaxy properties (e.g., colours, masses, luminosities, sizes) that transition
smoothly along the Hubble sequence.

Overall, the machine classification clusters provide a reasonable and detailed
scheme for galaxy morphological classification based on a combination of mul-
tiple structural parameters, avoiding human errors and biases. The dominated
features in our classification clusters can be used as the foundation of an objec-
tive alternative to the Hubble sequence. Since our system separates well galaxies
with different shape, structure, and physical properties, it may prove useful in
generic galaxy formation and evolution studies. The system may be improved
by including multi-colour imaging and velocity maps. It will also be interesting
to apply our technique to higher redshift galaxies to see how the classification
cluster change.

To test the performance of our method with realistic morphological distribu-
tions, we also apply it to an imbalanced dataset which follows the morphological
distribution of nearby galaxies. The results are very similar to the ones obtained
with the balanced dataset, showing that our system is able to deal with large
galaxy samples with more realistic morphological mixes. It also shows that our
set up is not sensitive to different distributions of input galaxy morphologies, but
can handle different distributions.
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In the future, we intend to apply the techniques developed here to multi-colour
images with better resolution such as the data from the Dark Energy Survey
and the Euclid Space Telescope. Velocity maps from integral-field spectroscopic
surveys could also be included. The resulting classification system(s) should prove
very useful to better understand galaxy properties, their formation and evolution.
We also hope the future development of this work will result in a fundamental
change in how we approach galaxy morphological classification - both visually
and when using machine learning.



Chapter 7

Conclusions and Future Work

In this thesis, we have demonstrated the use of both supervised and unsupervised
machine learning techniques on galaxy morphological classification using imaging
data. As mentioned in Section 1.2, machine learning techniques in astronomical
applications can be categorised into three different stages: (1) before observation,
(2) raw data, and (3) after calibration. In this thesis, we focus on applying
machine learning techniques to calibrated imaging data, addressing two main
topics:

• classification - we discuss an optimal machine learning technique in terms
of accuracy, efficiency, and inclusiveness using imaging data for large-scale
surveys;

• exploration - we explore galaxy morphological classification without human
bias, and investigate a novel classification system defined by machine learn-
ing.

Through our approaches to these two topics, we provide a complete overview
of galaxy morphological classification using both supervised and unsupervised
machine learning methods. The conclusions for the two topics investigated in
this thesis are shown in Section 7.1 and Section 7.2. Finally, future plans are
presented in Section 7.3.

7.1 Automated Classifications

Along with the fast development of computational capability, astronomical ob-
servations will reach data rates of over terabyte-scale per night in the near future
(e.g. Ivezić et al., 2019), and simulations output complex information also on ter-
abyte scales (e.g. Springel et al., 2005). This officially declares that astronomical
studies have stepped into the so-called ‘Big Data era’ (Section 1.1). To analyse
such a vast amount of complex data produced in astronomical surveys and simu-
lations, machine learning techniques are introduced to a variety of astronomical
analyses. In this thesis, we concentrate on an accurate, efficient, and inclusive
classification task.

Classification tasks are commonly approached by supervised machine learning
where we train machines with labels involving human judgement. In Chapter 2,
we introduced a variety of supervised machine learning techniques (Table 2.1) to
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classify galaxies from the Dark Energy Survey (DES) Year 1 (Y1) imaging data
into either Ellipticals or Spirals. A complete comparison in the accuracy and ef-
ficiency of each supervised method was carried out in that chapter. Additionally,
we inspected the impact of rotated images, the balance in number between the
target types, and the number of images used in training (Chapter 3). We con-
cluded that (1) using rotated images for the data augmentation does not cause
biases; (2) the balance in the number of data between the target types is im-
portant, and a balanced dataset shows a better performance than an imbalanced
one; (3) more training data helps the performance, but the relative improvement
decreases when the number increases. Meanwhile, we conclude that there is a
significant improvement when using gradient images (specifically, the Histogram
of Oriented Gradient technique) in most supervised methods with imaging data.

Convolutional neural networks (CNN) are the most optimal method within the
ten supervised methods tested using imaging data. In Chapter 3, we further
investigate the CNN trained with a combination of linear and gradient images
from the Dark Energy Survey (DES) Year 1 (Y1) data and the labels provided
from the Galaxy Zoo 1 (GZ1) catalogue. The better resolution (0.′′263 per pixel)
and greater depth (i = 22.51) of DES reveal a few incorrect GZ1 classifications
based on data from the Sloan Digital Sky Survey (SDSS). After correcting these
labels, our CNN reaches an accuracy of over 0.99 in the binary classification for
Ellipticals and Spirals. We then apply this setup to the DES Year 3 (Y3) data
and provide one of the largest galaxy morphological classification catalogue to
date which includes over 20 million galaxies (Chapter 4).

In our studies, supervised methods can reach great accuracy with high efficiency
(Table 2.3). However, supervised machine learning has a potential inclusivity is-
sue: it may encounter problems in classifying galaxies that are significantly differ-
ent from the galaxies in the training set or are not clearly defined in the training
set. We notice in Chapter 4 that regardless of the image quality (e.g., signal-to-
noise ratio and resolution), the CNN predictions show a better performance on
classifying a certain type of galaxies that exists in the training set (Fig. 4.10).
For example, a CNN model trained with bright galaxies at a low redshift shows
a better prediction for fainter galaxies than for bright galaxies at a higher red-
shift. Our result resonated with the The Elephant in the Room from Rosenfeld
et al. (2018) that supervised machine learning fails to correctly classify objects if
the test conditions do not exist in the training set. Second, supervised machine
learning classifies based on the provided labels; therefore, it lacks the flexibility
to fairly distribute weights to unknown patterns. In Chapter 3, we notice that
for difficult galaxies such as lenticulars, which have no clear definition provided
by GZ1 labels, our CNN generally give low predicted probabilities. Although this
result indicates that supervised machine learning can be used to provide a label
that does not exist in the training by giving an appropriate probability threshold,
supervised methods cannot broadly explore unknown features. In future surveys,
we cannot guarantee that the current human knowledge of galaxy morphology
has covered well what we might obverse when more and more galaxies are re-
vealed. Therefore, unsupervised machine learning techniques which have no (or
less) need for humans’ involvement are applied to classification tasks.
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As a bridge, we start an unsupervised machine learning application in iden-
tifying galaxy-galaxy strong lensing systems (GGSLs) using the simulated data
with the image quality similar to that of the Euclid from the Strong Gravitational
Lens Finding Challenge (Lens Finding Challenge; Metcalf et al., 2019a) in Chap-
ter 5. This project has three main advantages for investigating the capability
of unsupervised machine learning: (1) the GGSLs have distinctive features such
as Einstein rings and arc structures; (2) simulated data are less complex than
observed data; (3) the Lens Finding Challenge provides a complete comparison
between our work and other supervised methods. We are not only the first re-
search group introducing an unsupervised machine learning technique to classify
lensing systems, but also the first one in astronomy proposing the method used
in our work that combines a convolutional autoencoder for feature learning and
a Bayesian Gaussian mixture model for clustering.

In Chapter 5, we prove the ability of this setup to capture representatively
structural features from images and separate the images into several sensible
clusters (24 clusters in this work). They distinguish different types of lensing
systems such as different Einstein ring sizes and different arc structures (Fig. 5.9
and Fig. 5.16 to Fig. 5.17). With fewer clusters, separated using visual structures,
our unsupervised machine can be used as a preliminary classification process to
group images with similar features for large surveys. Compared with supervised
methods, our method picks up ∼ 63 percent of lensing images from all lenses in
the training set. Additionally, with the assumed probability proposed in Chap-
ter 5, we reach an accuracy of 77.3± 0.5% in the binary classification of lensing
and non-lensing systems. Although our unsupervised method shows less accu-
racy than most supervised methods (Table 5.2), it is of great importance to note
that (1) an unsupervised machine is fundamentally different from a supervised
machine in a variety of aspects, e.g., weights allocation. Without the assistance
(or contamination) of human labelling, an unsupervised machine provides a less
accurate but more objective judgement to classify target objects. (2) the ‘accu-
racy’ here is measured by comparing the predictions with human-defined labels;
therefore, there is an intrinsic unfairness to compare the performance between
unsupervised and supervised methods. (3) Furthermore, human-defined labels
have an intrinsic bias and broader inclusion due to the subjective judgement and
enormous background knowledge taken into account beneath the given decision.

Due to the reasons discussed above, we suggest to apply unsupervised machine
learning techniques (1) to a simple classification task (e.g., binary or ternary); (2)
to give a preliminary categorisation based on visual features for large-scale data;
(3) to explore data without human bias. The first two approaches are discussed in
Chapter 5, and the last task is carried out in Chapter 6 for galaxy morphological
classification.

7.2 Galaxy Morphology without Human Bias

In Chapter 6, we improve the technique proposed in Chapter 5 and apply it to
explore galaxy morphology using the Sloan Digital Sky Survey imaging data.
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The improved unsupervised machine includes a vector-quantised variation au-
toencoder (VQ-VAE) for feature learning and a hierarchical clustering (HC) algo-
rithm. The vector quantisation process applied in the VQ-VAE makes the feature
learning phase at least 30 times faster than a typical convolutional autoencoder
(e.g., Chapter 5). The agglomerative HC (Johnson, 1967) algorithm has no need
for any presumption on the distribution of the obtained clusters. Additionally,
to sensibly explore galaxy morphologies we included three strategies: (1) to con-
sider a preliminary cluster result in the VQ-VAE when extracting features from
images; (2) to allow different distance thresholds used to define clusters in each
branch in the HC process; (3) to use the feature of galaxy orientation, which
can potentially be a problem in unsupervised machine learning applications, to
decide the optimal number of clusters (Section 6.3). The strategies applied to
our unsupervised machine result in 27 classification clusters. The clusters are
separated based on galaxy shape and structure presented by structural measure-
ments such as the Sérsic index, asymmetry, Gini coefficient, M20. Additionally,
we confirm that regardless of the galaxy morphology distribution in the dataset,
our unsupervised machine captures consistent features. This characteristic makes
our unsupervised methods very useful for large astronomical surveys.

Our method provides 27 preliminary classes for further visual assessment. This
unsupervised method significantly accelerates the classification process. More-
over, our unsupervised machine reaches an accuracy of ∼ 0.87 for binary classi-
fication of early-type (ETGs) and late-type galaxies (LTGs) when we categorise
galaxies in an imbalanced dataset, which includes 23% ETGs and 77% LTGS,
into only two clusters.

To explore the machine-defined classes, we examined the galaxy properties,
and compared them with Hubble types. First, the machine-defined classes show
a clear separation between barred and non-barred galaxies that indicates a dis-
tinctive difference in structures shown between the two visual types. Second, each
machine-defined morphology class is distinctive in a variety of stellar properties
such as colour, r-band absolute magnitude, and stellar mass of galaxies. Addi-
tionally, the machine morphological classes show a clear transition along with the
Hubble types on both the colour-magnitude plane and mass-size plane (Fig. 6.14).
This suggests that more morphologies with distinctive galaxy properties can be
distinguished from the basic Hubble types such as ellipticals, lenticulars, early
spirals, late spirals and irregulars.

7.2.1 Defects in the Visual Classification systems

Visual classification systems such as the Hubble sequence are of great impor-
tance in categorising galaxies. However, visual classification systems are defined
by humans who might provide less precise decision boundaries when separating
different galaxy morphologies.

In Chapter 6, with the unsupervised machine, we find an intrinsic difficulty
to accurately classify galaxies with transitional features such as lenticulars and
early-type spirals. To associate our given clusters by our unsupervised machine
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with Hubble types, we find that no clean cluster is dominated by E or eSp. This
is because the structures of ellipticals have a great similarity to lenticular galaxies;
meanwhile, lenticular galaxies also share similar structure to eSp. We find that
only lenticular galaxies with a particular parameter, e.g. Sérsic index peak at
∼ 3, can be distinguished from other visual morphology types (Fig. 6.12).

On the other hand, the eSp types have a broad range of visual features that
also exist between S0 and lSp. This causes a difficulty to classify eSp into either
ETGs or LTGs, or to have a clean classification cluster by our machine.

Moreover, we notice that galaxies with a similar structure can be classified into
a variety of visual morphology types; in other words, a mix of galaxy structure
can exist in one visual morphology type. Therefore, we conclude that there is
an intrinsic uncertainty in any visual classification schemes such as the Hubble
sequence.

7.2.2 A Novel Galaxy Classification System by Machine?

In the previous section (see details in Chapter 6), we state the conclusion that
the visual morphological classification scheme is not precisely defined. A variety
of alternative classification systems such as CAS systems can be used to provide
an objective morphological classification of galaxies. However, with an unsuper-
vised machine learning technique, we can define the decision boundaries between
classifications in high-dimensional feature space that considers galaxy structures,
light distribution, galaxy shapes, and other potential factors such as colour and
velocity.

In this section, we propose to rethink the visual morphological classification
scheme we have known for a century, and to approach related studies with
machine-defined morphology classes. The classes suggested by machine learn-
ing can possibly provide a more ‘accurate’ definition in galaxy morphology than
a visual classification scheme. For example, in Chapter 6, 27 machine-defined
classes have distinctive stellar properties from each other. Additionally, they
show a clear transition on both the colour-magnitude diagram and the mass-size
relation. This suggests that our machine classifications can be used to develop a
novel objectively morphological classification scheme. With this machine-defined
scheme, we can re-approach studies of galaxy evolution and formation from a
different perspective.

7.3 Future Plans

The work in this thesis could be improved, extended, and followed-up in a variety
of ways. For example, throughout this thesis, we focus only on the shape and
structure of galaxies using both supervised and unsupervised machine learning
methods. Additional progress could be made using images in multiple photo-
metric bands. Additionally, the supervised machine learning binary classification
work could be extended using a finer set of morphological classes.
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In addition to direct classification tasks using supervised and unsupervised ma-
chine learning techniques, we are especially interested in future applications of
unsupervised techniques to explore galaxy morphology further. In Section 7.2.2,
we presented a machine-defined morphological classification system showing good
correlation with the stellar properties of galaxies. Exploring other galaxy proper-
ties such as environment, metallicity, and star formation rate would be interest-
ing. We also look forward to applying this unsupervised method to other large
surveys with better spatial resolution, such as the Dark Energy Survey and the
Hyper Suprime-Cam Subaru Strategic Program. Future surveys such as the Large
Synoptic Survey Telescope, the Euclid Space Telescope, etc, will provide further
datasets to exploit.

Additionally, a correlation of the classification scheme with redshifts will also be
interesting to investigate. For example, does the optimal number of classification
clusters suggested by the machine change with redshifts? How well can our
method classify galaxies at a higher redshift?

We can foresee plenty of studies extending the work in this thesis. Machine
learning techniques are developing fast in a variety of astronomical applications;
therefore, in addition to galaxy morphology, the methods developed in this thesis
can be extended to different astronomical data such as spectroscopy, or other
astronomical objects, such as galaxy clusters and lensing systems, and even to
different astronomical challenges such as anomaly detection. It will be interesting
to explore some of these.
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E. (2019). Star formation rates and stellar masses from machine learning. ,
622:A137.

Borji, A. and Dundar, A. (2017). A new look at clustering through the lens of
deep convolutional neural networks. CoRR, abs/1706.05048.

Bottrell, C., Hani, M. H., Teimoorinia, H., et al. (2019). Deep learning predic-
tions of galaxy merger stage and the importance of observational realism. ,
490(4):5390–5413.

Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., and Song, A. (2015). Efficient
agglomerative hierarchical clustering. Expert Syst. Appl., 42(5):2785–2797.

Boylan-Kolchin, M., Springel, V., White, S. D. M., Jenkins, A., and Lemson, G.
(2009). Resolving cosmic structure formation with the Millennium-II Simula-
tion. , 398(3):1150–1164.

Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7):1145 – 1159.



REFERENCES 160

Breen, P. G., Foley, C. N., Boekholt, T., and Portegies Zwart, S. (2020). Newton
versus the machine: solving the chaotic three-body problem using deep neural
networks. , 494(2):2465–2470.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

Burke, C. J., Aleo, P. D., Chen, Y.-C., et al. (2019). Deblending and classifying
astronomical sources with Mask R-CNN deep learning. , 490(3):3952–3965.

Calderon, V. F. and Berlind, A. A. (2019). Prediction of galaxy halo masses in
SDSS DR7 via a machine learning approach. , 490(2):2367–2379.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep clustering
for unsupervised learning of visual features. CoRR, abs/1807.05520.

Carrasco Kind, M. and Brunner, R. J. (2014). SOMz: photometric redshift PDFs
with self-organizing maps and random atlas. , 438:3409–3421.

CarrascoKind, M. and Brunner, R. J. (2014). SOMz: photometric redshift PDFs
with self-organizing maps and random atlas. , 438(4):3409–3421.

Cavuoti, S., Amaro, V., Brescia, M., Vellucci, C., Tortora, C., and Longo, G.
(2017). METAPHOR: a machine-learning-based method for the probability
density estimation of photometric redshifts. , 465:1959–1973.

Cheng, T.-Y., Conselice, C. J., Aragón-Salamanca, A., et al. (2020a). Optimizing
automatic morphological classification of galaxies with machine learning and
deep learning using Dark Energy Survey imaging. , 493(3):4209–4228.

Cheng, T.-Y., Li, N., Conselice, C. J., Aragón-Salamanca, A., Dye, S., and Met-
calf, R. B. (2020b). Identifying strong lenses with unsupervised machine learn-
ing using convolutional autoencoder. , 494(3):3750–3765.

Chester, C. and Roberts, M. S. (1964). Properties of Galaxies: color-magnitude
diagram. , 69:635.

Chopra, P. and Yadav, S. (2017). Restricted boltzmann machine and softmax
regression for fault detection and classification. Complex Intelligent Systems,
pages 1–11.

Chou, F.-C. (2014). Galaxy Zoo Challenge: Classify Galaxy Morphologies from
Images.

Collett, T. E. (2015). The Population of GalaxyGalaxy Strong Lenses in Forth-
coming Optical Imaging Surveys. , 811:20.

Collett, T. E. and Auger, M. W. (2014). Cosmological constraints from the double
source plane lens SDSSJ0946+1006. , 443:969–976.

Conselice, C. J. (2003). The Relationship between Stellar Light Distributions of
Galaxies and Their Formation Histories. , 147(1):1–28.

Conselice, C. J. (2006). The fundamental properties of galaxies and a new galaxy
classification system. , 373(4):1389–1408.



REFERENCES 161

Conselice, C. J., Bershady, M. A., and Jangren, A. (2000). The Asymmetry
of Galaxies: Physical Morphology for Nearby and High-Redshift Galaxies. ,
529(2):886–910.

Conselice, C. J., Blackburne, J. A., and Papovich, C. (2005). The Luminos-
ity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known
Morphology from z = 0.5 to 3. , 620(2):564–583.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. In Machine Learning,
pages 273–297.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27.

Cunningham, P. and Delany, S. J. (2007). k-nearest neighbour classifiers.

D’Abrusco, R., Fabbiano, G., Djorgovski, G., Donalek, C., Laurino, O., and
Longo, G. (2012). CLaSPS: A New Methodology for Knowledge Extraction
from Complex Astronomical Data Sets. , 755:92.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pages 886–893 vol. 1.

de la Calleja, J. and Fuentes, O. (2004). Machine learning and image analysis for
morphological galaxy classification. , 349(1):87–93.

de Vaucouleurs, G. (1948). Recherches sur les Nebuleuses Extragalactiques.
Annales d’Astrophysique, 11:247.

de Vaucouleurs, G. (1959). Classification and Morphology of External Galaxies.
Handbuch der Physik, 53:275.

de Vaucouleurs, G. (1961). Integrated Colors of Bright Galaxies in the u, b, V
System. , 5:233.

de Vaucouleurs, G. (1964). Luminosity Classification of Galaxies and Some Ap-
plications. , 69:561.

de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H. G. (1995a). VizieR
Online Data Catalog: RC2 Catalogue (de Vaucouleurs+ 1976). VizieR Online
Data Catalog, page VII/112.

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Buta, R. J., Paturel, G.,
and Fouque, P. (1995b). VizieR Online Data Catalog: Third Reference Cat. of
Bright Galaxies (RC3) (de Vaucouleurs+ 1991). VizieR Online Data Catalog,
page VII/155.

DeepMind (2018). Sonnet, url = https://github.com/deepmind/sonnet.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the em algorithm. JOURNAL OF THE ROYAL
STATISTICAL SOCIETY, SERIES B, 39(1):1–38.



REFERENCES 162

DES Collaboration (2005). The Dark Energy Survey. arXiv e-prints, pages astro–
ph/0510346.

DES Collaboration, Abbott, T., Abdalla, F. B., et al. (2016). The Dark Energy
Survey: more than dark energy - an overview. , 460(2):1270–1299.
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Dubath, P., Rimoldini, L., Süveges, M., et al. (2011). Random forest automated
supervised classification of Hipparcos periodic variable stars. , 414(3):2602–
2617.

Dundar, A., Jin, J., and Culurciello, E. (2015). Convolutional clustering for
unsupervised learning. CoRR, abs/1511.06241.

Dye, S., Furlanetto, C., Dunne, L., et al. (2018). Modelling high-resolution ALMA
observations of strongly lensed highly star-forming galaxies detected by Her-
schel. , 476:4383–4394.



REFERENCES 163

Elmegreen, D. M. and Elmegreen, B. G. (1982). Flocculent and grand design
spiral structure in field, binary and group galaxies. , 201:1021–1034.

Elmegreen, D. M. and Elmegreen, B. G. (1987). Arm Classifications for Spiral
Galaxies. , 314:3.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algo-
rithm for discovering clusters a density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, pages 226–231.
AAAI Press.

Fawagreh, K., Gaber, M. M., and Elyan, E. (2014). Random forests: from early
developments to recent advancements. Systems Science & Control Engineering,
2(1):602–609.

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters,
27(8):861 – 874. ROC Analysis in Pattern Recognition.

Ferreira, L., Conselice, C. J., Duncan, K., Cheng, T.-Y., Griffiths, A., and Whit-
ney, A. (2020). Galaxy Merger Rates up to z ∼ 3 Using a Bayesian Deep Learn-
ing Model: A Major-merger Classifier Using IllustrisTNG Simulation Data. ,
895(2):115.

Fix, E. and Hodges, J. L. (1989). Discriminatory analysis. nonparametric dis-
crimination: Consistency properties. International Statistical Review / Revue
Internationale de Statistique, 57(3):238–247.

Flaugher, B., Diehl, H. T., Honscheid, K., et al. (2015). The Dark Energy Camera.
, 150(5):150.

Fritzke, B. (1994). A growing neural gas network learns topologies. In Proceedings
of the 7th International Conference on Neural Information Processing Systems,
NIPS’94, pages 625–632, Cambridge, MA, USA. MIT Press.

Fritzke, B. (1995). A growing neural gas network learns topologies. In Tesauro,
G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural Information
Processing Systems 7, pages 625–632. MIT Press.

Fukugita, M., Nakamura, O., Okamura, S., et al. (2007). A Catalog of Morpholog-
ically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial
Region. , 134(2):579–593.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network.
Biological Cybernetics, 20:121–136.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4):193–202.

Fukushima, K., Miyake, S., and Ito, T. (1983). Neocognitron: A neural network
model for a mechanism of visual pattern recognition. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13(5):826–834.



REFERENCES 164

Fustes, D., Manteiga, M., Dafonte, C., et al. (2013). An approach to the analysis
of SDSS spectroscopic outliers based on self-organizing maps. Designing the
outlier analysis software package for the next Gaia survey. , 559:A7.

Gao, D., Zhang, Y.-X., and Zhao, Y.-H. (2008). Support vector machines and
kd-tree for separating quasars from large survey data bases. , 386(3):1417–1425.

Gavazzi, R., Marshall, P. J., Treu, T., and Sonnenfeld, A. (2014). RINGFINDER:
Automated Detection of Galaxy-scale Gravitational Lenses in Ground-based
Multi-filter Imaging Data. , 785:144.

Geach, J. E. (2012). Unsupervised self-organized mapping: a versatile empirical
tool for object selection, classification and redshift estimation in large surveys.
, 419:2633–2645.

Giles, D. and Walkowicz, L. (2019). Systematic serendipity: a test of unsupervised
machine learning as a method for anomaly detection. , 484(1):834–849.

Gilman, D., Birrer, S., Treu, T., Keeton, C. R., and Nierenberg, A. (2018).
Probing the nature of dark matter by forward modelling flux ratios in strong
gravitational lenses. , 481(1):819–834.

Goderya, S. N. and Lolling, S. M. (2002). Morphological Classification of Galax-
ies using Computer Vision and Artificial Neural Networks: A Computational
Scheme. , 279(4):377–387.

Grazian, A., Fontana, A., De Santis, C., Gallozzi, S., Giallongo, E., and Di
Pangrazio, F. (2004). The Large Binocular Camera Image Simulator. ,
116(822):750–761.

Guo, X., Liu, X., Zhu, E., and Yin, J. (2017). Deep clustering with convolutional
autoencoders. In ICONIP.

Hambleton, K. M., Gibson, B. K., Brook, C. B., et al. (2011). Advanced morpho-
logical galaxy classification: a comparison of observed and simulated galaxies.
, 418(2):801–810.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell
System Technical Journal, 29(2):147–160.

Hartley, H. (1958). Maximum likelihood estimation from incomplete data.
Biometrics, 14(2):174–194. doi:10.2307/2527783.

Hartley, P., Flamary, R., Jackson, N., Tagore, A. S., and Metcalf, R. B. (2017).
Support vector machine classification of strong gravitational lenses. , 471:3378–
3397.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical
learning: data mining, inference, and prediction, 2nd Edition. Springer series
in statistics. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.



REFERENCES 165

He, S., Li, Y., Feng, Y., et al. (2019). Learning to predict the cosmologi-
cal structure formation. Proceedings of the National Academy of Science,
116(28):13825–13832.

Hernández-Toledo, H. M., Vázquez-Mata, J. A., Mart́ınez-Vázquez, L. A., et al.
(2008). A Morphological Re-Evaluation of Galaxies in Common from the Cata-
log of Isolated Galaxies and the Sloan Digital Sky Survey (DR6). , 136(5):2115–
2135.

Hershey, J. R., Chen, Z., Roux, J. L., and Watanabe, S. (2015). Deep clus-
tering: Discriminative embeddings for segmentation and separation. CoRR,
abs/1508.04306.

Hewitt, J. N., Turner, E. L., Schneider, D. P., Burke, B. F., and Langston, G. I.
(1988). Unusual radio source MG1131+0456 - A possible Einstein ring. ,
333:537–540.

Hezaveh, Y. D., Dalal, N., Marrone, D. P., et al. (2016). Detection of Lensing
Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. , 823:37.

Hezaveh, Y. D., Levasseur, L. P., and Marshall, P. J. (2017). Fast automated
analysis of strong gravitational lenses with convolutional neural networks. ,
548:555–557.

Higson, E., Handley, W., Hobson, M., and Lasenby, A. (2019). Bayesian sparse
reconstruction: a brute-force approach to astronomical imaging and machine
learning. , 483(4):4828–4846.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive
divergence. Neural Comput., 14(8):1771–1800.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput., 9(8):1735–1780.

Hocking, A., Geach, J. E., Sun, Y., and Davey, N. (2018). An automatic taxon-
omy of galaxy morphology using unsupervised machine learning. , 473:1108–
1129.

Holmberg, E. (1958). A photographic photometry of extragalactic nebulae.
Meddelanden fran Lunds Astronomiska Observatorium Serie II, 136:1.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practical guide to support
vector classification. Technical report, Department of Computer Science, Na-
tional Taiwan University.

Hsu, Y. and Kira, Z. (2015). Neural network-based clustering using pairwise
constraints. CoRR, abs/1511.06321.

Hubble, E. P. (1926). Extragalactic nebulae. , 64:321–369.

Hubble, E. P. (1936). Realm of the Nebulae.



REFERENCES 166

Huertas-Company, M., Aguerri, J. A. L., Bernardi, M., Mei, S., and Sánchez
Almeida, J. (2011). Revisiting the Hubble sequence in the SDSS DR7 spec-
troscopic sample: a publicly available Bayesian automated classification. ,
525:A157.

Huertas-Company, M., Gravet, R., Cabrera-Vives, G., et al. (2015). A Catalog
of Visual-like Morphologies in the 5 CANDELS Fields Using Deep Learning. ,
221(1):8.

Huertas-Company, M., Primack, J. R., Dekel, A., et al. (2018). Deep Learning
Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic
Mass Range. , 858(2):114.

Huertas-Company, M., Rodriguez-Gomez, V., Nelson, D., et al. (2019). The
Hubble Sequence at z ∼ 0 in the IllustrisTNG simulation with deep learning.
, 489(2):1859–1879.

Huertas-Company, M., Rouan, D., Tasca, L., Soucail, G., and Le Fèvre, O.
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Réfrégier, A. (2019). Cosmological N-body simulations: a challenge for scalable
generative models. Computational Astrophysics and Cosmology, 6(1):5.



REFERENCES 171

Petrillo, C. E., Tortora, C., Chatterjee, S., et al. (2017). Finding strong gravita-
tional lenses in the Kilo Degree Survey with Convolutional Neural Networks. ,
472(1):1129–1150.

Polsterer, K. L., Gieseke, F., and Kramer, O. (2012).
Galaxy Classification without Feature Extraction, volume 461 of Astronomical
Society of the Pacific Conference Series, page 561.

Powers, D. M. W. (2011). Evaluation: From precision, recall and f-measure to
roc., informedness, markedness & correlation. Journal of Machine Learning
Technologies, 2(1):37–63.

Rana, A., Jain, D., Mahajan, S., Mukherjee, A., and Holanda, R. F. L. (2017).
Probing the cosmic distance duality relation using time delay lenses. , 7:010.

Razavi, A., van den Oord, A., and Vinyals, O. (2019). Generating Diverse High-
Fidelity Images with VQ-VAE-2. arXiv e-prints, page arXiv:1906.00446.
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Rodŕıguez, A. C., Kacprzak, T., Lucchi, A., et al. (2018). Fast cosmic web
simulations with generative adversarial networks. Computational Astrophysics
and Cosmology, 5(1):4.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, pages 65–386.

Rosenfeld, A., Zemel, R., and Tsotsos, J. K. (2018). The Elephant in the Room.
arXiv e-prints, page arXiv:1808.03305.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53 – 65.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. , 323(6088):533–536.

Sadeh, I., Abdalla, F. B., and Lahav, O. (2016). ANNz2: Photometric Redshift
and Probability Distribution Function Estimation using Machine Learning. ,
128(10):104502.

Salakhutdinov, R. and Hinton, G. (2009). Deep boltzmann machines. In van
Dyk, D. and Welling, M., editors, Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of
Machine Learning Research, pages 448–455, Hilton Clearwater Beach Resort,
Clearwater Beach, Florida USA. PMLR.



REFERENCES 172

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann ma-
chines for collaborative filtering. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, page 791–798, New York, NY,
USA. Association for Computing Machinery.

Samuel, A. L. (1959). Some studies in machine learning using the game of check-
ers. IBM J. Res. Dev., 3(3):210–229.

Samui, S. and Samui Pal, S. (2017). Photo-z with CuBANz: An improved pho-
tometric redshift estimator using Clustering aided Back propagation Neural
network. , 51:169–177.

Sandage, A. (1961). The Hubble Atlas of Galaxies.

Scarlata, C., Carollo, C. M., Lilly, S., et al. (2007a). COSMOS Morphological
Classification with the Zurich Estimator of Structural Types (ZEST) and the
Evolution Since z = 1 of the Luminosity Function of Early, Disk, and Irregular
Galaxies. , 172(1):406–433.

Scarlata, C., Carollo, C. M., Lilly, S. J., et al. (2007b). The Redshift Evolution
of Early-Type Galaxies in COSMOS: Do Massive Early-Type Galaxies Form
by Dry Mergers? , 172(1):494–510.

Scholkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,
MA, USA.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681.
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