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Abstract

High-frequency devices are commonplace and at their foundations often lie

cable networks forming fundamental sub-systems with the primary role of

transferring energy and information. With increasing demand for ”more

electric” systems, the emerging trends in Internet of Things (IoT), as well as

the surge in global mobile data traffic, the complexities of the underlying

networks become more challenging to model deterministically. In such sce-

narios, statistical approaches are best suited because it becomes daunting to

accurately model details of such networks.

In this thesis, I present a quantum graph (QG) approach of modelling the

transfer of energy and information through complex networks. In its own

right, the graph model is used to predict the scattering spectrum in wired

communications, as well as statistical predictions in wireless communica-

tion systems. I derive a more generalised vertex scattering matrix that takes

into account cables of different characteristics connected at a common node.

This is significant in real applications where different kinds of cables are

connected. For example, in digital subscriber line (DSL) networks, the final

loop drop may consist of cables with different characteristics.

The proposed graph model is successfully validated both with a Trans-

mission Line (TL) approach, and with laboratory experiments. The model

agrees well with the universal predictions of Random Matrix Theory (RMT).
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In particular, the statistics of resonance is compared with the predictions

of Weyl’s law, while the level-spacing distribution is compared with the

Wigner’s surmise, which is a telltale signature of chaotic mixing of the un-

derlying waves.

In addition, I propose an analogue of the so-called random coupling

model (RCM), which is important in the study of electromagnetic waves

propagating in chaotic cavities. To achieve this, I present a procedure for

symmetrising the transfer operator, which we use to modify the QG model

in order for it to be comparable to RCM. Unlike the RCM which depends

on Gaussian random variables, the graph model works for both Gaussian

and non-Gaussian statistics. We use the analogue model to investigate the

impact of different boundary conditions on the distribution of energy in

networks with different topologies and connectivities.

I further present a novel technique of using quantum graphs to predict

the statistics of multi-antenna wireless communication systems. In this con-

text, I present three different ways of calculating the probability density

function of Shannon channel capacity. The analytical calculations compares

favourably with numerical simulations of networks of varying complexities.

In the area of wired communications, the graph model is used to model

the distribution of data in G.fast networks (the fourth-generation Digital

Subscriber Line (DSL) networks), using realistic cable parameters from the

so-called TNO-Ericsson model. In particular, we show that quantum graph

formalism can be used to simulate the in-premises distribution network
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at G.fast frequencies. The parameters of CAD55 (or B05a) cables and the

in-house distribution network reported in the International Telecommunica-

tion Union documentation were used in the simulations.
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1
I N T R O D U C T I O N

In this chapter, we present the motivation and the problems we seek to ad-

dress in this work. Since the central theme of this thesis is about modelling

the propagation of microwaves in complex networks through the use of

quantum graphs (QGs), we will review the literature on QGs and highlight

some of the main achievements of previous studies.

1.1 motivation

High frequency cables commonly connect modern devices and sensors. In-

terestingly, the proportion of electrical components is rising fast in an at-

tempt to achieve lighter, quieter and greener devices. Significant research

has focused on this area, aimed at replacing hydraulics and mechanical link-

ages with electric components [1, 2]. There is an on-going paradigm shift

from combustion chambers because of their negative impact on climate [3].

Alternative propulsion concepts have been proposed, but distributed electric
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1.1 motivation

propulsion [4] is the most commonly accepted concept with a promising fu-

ture. The "all-electric" and "more-electric" vehicles have become a household

terminology in every department of our lives. This ranges from aeroplanes,

cars, motorbikes, trams to flying cars. For example, UberAir was originally

scheduled to be launched by the end of this year (i.e. 2020) in Los Angeles,

USA [4]. A prototype has been out-doored in 2018 and it is shown in Figure

1. Although the initial schedule of 2020 has not been met (as the new sched-

ule date is 2023 [5]), it will only be a matter of time when air taxis become

commonplace.

Figure 1.: Uber’s prototype flying car [4].

Currently, the aerospace industry is compelled to reduce its carbon emis-

sion levels by 2.6 billion metric tons under the Carbon Offsetting and Reduc-

tion Scheme for International Aviation [6]. As a result, GE Aviation’s head

of electrical power, Hao Huang, was awarded a certificate of honour in

2019 by IEEE for his role towards achieving cleaner airways through ’more

electric’ engines [6] and through a programme whose ultimate target is to
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1.1 motivation

reduce each of their Boeing Dreamliners’ weight by approximately 450 kg.

Apart from the engines, airliners typically have two other non-electrical sup-

plementary subsystems that augment the engines. The pneumatic system

guides and propagates energy through compressed air to power the envi-

ronmental control devices and the de-icing systems. On the other hand, the

hydraulic system transmits energy through pressurised fluid to power the

majority of the aerodynamic devices of aeroplanes. According to Huang,

the idea is to replace these non-electrical systems as shown in Figure 2.

Figure 2.: Commercial airplane’s architecture showing pneumatic, hy-

draulic and partly mechanically driven systems that needs to be

changed and systems that are already electrical [7].

However, we are still at the early adopters stage of Rogers innovation adop-

tion curve [8] as indicated by Plotz et al. [9]. For example, in electric vehi-

cles, this is attributable to high life cycle cost [10–12] of the vehicles. There

is therefore the need to drive the overall cost down. One way to achieve low

3



1.1 motivation

Figure 3.: Rogers innovation adoption curve [13].

cost electric components is to engage in further research to develop efficient

cables and linkages. This will enable us to gain more insight into the way

signals propagate through these cables. Direct laboratory experimentations

with real cables are ideal; but they are often not the most cost-effective way

during the initial stages of research. Scientists and industry players often

do not want to commit significant amounts of resources (in terms of time

and money) in laboratory measurements for the fear of ’exercise-in-futility’.

Modelling has always been the way forward because of its ability to save

time and cost.

Our second motivation for modelling signal propagation in cable net-

works is related to the so-called Digital Subscriber Line (DSL) communica-

tion networks. A DSL network uses copper cables as a channel to transmit

data between the central office (CO) and subscribers (DSL end-users). DSL
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1.1 motivation

technology is by far the most widely-used medium for broadband inter-

net access, with more than 1 billion fixed broadband users worldwide [14].

Although the DSL access network has undergone step-by-step revolutions

(driven largely by the need for high data rates transmission), the final loop

drop (i.e. the network from the street cabinets to end-users) has remained

a network of copper cables [15], with the International Telecommunication

Union ITU-T G.9701 as the latest standard for the network [16]. The demand

for higher data rates has necessitated the use of high frequency sub-carriers

and wider bandwidth implementations.

For example, while the first, second, and third generations DSL networks

utilise frequencies of up to 1.1 MHz, 2.2 MHz, and 30 MHz, respectively, the

ITU-T G.9701 standard, under the working name G.fast (i.e. to denote fast

access to DSL subscribers), uses up to 300 MHz with the aim of achieving

data rates as high as 1 Gb/s [17]. Quantum graph theory will be used to

model such networks, especially the in-premises data distribution networks

of G.fast. In particular, we aim to analytically predict the channel capacity

statistics of such networks using realistic, ITU-approved cable parameters.

Modelling the propagation of high frequency signals through cable net-

works is a real challenge. At low frequencies, accounts of lumped elements

(resistors, inductors and capacitors) can be easily used to analyse the be-

haviour of signals because the electrical wavelengths are assumed to be

large compared to the physical dimensions of the network. However, when

frequencies rise, the lump-element circuitry assumptions no longer hold be-
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1.1 motivation

cause the circuit attributes are not concentrated - but rather distributed - into

ideal elements. Since a significant number of recent applications in com-

munications require high frequency regimes [18–22], there is the need for

appropriate techniques to deal with current trends. Distributed-parameter

(infinite-dimensional systems) networks like the transmission lines (TL) has

been used in that regard. The method is named "distributed" because at-

tributes of the circuits like inductance, resistance, and capacitance are no

longer concentrated at a single point on the circuits.

Transmission line models have been used in applications ranging from

coaxial cables, strip lines, wave guides, to optical fibres [19, 23, 24]. How-

ever the method usually requires the use of impedance, admittance or the

so-called ABCD matrices which are very difficult to obtain at high frequen-

cies. This is because the measurement of such parameters require ideal

conditions, where the network has to be terminated in open or short cir-

cuit. Additionally, TL modelling becomes extremely difficult to use when

the topology of the underlying network increases in complexity. For exam-

ple, it will be extremely difficult to use the TL theory to model the reflection

or transmission spectrum of the cable network illustrated in Figure 4 (a).

The figure is an illustration of fully-connected graph with 10 vertices (also

known as the K10 network).

However, at high frequencies, one can measure power with high reliabil-

ity and accuracy. The scattering matrix is therefore an ideal approach to

overcome this difficulty [25,26]. One way of achieving this is through quan-
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1.1 motivation

tum graph (QG) formalism, which is the central theme of this research. In

addition, QG modelling goes round the problem of complexity in topology

by breaking down the underlying network into simple Vertex Scattering Ma-

trices (VSM) and aggregating the VSM in an elegant way to form the graph

scattering matrix. This way, the topological complexity of the underlying

network does not affect the ability of the graph framework to be used in

modelling such networks.

Fortunately, in laboratories, the amplitude and phase characteristics of

microwave devices may be measured using an instrument called a Vector

Network Analyser (VNA). Figure 4 (b) shows a picture of a typical VNA.

With this instrument, we can validate the QG approach of modelling the

propagation of microwaves in these complex networks. The theory of Quan-

tum graphs, and how to use them to model propagating microwaves are

presented in Chapters 3 and 4 respectively. The usage of the VNA is pre-

sented later in Chapter 5, where we discuss the experimental measurements

and results used in validating the QG approach.

Although these underlying cable networks in electrical systems are mostly

deterministic by nature, the continuous increase in the density of cables of

such systems makes it numerically expensive to solve deterministically. Ad-

ditionally, the advent of the Internet of Things (IoTs) has also introduced

similar challenges in the area of wireless communications [28–30]. As the

number of connected devices in IoTs increases, deterministically modelling

the details of propagation of electromagnetic waves in such wireless sys-

7



1.1 motivation

(a) (b)

Figure 4.: (a) is an example of a fully-connected cable network with 10 ver-

tices (K10 network). The reflection spectrum of the graph is ex-

tremely difficult to model using TLM. (b) is a picture example of

a Vector network analyser for measuring the reflection spectrum

of cable networks [27].

tems is often inaccurate. This is because, at high frequencies, small changes

in the location and/or geometry of connected devices result in a signifi-

cant change in the electromagnetic field distribution within the underlying

system. Statistical approaches are therefore employed to overcome such

challenges [31].

The Random Coupling Model (RCM) is one such statistical approach

[32–34]. The RCM effectively uses an impedance method to model the

propagation of electromagnetic waves in irregular cavities coupled to ei-

ther single [33] or multiple [34] channels. It has since attracted attention of

several researchers that contributed to the model both theoretically [35] and

experimentally [31, 36, 37]. For example, in [35], the effect of electromag-

netic induction on electronic components inside large wave-chaotic cavities
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1.2 literature review

has been studied, while [31] experimentally examined the effectiveness of

wave coupling of radio frequencies on partially shielded large electronic

components. There is also a comprehensive review by Gradoni et al. [38]

on RCM, where the relationship between RCM and other electromagnetic

formulations has been thoroughly discussed. These include areas such as

optical communications and acoustics.

Although RCM was formulated to study the properties of chaotic cavities,

which are wireless systems by nature, we propose an analogue of RCM,

which is suitable for modelling both wireless and wired communication

channels. In Chapters 6 and 7, we discuss the applications of this analogue

model to calculate the statistics of wireless communication channels. Simi-

larly, the applications to wired communications is treated subsequently in

Chapter 8, where we analytically predict the distribution of data rates in

DSL networks.

1.2 literature review

The idea of quantum graphs is well established. It has been used to model a

variety of systems including propagation of waves of different kinds (acous-

tic, electromagnetic, etc.) and in complex structures (cars, aeroplanes, PC

system units, etc.) [39–44]. Quantum graphs in general have been used to

model ideal (i.e. lossless) networks where the width of the wire is assumed

to be negligible [45] compared to all other lengths of the system. A signif-
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1.2 literature review

icant number of applications has already been achieved [46–62]. We begin

with a brief history of quantum graphs, and what have been the achieved

over the years.

The journey was started by Pauling in 1936 when he used quantum

graphs to model organic molecules (benzene and other aromatic hydrocar-

bons) [46]. Organic molecules consist of atoms that are connected together

by idealised paths (referred to as bonds in this case) along which the so-

called pz electrons move according to one-dimensional Schrödinger equa-

tion [39, 40, 45, 46].

The idea behind his work was further developed by Kuhn a decade later

[47]. By 1972, the idea has generated significant interest with diverse ap-

plications from the worlds of both theoretical and experimental physics

[49–53]. For example in [49], Platt studied the classification of π-orbitals

in condensed aromatic systems. The works of Ruedenberg and Scherr [50]

in 1953, concentrated on the network model for free electrons. They focused

on the "limiting case of a three dimensional quantum-mechanical treatment

of the π-electrons" where they derived the boundary conditions for the free

end points of the network. This idea was extended to apply to metals in

research conducted by Coulson [51] a year later.

In the early 1970s , Montroll [52] generalised the network model to in-

clude both the tight binding and the free-electron models. Richardson and

Balazs [53] showed how to calculate the secular equation for all periodic

lattices. The next decade (in the 1980s) saw further remarkable advances in

10



1.2 literature review

quantum graph applications. Alexander [54] showed a difference equation

method which is applicable to the Schrödinger equation. This is very im-

portant as we will use the Schrödinger operator on QGs quite extensively

in this thesis during the modelling stage in chapters 3 and 4. There was a

numerical study of propagating waves in networks of waveguides [55] in

1987 and in 1988, the works of Chalker and Coddington [56] introduces the

famous Anderson localisation model to QGs.

In the late 1990s to early 2000s, there was a surge of interest in quan-

tum graphs [39–42, 45, 58–61, 63–99], but I find the works of Kottos et al.

from 1997 to 2003 [40, 41, 45, 59, 60] by far the most relevant works related

to this research. Those papers generally studied the chaotic (or pseudo-

chaotic) scattering in quantum graphs, which is the focal point in this re-

search. In [45] for example, two main ways of quantizing graphs have been

presented. Such methods will be employed to derive two secular equations

and a justification of our choice will be provided in Section 3.3.4. In addition,

the magnetic terms were assumed to be zero so that time reversal symmetry

(TRS) is maintained. This research also deals with systems that maintains

TRS. Finally, the types of graphs treated in all the afore mentioned papers

are simple and connected graphs.

There are other publications with direct relevance to this research. For

instance, in Barra’s work [68, 69], a closed expression for level spacing dis-

tribution for graphs with Dirichlet boundary condition was derived. In

both publications, only systems with no magnetic fields terms were consid-
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1.2 literature review

ered, which falls in line with one of the assumptions made in this research.

Tanner conjectured in [84] (proven by [64]) that the spectral statistics of an

ensemble of unitary stochastic processes on graphs largely depends of the

spectral gap. The conjecture is based on condition that the spectral gap

∆g = max(1− |λb|) is either constant or varies slower than 1/2B, where B

is the total number of bonds in the underlying quantum graph, and λb < λ1

is a non-principal eigenvalue for any b ∈ {2, 3, · · · , B}, such that λ1 = 1 is

the principal eigenvalue.

Some other studies also considered quantum graphs with leads attached

[60, 61, 69, 75, 100–102] from which I draw insight when I discuss systems

with coupled leads. From the coupling-of-leads scenario, the scattering ma-

trix, which helps in spectral analysis discussed in later chapters, is con-

structed. Several papers [41,65,66,78–80,98,103] were also published which

concentrated only on spectral analysis of the underlying graph system. Some

of them used direct methods while others used the inverse problem ap-

proach.

One can find exact expressions for both the vertex scattering matrix and

the trace formulae that establishes the link between the quantum graph spec-

tral statistics and the predictions of random matrix theory (RMT). Similar

results were reported in a comprehensive review by Gnutzmann [39] in 2006,

while the works of Pluha et. al [104] conjectured a universal description of

chaotic scattering, and applications of RMT predictions in the transmission

channels of communication networks [105, 106]. Relevant portions of RMT
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1.2 literature review

predictions will be highlighted when they are needed in subsequent chap-

ters.

The story of QGs will not be complete without mentioning some of the

recent works in the field. For example, in [107, 108], the scattering prob-

lem of high-speed radiation pulses on complex targets was modelled. In

particular, they studied the probability distribution of delay-time in such

scattering systems. According to their definition, delay-time was defined

as "the difference between the time it would take the scattered particle (or

wave) to transit through the domain of interaction and the time of transit

when the interactions is switched off." Interestingly, they derived an expres-

sion of the mean delay-time that unifies the quantum expressions obtained

by Wigner [109] and Smith [110] in one hand, and the expression obtained

in classical mechanics on the other. In [111], Brewer et al. have used elas-

tic graphs to study the dynamics on networks of beams (or plates), which

support different modes propagating at different velocities within the same

structure.

Finally, the work of Drinko in [112] investigated how quantum graphs

may be used to model quantum devices such as filters. I envisaged their

approach may be applied in a fairly new area in telecommunications [20–

22,113,114], where metamaterials may be used as reconfigurable intelligent

surfaces (RIS). This will be discussed as a future outlook. Although the use

of quantum graphs in terms of RIS-aided communication does not feature

in the current thesis, it may be a good idea for future research.
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1.3 open questions and contribution to body of knowledge

Since this literature review is meant to be brief, the following review pa-

pers are a good starting point for someone interested in the study of quan-

tum graphs [39, 44, 74, 89, 115].

1.3 open questions and contribution to body of knowledge

In most works reported in literature so far, the assumption is that the un-

derlying graph networks are uniform with equal characteristic impedances

and propagation constants across the entire network. We will drop that as-

sumption and derive a general scattering formula for quantum graphs with

different cables forming different segments of the network. This scenario

finds applications in DSL networks (DSL applications are treated in Chap-

ter 8), where the final loop drop (i.e. the cables from the street cabinets to

homes) may not necessarily be uniform [16]. This will mean that the cables

in the networks need not be of same characteristics, but are allowed to vary.

In addition, we are going to study systems with losses, unlike in most

previous work where the systems are assumed to be lossless. We will intro-

duce a parameter that quantifies the losses in the underlying systems, and

the impact of such a parameter on communication channel statistics. This

is important because realistic systems significantly deviate from idealised

assumptions and are inherently lossy. The loss parameter and its effects on

channel statistics are described in Chapters 6 and 7.
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1.4 statement of purposes

Furthermore, we will establish a novel framework (under quantum graphs)

of modelling open systems, where the amount of losses can be controlled

without violating the vertex unitary conditions. This is important in mod-

elling random media whose characteristics can be adequately compared

with the predictions of random matrix theory. The quasi-closed system

so constructed will be ’closed’ enough to exhibit all the necessary chaotic

behaviours predictable under RMT predictions, yet open enough to commu-

nicate to other systems through coupling of leads.

The problem of scattering from networks of cables can also provide an

analogue model for wireless communication in highly reverberant environ-

ments. In this context we provide analysis of the statistics of communica-

tion capacity for communication across cable networks. We specialise this

analysis in particular for the case of Multiple-Input Single-Output (SIMO or

MISO) protocols. To the best of our knowledge, this is the first time such a

connection has been established.

1.4 statement of purposes

The goals of this thesis are to:

• develop the idea of MISO/SIMO wired networks and analyse their

associated data rate performance;

15



1.5 thesis outline

• show how the scattering problem from network of cables can be used

as an analogue model (to the so-called random coupling model) for

wireless communications;

• directly compare the predictions of the graph model, in terms of scat-

tering response, with experimental measurements;

• apply the graph model in the digital subscriber line (DSL) networks

1.5 thesis outline

Chapter 2 deals with the theory of transmission lines (TL). There are two

reasons for discussing the fundamentals of TL theory. First, it is to provide

the reader with the explanation of basic concepts in TL Modelling. This is

important because the information in that chapter will be used to numeri-

cally validate the QG Model (to be discussed in Chapter 4) which is central

to this thesis. In addition, the derivation of the wave equations from first

principle, starting from the lumped-element circuitry and working all the

way through Telegrapher’s equations will be discussed here. Secondly, the

basic understanding of TL theory will be essential to understanding how

cable characteristics are measured. This will become apparent in Chapter 5,

when we discuss laboratory measurements and how the characteristics of

the cables involved are modelled, and under Section 8.3 of Chapter 8, where

we treat DSL networks and how their cables are modelled.
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1.5 thesis outline

In Chapter 3 we deal with the theory of quantum graphs. First, the discus-

sion of basic definitions and terminologies regarding quantum graphs are

presented. This will be followed by the presentation of how Schrödinger

operator acts on graphs, and the discussions of the types of boundary con-

ditions that may apply on graph vertices. Two secular equations will then be

derived and their advantages and disadvantage compared and contrasted.

We will then make a choice of secular equation to be used in this research

based on the advantages and disadvantages. There will be a separate sec-

tion where a generalised expression of Vertex Scattering Matrix (VSM) will

be derived. This will be a novel expression of VSM which unifies all previ-

ously reported VSM by dropping some previous assumptions.

Chapter 4 presents the mathematical derivation of the quantum graph

model, starting from the wave equations derived in Chapter 2. The physical

interpretation of the model will be presented, while the derived model is

modified to serve as an analogue of the so-called random coupling model

[38, 116]. In the same chapter, the TL model and the QG model will be nu-

merically compared in terms of reflections spectra, using graph topologies

that are simple enough to be solved under TLM, but complex enough to re-

veal the necessary complexities of the scattering response over a wide range

of frequencies. Additionally, losses in graph systems is discussed, and a for-

mulation of open systems that minimise system losses will be introduced.

After the numerical validation, Chapter 5 is based on laboratory mea-

surements of real cables of varying topologies. The system set-up and the
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1.5 thesis outline

measurement procedures are outlined. The experimental results forms a

second layer of validation of QG model.

In Chapters 6 and 7, the graph model is applied to wireless commu-

nication channels in reverberant environments. The existence of multiple

random reflections and transmissions of signals through these types of en-

vironments make it difficult to use deterministic approaches to solve the

scattering problem. Statistical methods in these situations have been proven

to be effective [35, 38], where the electromagnetic field quantities are repre-

sented by random variables. In this chapter, the graph model is compared

to RMT predictions.

Unlike Chapters 6 and 7, which focused on applications in wireless com-

munication, Chapter 8 presents an application of quantum graphs in wired

networks. In particular Chapter 8 model wave propagation in DSL net-

works, using recommended ITU cable parameters and network topologies

[16]. Finally, the concluding chapter contains the summary of what this re-

search has achieved, and the future outlook. This is presented in Chapter

9.
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2
T R A N S M I S S I O N L I N E S

2.1 introduction

This chapter presents an overview of transmission line theory. The wave

equation will be derived from first principles beginning with basic circuit

theories through to the Telegrapher’s equations. The TL modelling is an

impedance-based modelling of the propagation of high frequency waves.

As mentioned in Chapter 1, there are limitations to the usage of TL model.

The main idea here is to use the TL model to numerically validate the QG

method using cable networks of simple topologies. Such networks will be

formed by cascading several simple T-junction network so that the overall

network could still be modelled using TL model. This is discussed in details

in Section 4.4, where we numerically compare the predictions of TL and QG

models in terms of reflection spectrum.
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2.2 the wave equations

Figure 5.: Uniform TL of length d.

2.2 the wave equations

Figure 5 shows a transmission line of length d = Lb with frequency-dependent

internal source and load impedances Zs and ZL, respectively. The transmis-

sion line could be a coaxial cable or any suitable line as mentioned in the

introductory chapter. Coaxial cables are used here because it feeds directly

into what is investigated in this research, and the theory remains the same

regardless of the medium of transmission.

An infinitesimal segment ∆x from the transmission line, which can be

schematically drawn as a two-wire line to represent the two parallel con-

ductors in the line [18]. The segment is normally modelled as a lumped-

element circuit [18, 19, 23, 26] as seen in Figure 6. Here, the cable charac-

teristics R,L,G and C are the primary per unit length parameters of the TL,

where they represent the resistance, inductance, conductance and capacitance

of the cables respectively. The voltage V and the current I are both depen-
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2.2 the wave equations

Figure 6.: General model of an infinitesimal segment of TL.

dent on position x and time t. The initial voltage applied from the left hand

side across the segment is denoted by V(x, t), while the final voltage expe-

rienced at the right hand side is V(x + ∆x, t). The famous Telegrapher’s

equations [18, 19, 23, 26] could be derived by applying Kirchoff’s laws.

Applying Kirchoff’s law on voltages, we can write

V(x, t)− I(x, t)R∆x− δI(x, t)
δt

L∆x−V(x + ∆x, t) = 0, (1)

where I(x, t) is the current associated with V(x, t). In addition, a second

equation can also be written from Figure 6 using Kirchoff’s law on currents

in a similar fashion. This is given by

I(x, t)−V(x + ∆x, t)G∆x− δV(x + ∆x, t)
δt

C∆x− I(x + ∆x, t) = 0, (2)

where I(x + ∆x, t) is the current at a distance ∆x from I(x, t). Rearranging

(1) and (2) and dividing through both equations by ∆x and allowing ∆x to

approach zero, we get the following two equations

lim
∆x→0

V(x, t)−V(x + ∆x, t)
∆x

= lim
∆x→0

[
I(x, t)R +

δI(x, t)
δt

L
]

(3)
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2.2 the wave equations

and

lim
∆x→0

I(x, t)− I(x + ∆x, t)
∆x

= lim
∆x→0

[
V(x + ∆x, t)G +

δV(x + ∆x, t)
δt

C
]

. (4)

Equations (3) and (4) could be written as

−δV(x, t)
δx

= I(x, t)R +
δI(x, t)

δt
L (5)

and

−δI(x, t)
δx

= V(x, t)G +
δV(x, t)

δt
C (6)

respectively.

In phasor forms, the voltage and current may be written as [18]

V(x, t) = <
[
V(x)ejωt

]
(7)

and

I(x, t) = <
[

I(x)ejωt
]

, (8)

where ω is the angular frequency of the signal which can be written in

terms of linear frequency f as ω = 2π f and j =
√
−1. Differentiating (7)

with respect to x and (8) with respect to t, gives

δV(x, t)
δx

= <
[

dV(x)
dx

ejωt
]

(9)

and

δI(x, t)
δt

= <
[
jωI(x)ejωt

]
, (10)

respectively. The full derivative in (9) resulted from the fact that the voltage

amplitude V(x) depends only on x. Substituting (8), (9) and (10) into (5)

and simplifying, one retrieves the first Telegrapher’s equation as

dV(x)
dx

= −ZI(x), (11)
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2.2 the wave equations

where the impedance Z = R + jωL. Similarly, the second Telegrapher’s

equation is obtained by differentiating (7) with respect to t and (8) with

respect to x and performing similar substitution and simplification to arrive

at

dI(x)
dx

= −YV(x), (12)

where the admittance Y = G + jωC. Equations (11) and (12) are the two

fundamental equations governing TL theory from which one can derive

the wave equations. In Section 5.2, we will discuss how the Telegrapher’s

equations can be used to calculate the cable characteristics (i.e. R,L,G and

C) of a given coaxial cable, and use the values of the cable characteristics to

validate our QG model (QG model will be derived in chapter 4).

For now, we proceed to derive the wave equations as follows. From (11),

I(x) = − 1
Z

dV(x)
dx

, (13)

and

d2V(x)
dx2 = −Z

dI(x)
dx

. (14)

Substituting (12) into (14) and rearranging gives the wave equation as

d2V(x)
dx2 −YZV(x) = 0, (15)

whose general solution in terms of progressive and regressive propagating

voltage waves is given by

V(x) = V+eκx + V−e−κx, (16)
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2.3 transmission line model

where the frequency-dependent complex propagation constant

κ =
√

YZ

=
√
(R + jωL)(G + jωC)

= ακ + jβκ

(17)

Here, ακ represents the attenuation constant (i.e. a measure of how a prop-

agating wave is damped.), while βk is the phase constant. Amplitudes of

the outgoing and incoming voltages are represented by V+ and V− respec-

tively. The purpose of the subscript in ακ is to differentiate this attenuation

constant with another loss parameter α that will be discussed in Chapter

4. Again, the propagation constant κ as defined here must not be confused

with the k in Chapters 3 and 4. We will clarify whenever there is a possibility

of confusion in subsequent chapters.

2.3 transmission line model

In this section we show how to model the complex-valued reflection spec-

trum S11 of a cable network, using TL modelling. Figure 7 illustrates a cable

network consisting of a cascade of T-junction networks, where n is the num-

ber of vertices in the cable network, and Lb is the length of cable b. The

reflection spectrum of these types of networks are simple enough to be han-

dled by TL model. As mentioned in the introductory chapter, graphs with

more complex topologies may not be amenable to TL modelling. The goal

here is to give an example of a graph that is simple enough to be handled by
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2.3 transmission line model

Figure 7.: TL Model.

TL modelling so we could compare it with quantum graph model (quantum

graph model is treated in Chapter 4).

We denote the input and load impedances of bond b by Zinb (as indicated

by the red arrows in Figure 7) and ZLb , respectively. The blue cable repre-

sents the lead connected to a VNA. If the reference plane is moved to the

point where the lead connects to the rest of the cable network, then [18]

S11 =
Zin1 − Z0L

Zin1 + Z0L
, (18)

where Z0L is the load impedance at the point of connection, calculated by

looking at the VNA (on the left of Figure 7) at that point. For a perfectly

matched systems, Z0L = Z0b, where Z0b is the characteristic impedance of

cable b in the network. Since all cables in the network are uniform in this

example, Z0b = Z0. Most commonly used coaxial cables have Z0 = 50 Ω.

Also, the input impedance of the VNA is 50 Ω.

In addition to (18), it is easy to show that

Zinb = Z0b
ZLb + Z0b tanh(κbLb)

Z0b + ZLb tanh(κbLb)
. (19)
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2.3 transmission line model

A detailed proof of (19) can be found in [18]. Furthermore, if we consider

the first T-junction in Figure 7, then ZL1 is equal to the parallel combination

of Zin2 and Zin3 and so

ZL1 =
Zin2 Zin3

Zin2 + Zin3

. (20)

Generally, the load impedance on cable b may be written as

ZLb =
Zinb+1 Zinb+2

Zinb+1 + Zinb+2

. (21)

Therefore S11 can be calculated by cascading the results of parallel combina-

tions of Zinb+1 and Zinb+2 from the last T-junction up to ZL1 , while accounting

for the phase shifts between Zinb and ZLb for any arbitrary cable b in the net-

work. Subsequently, (19) is used to find Zin1 by noting that b = 1. Finally,

the reflection coefficient S11 is calculated using (18).

As an example, Figures 8(a) and (b) show the S11 spectrum of a single

T-junction and a cascade of two T-junctions cable networks respectively. All

the cables in (a) have equal lengths (1 m each), while the lengths in (b) are

incommensurate. From left to right of the inset in (b), the lengths are given

by 1/(5π) m,
√

3/5 m, (
√

5+ 3
√

6)/9 m, π/10 m and 1/
√

2 m, respectively.

Unlike Figure 8(a), the lengths in Figure 8(b) are linearly independent, and

are therefore expected the have an aperiodic resonances. The blue cable in

inset of each figure denotes the leads that are assumed to be connected to a

VNA, and the reference plane where the S11 values are calculated is at the

point of connection between the lead and the rest of the cable network.
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2.4 conclusion

(a) (b)

Figure 8.: The |S11| response across frequency range 0 − 3 GHz of a (a)

single T-junction and (b) a cascade of two T-junctions cable net-

works. In (a), each cable has a length of 1 m, while the incom-

mensurate lengths (in metres) of cables in (b) are 1/(5π),
√

3/5,

(
√

5 + 3
√

6)/9, π/10 and 1/
√

2.

In chapter 4, the predictions of the transmission line approach will be

compared with the quantum graph approach as a way of validating the

graph model.

2.4 conclusion

We have derived the two Telegrapher’s equations and specialised them to

coaxial cables from first principles. The Telegrapher’s equations are the fun-

damental equations in transmission line modelling. We have used the two

equations to derive the equations governing the propagations of microwaves

in cable networks.
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2.4 conclusion

Finally, we have shown how to use the transmission line modelling to

predict the reflection spectrum of microwave networks. In particular, we

have calculated the S11 of a cascade of T-junction networks and given the

numerical calculations of two examples. This calculations will be compared

with the predictions of quantum graph modelling, which will be discussed

in chapter 4. Before then, the next chapter discusses the background theory

of quantum graphs, which serves as the preamble to chapter 4.
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3
Q U A N T U M G R A P H T H E O RY

3.1 introduction

Quantum Graph (QG) theory has been established as a successful paradigm

for studying complex scattering problems [39–41, 45, 59, 60, 107, 108]. This

chapter presents a summary of the theoretical background of quantum

graphs (QGs), which are fundamental to the understanding of this thesis.

Other theories and definitions that are not directly related to this thesis are

not presented here. For a more in-depth study of quantum graphs, the

reader is referred to a review paper on QGs by Gnutzmann and Smilan-

sky [39].

The rest of the chapter is organised as follows. In Section 3.2, we discuss

basic definitions and terminologies that are used in the field of quantum

graphs and are directly relevant to this research. Also, all graphs treated in

this thesis will be categorised in Section 3.2 according to a connectivity in-

dex γ. Section 3.3 presents the theoretical backgrounds of quantum graphs,
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3.2 definitions and terminologies

where the action of the Laplacian on graphs is introduced. This is followed

by treating the various boundary conditions and the corresponding expres-

sions for the vertex scattering matrices as used in this research and can be

found in Section 3.3.2. In Section 3.3.3, we generalise the calculations of the

vertex scattering matrix to include non-uniform bonds. For the purpose of

spectral analysis of quantum graphs, two spectral functions are derived and

compared in Section 3.3.4, and our choice is justified. The chapter conclu-

sion is presented in Section 3.4.

3.2 definitions and terminologies

A graph G(n, B) is defined as a linear, network-shaped structure endowed

with a differential operator and consisting of a number of bonds B and

vertices n [42]. The number of vertices n is also known as the order of the

graph. A bond may be specified completely by the pair of vertices (i, j) it

connects. If the bonds are directed, then the direction of propagation of

waves along the bond must be specified. Under such circumstance, each

bond is counted twice [44].

For example, bond (i, j) starts from vertex i to vertex j, and it is dif-

ferent from the reverse bond (j, i). We take the positive direction to be

from min(i, j) to max(i, j), while the negative direction is the reverse from

max(i, j) to min(i, j). Loops are formed when i = j. In general, multiple

bonds may connect a pair of vertices, but in this thesis each unique ordered
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3.2 definitions and terminologies

pair of vertices is connected by a single bond. Furthermore, unless other-

wise stated, all bonds in this research are undirected and one does not need

to specify the direction of propagation on each bond.

Graphs drawn in a two-dimensional plane are not necessarily embedded

in the plane. Two or more bonds crossing one another at points other than

vertices are ignored and assumed not to be touching one another [39, 42].

That is, the fact that two bonds crosses each other does not mean they create

a vertex at the crossing point. Figure 9(a) shows an example of a graph with

V = 5 and B = 10, while (b) shows a graph with V = 10 and B = 45. It

is important to note that the centre of the graph in (b) does not constitute a

vertex. We refer to these types of graphs as non-planar because they are not

embedded in 2D plane. Unless otherwise stated, all graphs treated in thesis

are non-planar.

An n × n square matrix is used to describe the topology of a graph as

follows [39]:

Cij =



m if i 6= j where i and j are connected by m bonds

2m if i = j and there are m loops at vertex i

0 if i and j are not connected

(22)

The matrix as described in (22) is called connectivity matrix or adjacency ma-

trix, and we shall use both nomenclature interchangeably. This thesis fo-

cuses on simple graphs, where each unique pair of vertices (i, j) is connected
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3.2 definitions and terminologies

(a) (b)

Figure 9.: Examples of graphs consisting of bonds and vertices. In graph

(a) there are 5 vertices and 10 bonds, while graph (b) consists of

10 vertices and 45 bonds. Note that the centre of the graph in (b)

does not constitute a vertex.

by at most one bond, and no vertex is connected to itself. In such simple

graphs, the elements of the connectivity matrix Cij are defined by

Cij =


1 if i and j are connected

0 if i and j are not connected

. (23)

Let Ei denote the set of all bonds arriving at vertex i, then the valency (or

degree) vi of vertex i is defined as the cardinality (|Ei|) of Ei. This may also

be written in terms of the connectivity matrix as

vi = |Ei| =
V

∑
j=1

Cij, (24)

while the number of bonds in the whole graph, B is written as

B =
1
2

V

∑
i=1

V

∑
j=1

Cij. (25)
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3.2 definitions and terminologies

A vertex with zero valency is an isolated vertex. If the valency of each vertex

in a graph is v, then the graph said to be a v−regular. For example, Figure

9(a) is a 4−regular graph, while Figure 9(b) is a 9−regular graph. If v = n− 1

in a v−regular, then the graph is said to be complete. By complete graph, we

mean any graph where each vertex is connected to all other vertices of the

graph. Again, Figure 9(a) and (b) are complete graphs of orders 5 and 10

respectively. In this thesis, we will represent such complete graphs by Kn,

where n is the order of the graph. Examples of a K5 and K10 are shown in

Figure 9.

A graph G(n, B) is said to be a metric graph if, to each bond b, there exists

a positive length Lb assigned to it [42, 43]. A function defined on a graph G

is a collection of functions on individual bonds which make the graph. The

neighbourhood Γ(i) of a vertex i, is the set of all vertices connected to i. The

boundary Γ(Ĝ) of a sub-graph Ĝ of graph G is defined in the usual sense as

the union of all neighbourhoods of the vertices of Ĝ that are not in Ĝ [39].

Every non-isolated vertex i forms a star graph with the vertices in its

neighbourhood Γ(i). That is

S(i) =
⋃

j∈Γ(i)

(i, j). (26)

Although a compact graph was formally defined in [117,118] as any graph

G which contains no isolated vertices and for each pair i, j of non-adjacent

vertices of G, there exists a vertex q such that Γ(i) ∪ Γ(j) ⊆ Γ(q), we loosely

define a compact graph in this thesis as any graph consisting of finite num-

ber of vertices connected by finite bonds. The later definition is consistent
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3.2 definitions and terminologies

with what is reported in [119]. Therefore, whenever semi-infinite leads are

attached to graphs, the phrase "compact part of the graph" will be used to de-

note the part of the graph without the leads attached. Figure 10 shows an

example of a graph connected to two leads, where the ’compact’ part of the

graph is demarcated by the red rectangle.

Figure 10.: An illustration of a graph attached to two leads. The solid red

box indicates the compact part of the graph, while the two blue

lines indicate the semi-infinite leads attached to the graph.

3.2.1 Classification of Graphs By Connectivity

In graph theory, connectivity indices are topological indices used to quantify

the extent to which graph vertices are connected. These indices have been

studied extensively in different forms and in several fields of study such as

chemical graph theory [120–123], fuzzy graphs [124], street networks [125]

and transport systems [126, 127].

However, the index we chose to use in this thesis is the γ index reported

in [127]. The γ index takes the values between 0 and 1, with γ = 1 indi-
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3.2 definitions and terminologies

cating a complete (i.e. fully connected) graph. The index may therefore be

interpreted as the percentage of a fully connected graph of the same order.

For a non-planar graph (i.e. graphs which are not embedded in 2D plane)

consisting of B bonds and n vertices, the γ index is defined by

γ :=
2B

n(n− 1)
. (27)

Although no single connectivity index is completely adequate in com-

paring graph complexities, the γ index is sufficient for the purpose of this

thesis, where we broadly classify the graphs as high, medium and low con-

nectivity graphs.

3.2.1.1 High connectivity (fully-connected) graphs

We define high connectivity graphs as graphs with γ = 1. This is also

known in some other literature as fully-connected graphs [39] or complete

graphs [118]. In fully-connected graphs with no loops, the number of bonds

B = n(n− 1)/2, and so substituting that in (27) always gives γ = 1.

For example, Figures 11(a) and (b) show examples of two high connectiv-

ity graphs, one of order n = 10 and B = 45 bonds, and the other of order

n = 4 and B = 6 respectively. It is important to note in Figure 11(a) that,

although bonds appear to cross one another at the centre of the polygon, the

centre does not constitute a node of the graph. However, in the tetrahedral

network in Figure 11(b), the centre constitutes a vertex. Therefore, in Figure

11(a) the connectivity index is calculated as γ = 2× 45/(10× 9) = 1, while

γ = 2× 6/(4× 3) = 1 in Figure 11(b).
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3.2 definitions and terminologies

(a) Fully-connected Decagon. (b) Tetrahedral network

Figure 11.: Illustration of full-connected graphs.

3.2.1.2 Medium connectivity (Hexagonal) graphs

We classify graphs whose connectivity index γ ≈ 0.5 as graphs with medium

connectivity. For the purposes of this thesis, we introduce a class of graphs

with hexagonal topology and call them HEXv graphs (or half-connected

graphs) where v is the valency of the first node as well as the last node.

For example, a HEX6 graph has six bonds attached to both the first vertex

and the last vertex as shown in Figure 12(a). Similarly Figure 12(b) shows a

HEX10 graph. Although HEX10 graph has more bonds than HEX6 graph,

both have γ ≈ 0.5. In general the number of bonds B for HEXv graphs is

given by B = v(v + 2) while the number of vertices is n = 2(v + 1). There-

fore the connectivity index for HEXv graphs is calculated in terms of v as

γ =
2B

n(n− 1)

=
v(v + 2)

(v + 1)(2v + 1)
.

(28)
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Factorising v in both the numerator and the denominator, and simplifying

the expression by applying the limiting case of large v, we get

γ =
1 + 2/v

(1 + 1/v)(2 + 1/v)

≈ 1
2

as v→ ∞.

(29)

This implies that, for v > 1, the connectivity index of HEXv graphs is

such that 1/2 ≤ γ ≤ 15/28, where the maximum is attained when v = 3.

Figure 13(a) shows how γ asymptotically approaches 0.5 in the limit of large

graph sizes. The topology of HEXv graphs is constructed so that the line-of-

sight (LoS) transmission is avoided whenever leads are attached to the first

and last nodes. This is discussed further in chapters 4 and 6. For now, it

suffices to say that HEXv ensures that waves travelling through the graphs

needs at least three bounces to get from one lead to another. Graphs of

HEXv topology will be central when it comes to the discussion of statistics

of channel capacity of both wireless (see chapters 6 and 7).

(a) HEX6 graph. (b) HEX10 graph.

Figure 12.: Illustrations of graphs with HEXv topologies for v = 6, 10 with-

out leads attached.
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3.2 definitions and terminologies

(a) HEXv graphs. (b) Cascade of T-junction graphs.

Figure 13.: Limits of connectivity index for (a) HEXv graphs and (b) cas-

cade of T-junction graphs. The yellow dashed curve is the upper

bound of the connectivity index while the red dashed curve rep-

resent the lower bound in both plots.

3.2.1.3 Low connectivity (cascaded T-junction) graphs

Low connectivity graphs are non-planar graphs with γ < 0.5. In particu-

lar we concentrate on graphs consisting of cascades of star networks. This

network architecture is abundant in applications such as Digital Subscriber

Line (DSL) and its variants like the Symmetric DSL (SDSL) and Asymmet-

ric DSL (AVSL). The statistics of low connectivity networks is discussed in

Chapter 8.

Figure 13(b) shows how γ changes with increasing graph size for a cas-

cade of T-junction (i.e. star graphs with three branches each) networks. It is

worth noting that the connectivity index asymptotically approaches zero as

the number of stars in the network increases. This is because the number of
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bonds B is related to the number of vertices n by B = n− 1. Therefore the

connectivity index is given by

γ =
2B

n(n− 1)

=
2
n

→ 0 as n >> 1.

(30)

From (30), it is obvious that a single T-junction network has the maximum

connectivity (i.e. γ = 0.5) in this class of graph networks. The higher

the number of stars cascaded, the lower the connectivity index. In this

thesis, we refer to the cascade of such star graphs as low connectivity graphs.

An illustration of is a single T-junction is shown in Figure 14(a), while (b)

represents a graph consisting of a cascade of five T-junctions with γ = 1/6.

Applications of the graphs with low connectivity is presented in Chapter 8,

where we look at the digital subscriber networks.

(a) (b)

Figure 14.: Low connectivity graphs with (a) single T-junction and (b) a cas-

cade of five T-junctions. The graph in (a) has the connectivity

index γ = 0.5, while (b) has γ = 1/6.
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With these definitions and terminologies in mind, we can now proceed to

study the different theories of quantum graphs.

3.3 theoretical background

The theories of quantum graphs have been widely reported. As usual, em-

phasis will be put on the theories that are essential to this thesis. We be-

gin the discussion with the action of the Laplacian on graphs, followed by

the boundary conditions at the vertices; subsequently, we generalise the ex-

pression for the vertex scattering matrix and finally discuss the analysis of

spectrum of quantum graphs through two spectral functions.

3.3.1 The Laplacian Operator on Graphs

The Schrödinger operator on G, defined on each bond b, consists of one

dimensional operators

Hb =

(
1
j

d
dxb

+ Ab

)2

, (31)

where Ab are real and positive constants representing an external magnetic

flux. In this research, as in many other reported studies, we assume zero

magnetic flux. The characteristics of these cables are presented in Section

5.2. The symbol j =
√
−1, while xb is the position of a point on bond b

whose length is denoted by Lb. Therefore, for each bond b, 0 ≤ xb ≤ Lb.
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For any arbitrary wave function ϕ(x) which may correspond either to

voltage V(x) or current I(x), the wave equation reads(
1
j

d
dxb

)2

ϕ(x) = k2ϕ(x), (32)

which has general solution given by

ϕ(x) = Aejkx + Be−jkx, (33)

where k is the wave number. This wave number is slightly different from the

κ defined in Chapter 2. Unlike κ (where the <(κ) denotes the attenuation),

the =(k) here characterises the damping experienced by the propagating

waves. The κ definition is commonly used by the Engineering communi-

ties, while the current definition is common in mathematics and physics

communities.

With appropriate boundary conditions, the constants A and B can be

determined so that a specific solution is obtained. The next subsections

shed more light on these boundary conditions. We start by considering two

simply-connected bonds and then work our ways to more complex topolo-

gies. Without loss of generality, we take the wave function to be the voltages

V(x) here. This could also be applied to currents mutatis mutandis. Equation

33 can therefore be re-written in terms of outgoing V+ and incoming V−

voltages on bond b as

Vb(xb) = V+
b ejkxb + V−b e−jkxb . (34)

Equation (34) applies to each bond b of the graph and we can therefore

form a system of differential equations to represent the entire graph. From

such a system, we are able to derive two different spectral ζ functions (also
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known as secular equations) [39] and justify our choice. The zeroes of these

secular equations are in one-to-one correspondence with the resonances of

our graph and therefore forms an important tool that will be used during

spectral analysis of the underlying graph networks. The quantization of

these metric graphs can be found in Section 4.5, which allows us to exam-

ine features of graphs that are predicted by random matrix theory [45,59,64].

For now, we will deal with boundary conditions that are relevant to this the-

sis and their implications on energy distribution within the graph network.

3.3.2 Boundary conditions at vertices

Boundary conditions describe the behaviour of travelling waves at bound-

aries (i.e. vertices) of graph networks. The proportion of the propagating

waves that are reflected and/or transmitted on each bond connected to the

vertex is governed by the conditions at the boundaries. A variety of bound-

ary conditions have been reported in the literature. The two most important

conditions that must be satisfied at a vertex are the continuity and current

conservation.

The continuity condition at vertex i requires that the potential φi at i

remains the same regardless of the bond from which one approaches the

vertex. That is, Vi(xb) = φi for all b connected to i. For example, Figure

15 shows a star graph where the central node is the reference point, and

the potential at the centre remains unchanged. That is, φ1 = V(x1 = L1) =
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V(x2 = L2) = · · · , and V(x1 = 0) = φ2, V(x2 = 0) = φ3 and so on. For

example, a wave starting from vertex 2 (i.e. at x1 = 0) with potential φ2 will

end up with a potential of φ1 at vertex 1 when x1 = L1.

Figure 15.: Star graph showing continuity at the central vertex. In this par-

ticular way of labelling the vertices, V(xb = Lb) = φ1 for all

b ∈ {1, 2, 3, · · · , v− 1}. Other ways such as labelling the central

potential as φ0 and the peripheral nodes from φ1 may be used.

The current conservation condition is applied to the derivatives of the

wave functions, and is given by [39, 45]

∑
b∈S(i)

± dV(xb)

dxb

∣∣∣∣
i
= λiφi, (35)

where λi is a free parameter known (in some literature) as the vertex scat-

tering potential. Its name originate from the fact that it is analogous to the

potential strength obtained from the boundary conditions of a δ-function

potential. For example, the valency of vertex i to which two bonds are at-
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tached is vi = 2. If we choose xb = 0 at i, then (35) takes the simple form

lim
ε→0+

[
dV(xb)

dxb

∣∣∣∣
0+ε

− dV(xb)

dxb

∣∣∣∣
0−ε

]
= λiφi. (36)

Equation (36) is a well-known matching condition for a δ-potential of strength

λi [39, 45].

The summation in (35) is over two types of waves. The outgoing waves are

assumed to move in the positive direction (i.e. takes the + sign at xb = 0),

while the incoming waves takes the negative direction at xb = Lb for vertex

i. Although the vertex scattering potential λi ∈ [−∞, ∞], two specific values

of λi have interesting applications and are by far the commonly used. These

are the Neumann boundary conditions where λi = 0 and Dirichlet boundary

conditions where λi = ∞. In the case of Dirichlet boundary conditions, the

potentials of the vertex under consideration are zeros (i.e. φi = 0).

From the boundary conditions above, the expression for reflection and

transmission amplitudes at a vertex can be found. These transmission and

reflection amplitudes are given in the form of a matrix known as the vertex

scattering matrix (VSM). The elements of VSM, at vertex m with valency vm,

are given by [39]

σ
(m)
pq =

2k
vmk + jλm

− δpq, (37)

where p, q ∈ 1, 2, · · · , vm and k is the frequency-dependent wave number.

Equation (37) is the most general expression of VSM one can find in lit-

erature [39]. The most commonly reported VSMs are the Neumann and

Dirichlet VSMs [40, 41, 59, 101, 128]. It is important to note that the expres-
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sion in (37) is valid only when the cables involved are uniform (i.e. when

all the cables connecting at m have the same characteristics). We will later

derive a more unifying expression to include non-uniform bonds.

From (37), it is easy to see that both Neumann and Dirichlet scattering ma-

trices are independent of frequency. The effects of Dirichlet and Neumann

boundary conditions on energy distribution are discussed in subsections

3.3.2.1 and 3.3.2.2, respectively.

3.3.2.1 Dirichlet boundary condition

When λm = ∞ in (37), the node is said to be subjected to Dirichlet boundary

condition. This is equivalent to having a short circuit at the node so that

any signal at the vertex is totally reflected (i.e. the vertex scattering matrix,

σ
(m)
pq = −δpq ). This makes the entire graph behave as if it was made up of a

set of disconnected bonds and there is nothing interesting to analyse under

such circumstance. However, if the graph network has dead ends and it

is desirable to prevent energy leakage at that end, then Dirichlet boundary

condition become useful.

3.3.2.2 Neumann boundary condition

If λm = 0 in (37), then we have Neumann boundary conditions and this

is equivalent to open circuits. The sum of all currents at the vertex is zero
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(Kirchoff’s law for currents). In this case, the vertex scattering matrix in (37)

simplifies to

σ
(m)
pq =

2
vm
− δpq. (38)

In the limit of large vm , the scattering amplitudes of Neumann graphs

favours reflection (i.e. back scattering) instead of transmission as shown

in Figure 16 by the red arrows. The weights of the red arrows depict the

strength of transmission or reflection at the vertex. Neumann boundary

conditions therefore result in an unequal distribution of energy and hence

introduce abnormal behaviour of the wave functions. The ultimate conse-

quence of this unfair distribution is discussed in Section 4.6.

Figure 16.: Effects of Neumann (red arrows) and Dirichlet (green arrows)

boundary conditions at graph vertices.

In order to avoid such a non-democratic distribution of energy, we intro-

duce a third boundary condition known as the Fourier boundary condition.

This is treated in subsection 3.3.2.3.
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3.3.2.3 Fourier boundary condition

The Discrete Fourier Transform vertex scattering matrix [39, 84] is given by

σ
(m)
pq =

1√
vm

e
j2πpq

vm . (39)

This makes the transition probabilities |σm
pq|2 = 1/vm and therefore reflec-

tions and the transmissions are uniform and democratic across edges. Con-

sequently, the energies are equally distributed at all the vertices. This effect

is illustrated in Figure 17 by the red arrows. The equi-distribution of en-

ergy improves the ability of the wave to mix within the connected graph

network and therefore allows us to use the quantum graph theory more

readily to model chaotic phenomena. More details are found in Chapters

4 and 6, where we use quantum graphs to model the distribution of infor-

mation transfer rates in idealised communication channels. This paves the

way for an effective treatment of a more realistic communication channel in

Chapter 7.

Figure 17.: Effect of Fourier boundary condition on energy distribution at

a vertex. The equi-distribution of energy is shown in red, while

the effect of Neumann bc is shown in blue.

Another vertex scattering matrix, which ensures equal transmission of

amplitudes, has been studied [91]. Unfortunately, back-scattering is not al-
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lowed here and it makes the scattering in such systems less favourable com-

pared to the Fourier scattering when modelling propagation of microwaves.

Nevertheless, I envisaged the so-called equi-transmitting scattering matrix

to be useful in modelling other systems, where the underlying waves are

required to flow in one direction. For this reason, this thesis will focus on

the first three scattering matrices (i.e. Neumann, Dirichlet and Fourier).

3.3.3 Generalisation of Vertex Scattering Matrix

Consider an arbitrary vertex m with valency vm and potential φm in a graph

G as represented in Figure 18. All the outgoing and incoming voltages are

colour-coded in red and green respectively as V+
b and V−b . The solution to

Figure 18.: A vertex with valency vm.

the Schrödinger equations on each bond is given by

Vb(xb) = V+
b ejkbxb + V−b e-jkbxb , (40)
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and therefore

dVb(xb)

dxb
= jkb

(
V+

b ejkbxb −V−b e-jkbxb
)

. (41)

Applying the continuity condition to (40) at xb = 0 yields

Vb(xb = 0) = φm = V+
b + V−b , ∀b ∈ {1, 2, 3, · · · , vm}, (42)

and therefore
vm

∑
b=1

(
V+

b + V−b
)
= vmφm. (43)

Similarly, we can apply the current conservation condition to (41) to

achieve
vm

∑
b=1

dVb(xb)

dxb

∣∣∣∣
xb=0

=
vm

∑
b=1

jkb
(
V+

b −V−b
)
= λmφm. (44)

Using (43) and (44) to eliminate φm, we have

vm

∑
b=1

jkb
(
V+

b −V−b
)
=

λm

vm

vm

∑
b=1

(
V+

b + V−b
)

. (45)

Equation (45) may be rearranged, according to incoming and outgoing volt-

ages, as
vm

∑
b=1

(
jkb +

λm

vm

)
V−b =

vm

∑
b=1

(
jkb −

λm

vm

)
V+

b . (46)

From (42), we can form vm − 1 equations of the form

V+
1 + V−1 = V+

2 + V−2

V+
1 + V−1 = V+

3 + V−3

V+
1 + V−1 = V+

4 + V−4

... =
...

V+
1 + V−1 = V+

vm + V−vm ,

(47)

which may also be rearranged as

V−1 −V−b = V+
b −V+

1 ∀ b ∈ {2, 3, · · · , vm} . (48)
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Equation (46) can be combined with (48) to form a system of vm equations,

which may be written in compact form as

AV− = CV+, (49)

which implies

V+ = σV−, (50)

where

σ = C−1A (51)

is the Vertex Scattering Matrix (VSM). A careful examination of (46) and (48)

reveals that the vm × vm matrices A can be written in compact form as

A =

a1 a

1 −I

 , (52)

where I is a (vm − 1)× (vm − 1) unit matrix. If we define ab := jkb + λm/vm

for all b ∈ {1, 2, 3, · · · , vm}, then a is a vm − 1 row vector with components

(a2 a3 a4 · · · vm); 1 is a vm − 1 column vector with each component

as 1. On the other hand,

C =

 c1 c

−1 I

 , (53)

where c is a vm− 1 row vector with components (c2 c3 c4 · · · vm) such

that cb := j kb − λm/vm for all b ∈ {1, 2, 3, · · · , vm}.

From (51)

σ =
1
|C|Adj(C)A, (54)
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where the determinant of C is

|C| =
vm

∑
b=1

cb

=
vm

∑
b=1

(
jkb −

λm

vm

)
=

vm

∑
b=1

jkb − λm.

(55)

Furthermore, the adjoint of C is found to be

Adj(C) =

1 −c

1 B

 , (56)

where the elements of B are given by

Bpq = δpq|C| − cq. (57)

We now calculate the vertex scattering matrix as

σ =
1
|C|



1 −c2 −c3 · · · −cvm

1 |C| − c2 −c3 · · · −cvm

1 −c2 |C| − c3 · · · −cvm

...
...

... . . . ...

1 −c2 −c3 |C| − cvm





a1 a2 a3 · · · avm

1 −1 0 · · · 0

1 0 −1 · · · 0

...
...

... . . . ...

1 0 0 · · · −1


(58)

This implies

σ =
1
|C|



a1 + c1 − |C| a2 + c2 a3 + c3 · · · avm + cvm

a1 + c1 a2 + c2 − |C| a3 + c3 · · · avm + cvm

a1 + c1 a2 + c2 a3 + c3 − |C| · · · avm + cvm

...
...

... . . . ...

a1 + c1 a2 + c2 a3 + c3 avm + cvm − |C|


.

(59)
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But from ab = j kb + λm/vm and cb = j kb − λm/vm, ab + cb = 2jkb for all

b ∈ {1, 2, 3, · · · , vm}. Therefore

σ =
1
|C|



2jk1 − |C| 2jk2 2jk3 · · · 2jkvm

2jk1 2jk2 − |C| 2jk3 · · · 2jkvm

2jk1 2jk2 2jk3 − |C| · · · 2jkvm

...
...

... . . . ...

2jk1 2jk2 2jk3 2jkvm − |C|


, (60)

and the elements of σ at vertex m may be written as

σ
(m)
pq =

2jkq

|C| − δpq

=
2jkq

∑vm
b=1

(
jkb − λm

vm

) − δpq

=
2jkq

j ∑vm
b=1 kb − λm

− δpq

=
2kq

∑vm
b=1 kb + jλm

− δpq.

(61)

When uniform bonds are assumed (i.e. kb = k for all b), then (37) is re-

trieved. It must be noted that the vertex scattering matrix constructed by

the formula in (61) is not guaranteed to be symmetric. Symmetry is guaran-

teed only when the wave numbers kb are equal. Also, unlike (37), the ver-

tex scattering matrix in (61) is frequency-dependent even under Neumann

boundary conditions.
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3.3.4 Quantization of Graphs

Now that we have understood how the various boundary conditions affect

the energy distribution at the vertex, we turn to the spectral properties of

quantum graphs through secular equations. Two such secular equations are

treated below.

3.3.4.1 Secular Equation I

As we have seen earlier, in (34), an arbitrary pair of vertices connected by

bond b has the following general solution to the wave equation in (32)

Vb(xb) = V+
b ejkxb + V−b e−jkxb . (62)

An outgoing wave from vertex m becomes an incoming wave to vertex n.

We derive the first secular equation in the following way.

If we choose xb = 0 at m and xb = Lb at n, then we can write the following

two equations at m and n respectively

Vb(xb = 0) = V+
b + V−b = φm

Vb(xb = Lb) = V+
b ejkLb + V−b e−jkLb = φn,

(63)

which may be written in matrix form as 1 1

ejkLb e−jkLb


V+

b

V−b

 =

φm

φn

 . (64)

This implies V+
b

V−b

 =
1

−2 sin kLb

 φmejkLb − φn

φm − φne−jkLb

 . (65)
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Substituting (65) into (62) and simplifying gives the solution in terms of the

nodal potential as

Vb(xb) =
1

sin kLb
[φm sin k(Lb − xb) + φn sin kxb] . (66)

Differentiating (66) with respect to xb gives

dVb(xb)

dxb
=

k
sin kLb

[φn cos kxb − φm cos k(Lb − xb)] (67)

Applying the current conservation conditions at vertex m (i.e. at xb = 0)

and n (i.e. at xb = Lb) respectively results in the following two equations

∑
b∈Γ(m)

k
sin kLb

[φn − φm cos kLb] = λmφm (68)

and

∑
b∈Γ(n)

−k
sin kLb

[φn cos kLb − φm] = λnφn. (69)

The expression b ∈ Γ(m) refers to all bonds that connect vertex m to the

vertices in its neighbourhood. Therefore the sum is over such bonds. While

the coefficients of φn in (68) remain as k/ sin kLb for each b, the coefficient

of φm becomes −k ∑ cot kLb. The reverse happens to the coefficients of φm

and φn in (69).

Consequently, (68) and (69) can be written in matrix form as∑b∈Γ(m) cot kLb − 1
sin kLb

− 1
sin kLb

∑b∈Γ(n) cot kLb


φm

φn

 =

−λm
k φm

−λn
k φn

 . (70)

This is simplified and written in compact form as

h(k)φ = 0, (71)

where the elements of the matrix h(k) are generated as

hmm(k) =
λm

k
+ ∑

b∈Γ(m)

cot kLb, (72)
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and

hmn(k) = −Cmn
1

sin kLb
, m 6= n. (73)

Here, Cmn are the elements of the connectivity matrix C, which was defined

in section 3.2; and h(k) has the same dimension as C.

Equation (71) has a non-trivial solution only when

ζh(k) := det [h(k)] = 0, (74)

where the spectral function ζh(k) is called the secular function [39]. The

zeroes of the secular function are symmetrically distributed on the real k

plane. This is due to the symmetric nature of the wave equation, which is

immediately visible in (66) (i.e. Vb(xb; k) = −Vb(xb;−k)). The spectrum of

the Schrödinger equation is
{

k2
n
}

, which is in one-to-one correspondence

with the zeroes of the secular function ζh(k).

However, the presence of sin kLb in the denominator in (73) will result in

poles appearing in the spectrum at k = 0. Note that k = 0 gives the same

vertex scattering matrix as Dirichlet boundary condition would in (37). This

means that poles will appear at Dirichlet spectrum. In order to avoid the

appearance of these poles, another secular equation is derived below.

3.3.4.2 Secular Equation II

Here, we derive the second secular function with no poles. We begin with

some notation to label the vertices and the bonds in the underlying network.

Consider, as an example, the simple T-junction network shown in Figure 19.

There are 2B outgoing and incoming voltages respectively, where B is the
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Figure 19.: An illustration of a single T-junction with out-going (V(+)
b ) and

incoming (V(−)
b ) voltages on each bond b.

total number of bonds in the network. For book-keeping purposes, we label

the voltages on each bond in this special way: if V+
m and V+

m+1 are two

outgoing voltages on a bond, then the incoming voltages on that particular

bond are labelled V−m and V−m+1, respectively. With this method of labelling,

it is easy to observe that the outgoing and incoming voltages in the network

are related in a simple way by phase shifts. In general, we can form 2B

equations as

V−2 = ejkL1V+
1

V−1 = ejkL1V+
2

...

V−2B = ejkLBV+
2B−1

V−2B−1 = ejkLBV+
2B,

(75)

where Lb is the length of bond b.
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The system of equations may be written in matrix form as

V−2

V−1
...

V−2B

V−2B−1


=



ejkL1 0 0 · · · 0

0 ejkL1 0 · · · 0

0 0 . . . · · · 0

...
... 0 ejkLB

...

0 0 0 · · · ejkLB





V+
1

V+
2

...

V+
2B−1

V+
2B


. (76)

It can be noticed that the vector in the left hand side of (76) is not arranged

in ascending order as is the case in the right hand side. To rearrange, we

multiply both sides of (76) by a block diagonal matrix of the form

C =



0 1 0 · · · 0

1 0 0 · · · 0

0 0 . . . · · · 0

...
... 0 0 1

0 0 0 1 0


. (77)

For the purpose of this research, we call the 2B × 2B matrix C the con-

nection matrix. Like the connectivity (or adjacency) matrix, it contains topo-

logical information of the cable network. Unlike the connectivity matrix, it

contains a single entry of 1 in each row and each column and it has twice
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the dimension of the connectivity matrix. The matrix equation in (76) is

rearranged as

V−1

V−2
...

V−2B−1

V−2B


=



0 ejkL1 0 · · · 0

ejkL1 0 0 · · · 0

0 0 . . . · · · ...

...
... 0 0 ejkLB

0 0 0 ejkLB 0





V+
1

V+
2

...

V+
2B−1

V+
2B


. (78)

In compact form, we write

V− = SV+, (79)

where the shift matrix, S is a block diagonal matrix of the form in (78)

containing the phase shifts. From the definition of scattering matrix σ, we

can write

V− = σ−1V+. (80)

Using (80) to eliminate V− in (79), we have

V+ = TV+, (81)

where the transfer matrix T = σS. Therefore

(I2B − T)V+ = 0. (82)

Equation (82) has a non-trivial solution if and only if

ζT(k) := det (I2B − T) = 0. (83)

The function ζT(k) is the second secular function whose zeroes must coin-

cide with the zeroes of the first secular function ζh(k) since they describe the

same physical system. Figure 20 shows an example of complex eigenvalue

behaviour for a single T-junction graph network (as shown in Figure 19)
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with Lb = 1 for all the three bonds in the network, and 0 ≤ k ≤ 2π. Since

the lengths of the bonds are commensurate, the resonances are expected

to be periodic as seen in Figure 19. In this case the resonances occurred

at kLb = 0, π/2, π, 3π/2 and 2π. Figure 20(a) shows the 3D plot,

while (b) shows the bird’s eye view of the figure in (a).

Figure 20.: Comparing the zeroes of first and second secular functions.

Comparing the first ζh(k) and the second ζT(k) secular functions reveals

the following. Unlike ζh(k), which depends on the determinant of a V ×V

matrix, the ζT(k) depends on the determinant of matrix with a dimension

of 2B× 2B, which is significantly larger than ζh(k). This is true especially

with regards to graphs of high connectivity. Additionally, ζh(k) is real when

the boundary conditions are Neumann or Dirichlet. It is easier to find the

zeroes of a real function than complex.

On the other hand ζT(k) does not results in poles in the spectrum of the

Schrödinger operator. Furthermore, ζT(k) can be converted from a complex

function into a real one by noting the general expression for the determinant

of T, which is given by

det(T) = − e j2kL, (84)
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where L = ∑ Lb for all b, is known as the volume of the graph. With this in

mind, we can write

ζT(k) = det (I2B − T)

= −2jejkL sin(kL)

= −2
√

det(T) sin(kL).

(85)

There we can redefine ζT(k) by scaling it with
√

det(T) to make it a real

function as

ζT(k) =
det (I2B − T)√

det(T)
. (86)

An example is shown in Figure 21 which compares (86) with ζh(k).

Figure 21.: Comparing the zeroes of ζh(k) and purely real ζT(k).

Therefore the only advantage of ζh(k) over ζT(k) is with regards to its

smaller dimension. But the existence of poles in the spectrum of ζh(k) de-

rails the advantage of this secular function, hence our choice to use ζT(k) in

subsequent chapters.
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3.4 conclusion

We have introduced the most important theory and background knowledge

of QGs relevant to this research. This was done by first discussing the

terminologies and definitions used in this thesis. In addition, the Laplacian

operator on graphs was introduced, and the various boundary conditions

that may be applied to the vertices of these graphs has been extensively

discussed. The application of these boundary conditions was used to derive

mathematical expressions for the vertex scattering matrix for both uniform

and non-uniform cable networks.

Finally, we have presented two ways of quantising graph networks, which

resulted in two spectral functions. First secular equation involved finding

the determinant of a smaller matrix but consist of poles in its spectrum,

while the second secular equation has the overriding advantage of having

no poles in its spectrum. The theory behind the second secular equation is

used in Chapter 4 to derive a model which predicts the propagation of high

frequency waves in cable networks.
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4
Q U A N T U M G R A P H M O D E L

4.1 introduction

In this chapter, we model the propagation of microwaves in complex sys-

tems using quantum graph theory, which we introduced in Chapter 3. This

method is useful in modelling not only wired systems but also wireless

systems. For example, the propagation of microwaves in chaotic cavities

has been researched extensively by several authors using what is commonly

known as the random coupling model (RCM) [31–33, 35, 37, 38, 116, 129, 130].

The RCM is an impedance model and consists of two main parts. The

non-statistical part is made up of system-specific features of the underlying

system, while the statistical part has universal characteristics that do not

depend on the system under consideration, but rather, can be predicted by

the random matrix theory.

The main objective of this chapter is to create an analogue of the RCM

using graph theory. In this analogue model, we use scattering matrices
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instead of the impedance matrices typically used in RCM. We leverage the

simplicity of quantum graphs as a model to create a tool which can be

used as a test-bed for simulating realistic systems. All the features in RCM

are available analogously in the graph model and will be compared in this

chapter.

The chapter is organised as follows. We begin with the brief introduction

of RCM and its main characteristics. In Section 4.3, we model the propaga-

tion of microwaves in cable networks that are coupled to leads. This model

is numerically validated by comparing it with the theoretical predictions

of the well-known transmission line (TL) model [25, 26]. This is presented

in Section 4.4, where we compare and contrast the performance of the two

methods. The fact that we intend to use quantum graph theories to model

chaotic (or pseudo chaotic) systems requires that we test the model for its

ability to model chaotic phenomena. This is discussed in Section 4.5. In the

same section, we propose a mechanism which allows us to attached leads

weakly to graphs. This is important in reducing energy leakages from the

system under consideration in order to produce idealised models. It is also

a fundamental requirement in electromagnetic compatibility studies where

the interference effects between nearby systems are supposed to be min-

imised. Moreover, in order compare the graph model with the predictions

of RMT, we need the underlying system to be as close to a lossless system

as possible. This can be achieved through the weak coupling of leads to

graphs.
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4.2 random coupling model

In Section 4.6, we discuss how to create the graph-scattering analogue

of RCM by symmetrising the model in Section 4.3. We also show how to

analytically derive the characteristic features of the constituent variables in

the graph model. Finally, in Section 4.7, we introduce how losses may be

incorporated into the graph model to allow for modelling realistic systems.

This makes the graph model a complete analogue of the random coupling

model, which will be used later to predict the distribution of the channel

capacity of wireless communication systems.

4.2 random coupling model

The Random Coupling Model (RCM) provides a basis for understanding

the properties of high-frequency electromagnetic field quantities coupled

into chaotic cavities through a number of ports or terminals. These ports

may be in the form of sensors or antennas. The theory takes into account

two separate phenomena. The deterministic part on one hand, depends only

on the non-statistical properties of the coupling port. On the other hand,

the non-deterministic part depends on universal statistical properties of wave-

chaotic systems, which can be predicted using random matrix theory (RMT)

by the properties of ensembles of large random matrices [131]. The model

equation is based on an impedance matrix Zcav defined for M channels as

follows [33, 35]:

Zcav = j=
[

Zrad
]
+
[

Rrad
] 1

2 · ξZ ·
[

Rrad
] 1

2 , (87)
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where

Zrad = Rrad + j=
[

Zrad
]

(88)

is an M × M complex-valued and experimentally accessible port radiation

impedance matrix, whose diagonal elements represent the non-statistical and

system-specific features of the coupling between the irregular cavity and its

ports [38]. The crosstalk between the coupled ports are represented by the

off-diagonal elements of Zrad [34, 35]. In this research, we assume zero

crosstalk between the ports. Therefore Zrad is simply a diagonal matrix

whose diagonal elements represent the radiation impedances of the corre-

sponding ports. This is a realistic assumption since the ports are assumed to

be perfectly coupled and the only way electromagnetic waves would move

from one port to another is through the chaotic cavities. The matrix Rrad on

one hand (i.e. the real part of Zrad) can be interpreted as a radiation resis-

tance because it quantifies the ability of far-field radiation of the ports. On

the other hand =
[
Zrad] quantifies the stored near-field reactive energy of

the ports [35].

The normalised impedance matrix

ξZ =
j
π

W
1

jαI −ΛZ
W†, (89)

denotes the statistical part of the model. The elements Wnm of the M × N

coupling matrix W represent the coupling between the mth driving port and

the nth eigen mode [35,38], and have the following characteristics. They are

1. Gaussian-distributed with zero mean and unit variance, and

2. uncorrelated.
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The maximum number of eigenmodes of the enclosure is N, j =
√
−1, I

is an N × N identity matrix, and W† is the conjugate transpose of W. The

normalised diagonal matrix ΛZ is an N × N matrix, whose diagonal ele-

ments are the eigenvalues of the underlying transfer matrix. The spacing

of the eigenvalues are distributed according Wigner’s "semicircle law" are

obtainable through a random matrix Monte Carlo simulation [35, 37].

The Monte Carlo approach, which was first proposed by [37] and later

published in [35] may be implemented by creating a large random matrix

with the following properties.

1. The matrix is 5N × 5N real symmetric, where N is the size of the

diagonal matrix ΛZ.

2. The elements are independent and identically distributed.

3. The diagonal elements are Gaussian distributed with zero mean and

unit variance.

4. The off-diagonal elements are Gaussian distributed with zero mean

and a variance of 1/2.

For each randomly generated matrix with properties as outlined above,

there will be 5N eigenvalues out of which the middle N eigenvalues are

chosen and normalised to have a unit average spacing. The spacings of

these eigenvalues have been shown to follow the Wigner’s "semicircle law".

For a more detailed description, see Appendix A of [35].
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Figure 22 shows an example where N = 200 and a sample of 1000 matri-

ces were used. The solid red curve is the theoretical prediction of a semi-

circle with radius 31.5, and it agrees well with Monte Carlo simulation of a

random matrix with properties as described above.

Figure 22.: An example of Wigner’s semicircle law, where N = 200 and

an ensemble of 1000 samples were used. The red curve is the

theoretical prediction, while the histogram is the results of the

Monte Carlo approach summarised in 4.2.

The universal random variable ξZ is an N× N matrix which depends nei-

ther on the geometrical shape of the cavity nor the positions of the scatterers

inside the cavity, but rather depends only on a dimensionless parameter α.

The α parameter quantifies losses in the system and we shall refer to it as

the loss parameter. From the theory of RCM, the loss parameter is given by

α =
k2

∆k2
nQ

, (90)

where k is the wave number, ∆k2
n is the mean level spacing, and Q is the

quality factor of the chaotic cavity. The variance of real and imaginary parts

of ξZ was predicted in [33] and validated experimentally in [116], to be

σ2
<[ξZ]

= σ2
=[ξZ]

=
1

απ
for α� 1. (91)
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For a more detailed discussion of the theoretical underpinnings of RCM, I

refer the reader to [32, 34–38, 129, 130].

In Section 4.6, we will derive the quantum graph analogue of the RCM,

and use the analogue model in chapters 6, 7 and 8 to model both wireless

and wired communication channels. We achieve this by first using quantum

graph theory to model the propagation of microwaves in complex networks,

and then derive the analogue of RCM in (87) from the graph model.

4.3 modelling wave propagation using quantum graph the-

ory

In this section, we model the propagation of waves through cable networks

by estimating the scattering parameters. In Chapter 3, we derived expres-

sions for the vertex scattering matrix. Here, we seek the scattering parame-

ters of the entire graph networks when leads are attached. Figure 23 shows

a schematic of a graph attached to a lead (i.e. the solid blue cable).

Now, we can consider the graph part and the lead part as two systems

coupled together. We refer to the underlying graph without leads as the

compact part of the graph. To simplify the algebra, we label the compact

part of the graph as a black box, x, and use a subscript of 0 to denote the

lead side. We can write two equations connecting the voltages on the lead

side to the voltages on the compact graph side as

V+
0 = σ00V−0 + σ0xV−x (92)
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Figure 23.: Illustration of a cable network connected to a lead.

and

V+
x = σx0V−0 + σxxV−x . (93)

Substituting (79) into both (92) and (93) gives

V+
0 = σ00V−0 + σ0xSxxV+

x (94)

and

V+
x = σx0V−0 + σxxSxxV+

x . (95)

Making V+
x the subject in (95) and substituting back into (94), we have the

quantum graph (QG) model equation for the reflection coefficient as

Ŝ11 = σ00 + σ0xSxx
1

I2B − σxxSxx
σx0

= σ00 + σ0xSxx

∞

∑
n=1

Tnσx0,
(96)

where T = σxxSxx is the transfer matrix (as discussed previously in Chapter

3) which is unitary for a closed graph network and sub-unitary when leads

are attached. The matrix T will be extensively discussed later in Section 4.6.

The model in (96) may be explained in the following way. The network is

excited, by the voltage V(−)
0 , through the lead. At node 0 (i.e. the node con-

69



4.3 modelling wave propagation using quantum graph theory

necting the lead to the graph), the signal undergoes both a prompt reflection

which is modelled by σ00, and a transmission from the lead to the compact

part of the graph. This transmission is modelled by σx0. While inside the

network, the signal undergoes multiple reflections and transmissions rep-

resented by (I2B − σxxSxx)
−1. Finally, the signal is transmitted back onto

the lead. The bond-lead transmission is modelled by σ0x. The shift matrix

Sxx now encodes the topology of the network as well as the phase shifts

the signal undergoes while in transit. Additionally, we can denote losses in

the system by writing the phases as exp (j<(k)L− ε), where exp(−ε) is the

damping factor that will be discussed in Section 4.7. In this context, it is

important to note that ε = =(k) is a real number and its value is dictated by

the underlying cable characteristics. The matrix σxx is the graph scattering

matrix containing all the vertex scattering matrices. I2B is a 2B× 2B identity

matrix. A measuring instrument like the Vector Network Analyser (VNA)

may be used to both excite the system and detect the signal when it is fi-

nally transmitted onto the lead. This setup is illustrated in Figure 23. We

will discuss the setup further in Chapter 5, which deals with experimental

measurements.

When multiple leads are attached, (96) can be generalised as an M×M

scattering matrix

SM = σ00 + σ0xSxx
1

I2B − T
σx0, (97)

where the transfer matrix T = σxxSxx, M is the number of leads attached,

σ00 is now an M×M diagonal matrix containing prompt reflections, while
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σ0x and σx0 are M× 2B and 2B×M respectively. The matrices Sxx, σxx and

I2B are all of dimensions 2B× 2B. As a result of the multiple scattering mod-

elled by (I2B − T)−1, SM is effectively a sum over a large collection of inter-

fering waves which brings about the typical fluctuations across frequencies.

The model is doubly-validated by comparing it numerically with Transmis-

sion Line modelling, which was presented in Chapter 2. We present the

numerical validation in Section 4.4. However, experimental validation of

the model is presented subsequently in Chapter 5.

4.4 numerical validation of qg model

Although limited in its ability to model complicated networks, the transmis-

sion line (TL) method can be used to model a cascade of T-junction networks

as we discussed in Chapter 2. In this section, we compare the predictions of

the graph model with the TL model. To reiterate, TL model is based on the

impedance matrix, while the QG model uses the scattering matrix. All the

advantages of scattering methods over impedance methods enumerated in

Chapter 1 still apply. Additionally, this graph method decomposes the mod-

elling problem into a local vertex scattering and then provides an elegant

way of aggregating them into a global graph scattering. This way, graphs of

arbitrary complexity or topology are easily treated. As we shall see in subse-

quent chapters, graph topologies that are insurmountable using TL model,

have been implemented using QG modelling. However, for the purpose
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of comparison, we use graphs with low connectivity indices (i.e. γ < 0.5)

which can be implemented by both methods. Classification of graphs by

their connectivity index γ has been discussed in Chapter 3, Section 3.2.1.

Although this is a numerical comparison, we used characteristics (R, L, G,

and C) of real cables (Farnell coaxial cable PP000663), which are frequency-

dependent, to find the coaxial cable wave number,

κ(ω) =
√
(R + jωL)(G + jωC), (98)

where R, L, G and C are the per unit length resistance, inductance, conduc-

tance and capacitance respectively, and ω is the angular frequency. Figure

24 shows the dependence of the cable characteristics on frequency up to the

limit allowed by the VNA, which is 3 GHz. The details of the experimental

set-up and measurements will be discussed in chapter 5. For now, it is suffi-

cient to note that the realistic wave number of the coaxial cable (i.e. Farnell

PP000663) was used in the numerical calculations.

Figure 25 shows the comparison between the QG and TL models for a

single T-junction. Predictably, all the plots have perfect agreement. This is

because both are solutions of the same problem. The regularly-spaced (peri-

odic) resonances of Figure 25(a) occur as a result of commensurate lengths

of cables used. When the cables lengths are incommensurate, the resonances

become irregular as in the case of Figure 25(b) where the bond lengths, Lb,

were generated so that 0 < Lb < 1 with values of 0.5508 m, 0.7081 m and

0.2909 m.
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Figure 24.: A plot of cable characteristics as they vary with frequency.

We apply two types of boundary conditions and it is important to note

where they are applied. If one end of a cable is not connected to any another,

we require all the energy to be reflected back into the cable network with-

out escaping. The boundary condition required at that point is the Dirichlet

boundary condition (DBC), where λ = ∞ in (37). This corresponds to a

short circuit in electronics, where the load impedance, ZL = 0. However,

if two or more cables are connected at a junction, then the amount of en-

ergy transmitted or reflected is determined by the vertex scattering matrix

which is generated after applying Neumann boundary condition (NBC) (i.e.

λ = 0 at that node). The schematic diagram showing how the cables are

connected and terminated is given in Figure 26. The red arrows denote out-
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(a) |S11| for a T-Junction network with

each bond lengths.

(b) |S11| for a T-Junction network with

different bond lengths

Figure 25.: Comparison between the |S11| predictions of quantum graph and

transmission line modelling for a single T-junction network con-

nected to a lead. In (a), all cables in the network are 1m each,

while in (b), the cables have lengths 0.5508 m, 0.7081 m and

0.2909 m.

going waves leaving a vertex, while the green arrows represent the incoming

waves.

As the size of the graph B is increased, by cascading more and more

of the T-junctions, the number of resonances increases within a given fre-

quency window. This is seen in the cascade of 2 and 3 T-junctions shown

in Figure 27(a) and (b), respectively. The lengths used for the a cascade

of 2 T-junctions are 0.9670 m, 0.5472 m, 0.9727 m, 0.7148 m, 0.6977 m and

0.2161 m, while those in the 3 T-junctions architecture are 0.8929 m, 0.3320

m, 0.8212 m, 0.0417 m, 0.1077 m, 0.5951 m, 0.5298 m, 0.4188 m and 0.3354 m.

With increasing connectivity, such as in the case of large complete graphs,
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Figure 26.: An illustration of a cascade of T-junction networks. Dirichlet

boundary conditions are applied at the dead-ends, while Neu-

mann boundary conditions are applied at the other vertices. The

out-going waves are labelled by the red arrows, while the green

arrows represent the incoming waves.

signatures of chaotic systems begin to emerge. Some of these signatures are

examined next.

4.5 wave chaos on graphs

We will use the graph theory in (97) to model both wired and wireless

networks. With regards to wireless networks, we would like to model the

propagation of electromagnetic waves in chaotic cavities. In order to do

that, the graph model must be shown to be capable of modelling the chaotic

behaviour of waves in such systems.

Chaotic systems exhibit universal characteristics which can be predicted

accurately by random matrix theory (RMT). The most widely-used signa-
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(a) 2 T-junctions. (b) 3 T-junctions.

Figure 27.: Comparison between QG model and TL model for a cascade

of 2 and 3 T-junctions. The set of lengths for (a) and (b)

in metres are {0.9670, 0.5472, 0.9727, 0.7148, 0.6977, 0.2161} and

{0.8929, 0.3320, 0.8212, 0.0417, 0.1077, 0.5951, 0.5298, 0.4188, 0.3354}

ture of chaos is the resonance spacing distribution [132] which will be treated

later in this section. Additionally, the distribution law governing the asymp-

totic behaviour of eigenvalues of the transfer operator will be examined.

Before we begin the discussion of the characteristics of chaotic systems,

it is important to note that the RMT predictions are for ideal (i.e. lossless)

systems. Unfortunately, attaching leads to quantum graphs makes the sys-

tem open, and some amount of energy is radiated through the leads. In

order to mitigate the effects of these losses, we require a different, idealised

boundary condition that will allow us to control the strength of coupling

between the compact part of the graph and the leads. When graphs are

weakly-coupled, then the amount of radiation through the leads reduces.

The weaker the coupling, the smaller the radiation. In the next section, we

propose how weak-coupling may be imposed on our model.
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4.5.1 Weak Coupling of Leads

We now construct an idealised coupling matrix between leads and graph

which allows us to treat and limit of the amount of loss from graph to leads.

Whenever a lead is attached to a node (with valency v) of a compact graph,

we look for a v× v unitary vertex scattering matrix, σ, of the form

σ =

 cos δ sin δa†

− sin δb cos δV

 , (99)

where a and b are column vectors of dimension v− 1 and V is a (v− 1)×

(v− 1) matrix. The unitarity of σ requires that

Iv = σ†σ =

 cos δ − sin δb†

− sin δa cos δV †


 cos δ sin δa†

− sin δb cos δV



=

 cos2 δ + sin2 δb†b cos δ sin δ
(

a† − b†V
)

cos δ sin δ
(
a− V †b

)
cos2 δV †V + sin2 δaa†


(100)

where Iv is a v× v identity matrix. Therefore σ is unitary if and only if the

following three conditions are satisfied simultaneously:

b†b = 1, (101)

a = V †b, (102)

and

I(v−1) = cos2 δV †V + sin2 δaa†, (103)
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where I(v−1) is a (v− 1)× (v− 1) unit matrix. Furthermore, (101) implies b

is a unit vector, while (102) is true if and only if

a† = b†V . (104)

Keeping the three equations (101), (102) and (103) in mind, we can write

I(v−1) = cos2 δV †V + sin2 δaa†

= cos2 δV †V + V †bb†V sin2 δ

= V †
(

cos2 δ + sin2 δbb†
)

V

= U†U,

(105)

where U is a unitary matrix such that

U =
[
cos2 δI(v−1) + sin2 δbb†

] 1
2 V . (106)

That is, for any arbitrary unitary matrix U, we can define

V =
[
cos2 δI(v−1) + sin2 δbb†

]− 1
2 U. (107)

It is easy to show that, if b is any unit vector, then[
cos2 δI(v−1) + sin2 δbb†

]− 1
2
= bb† +

1
cos δ

[
I(v−1) − bb†

]
, (108)

which gives[
cos2 δI(v−1) + sin2 δbb†

] 1
2
= bb† + cos δ

[
I(v−1) − bb†

]
. (109)

This holds because b is an eigenvector of bb† with eigenvalue 1 and all other

eigenvalues are zero, with bb† and I(v−1) − bb† acting as projections onto

the respective eigenspaces.
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Next, from (102) and definition of V , we can write

a = V †b

= U†
[
cos2 δI(v−1) + sin2 δbb†

]− 1
2 b

= U†b.

(110)

The last line in (110) implies b = Ua, and so a is also a unit vector.

In summary, we can form a v× v unitary matrix σ by implementing the

following steps:

1. Choose an arbitrary unit vector b and an arbitrary (v − 1) × (v − 1)

unitary matrix U.

2. Define V as in (107).

3. Find a by using (102).

4. Construct σ as in (99).

Alternatively, we can form σ by choosing any unit vector a and any (v −

1)× (v− 1) unitary matrix U and then finding b through b = Ua. Finally,

V is found as defined in (107).

However, for a lead connected to a compact graph as illustrated in Figure

28, we construct σ by specifically choosing b as a unit vector of the form

b =
1√

v− 1



1

1

1

...

1





(v− 1)entries. (111)

79



4.5 wave chaos on graphs

Figure 28.: Illustration of a lead (blue line) connected to v− 1 internal bonds

of a compact graph at a vertex with valency v.

Furthermore, U is chosen to be a (v− 1)× (v− 1) Fourier matrix which is

unitary by definition. We therefore continue to find V and then a as defined

above.

The advantage of constructing σ this way is that it allows us to control

the lead-bond transmission amplitudes, by changing δ, while maintaining

the unitarity of σ. The δ parameter is therefore a free parameter, the choice

of which does not affect the unitarity of σ. This way, we can make the

coupling strength as weak as we desire.

In general, the coupling strength depends on the lead-bond amplitude

(i.e. sin δa† in this case). The lead-bond amplitude also depends on the

type of boundary conditions imposed at the graph nodes that are coupled

to the lead. The definition and the expressions of the coupling strengths

are defined in Section 4.6.3 for all the three boundary conditions (i.e. weak-,

Fourier-, and Neumann-coupling) that are considered in this thesis.
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4.5 wave chaos on graphs

Now that we are able to implement approximately closed graphs, we

can proceed with the spectral analysis. As indicated before, we begin with

resonance spacing distribution which is a litmus test when it comes to testing

the presence of chaos. The treatment of the asymptotic distribution law of

eigenvalues follows immediately after that.

4.5.2 Resonance Spacing Distribution

The resonance spacing distribution is one of the most commonly referred-

to signatures of chaotic systems [132, 133]. The QG model implicitly takes

into account the chaotic behaviour of the propagating signals. In this sec-

tion, we investigate the nearest-neighbour level spacing distribution of the

resonances and compare our results with the RMT predictions. The Wigner

surmise regarding level spacing distribution of chaotic systems is given by

PWig
β (s) ∝ sβe−(A/2)s2

, (112)

where the value of the Dyson index β determines the symmetry class of

the underlying system. The index β = 1 for systems with preserved time-

reversal symmetry (TRS) and its statistics are predictable by those from

Gaussian Orthogonal Ensemble (GOE) of large random matrices. β = 2

for systems where TRS is broken and can be predicted by the statistics of

Gaussian Unitary Ensemble (GUE). With Gaussian Symplectic Ensemble

(GSE), β = 4. Matrices considered under GOE, GUE and GSE are real

symmetric, hermitian and real quaternions respectively [132, 134].
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4.5 wave chaos on graphs

Since our graph model assumes zero external magnetic field, TRS is pre-

served. For closed (or at least weakly coupled) systems, the eigenvectors of

the transfer matrix T are real (or approximately real). Therefore, we use the

probability distribution

P1(s) =
π

2
se−(π/4)s2

, (113)

which provides a good approximation to the Wigner surmise [33]. Figure

29 shows the comparison between the Wigner distribution in (113) and a

single realisation of a K6 network shown in the inset. Here, the value of the

free parameter, which determines the coupling strength (coupling strengths

are discussed in Section 4.6.3), is δ = 0.1. The idea here is to show that

weakly-coupled graphs are can be compared with the predictions of closed

graphs (i.e. Wigner predictions). By way of emphasis, the transfer matrix of

a K6 network is only 30× 30 because the number of bonds in K6 is B = 15.

However, there is still a remarkable agreement considering the fact that the

size of the matrix is small and the fact that only one realisation of the graph

is shown. The main reason we are showing the chaotic behaviour in graphs

is because, in subsequent sections, we are going to use quantum graphs

to model chaotic microwave cavities and wireless communication channels

which have inherent wave chaos in them. This modelling will be done

through random coupling model (RCM) discussed previously in Section

4.2. The quantum graph analogue of RCM is one of the main results of

this thesis and is proposed in Section 4.6. In the meantime, we continue
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4.5 wave chaos on graphs

Figure 29.: Level spacing distribution of a K6 network compared with the

Wigner surmise [132]. The free parameter δ = 0.1.

with the spectral analysis, where we discuss the asymptotic behaviour of

eigenvalues of the transfer matrix.

4.5.3 Asymptotic Distribution Law of Eigenvalues

From Chapter 3, we know that the complex zeroes of the secular function

ζ(k) = det(I2B − T(k)) are in one-to-one correspondence with the reso-

nances of the SM spectrum. When leads are coupled to a graph, the transfer

matrix T(k) becomes sub-unitary. As a result, the Perron-Frobenius theo-

rem guarantees that the eigenvalues are located inside a unit circle [108].

This implies that all the resonances are located in the lower half of the com-

plex k plane. On the other hand, T(k) is unitary for closed systems and

the eigenvalues are distributed on the unit circle. In such closed systems,
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4.5 wave chaos on graphs

the asymptotic distribution of k was originally predicted by Hermann Weyl

more than a century ago [135]. This is popularly known as the Weyl’s law.

Since then, significant amount of work has been done to derive the equiv-

alence of the law in specific applications. For example, [103] is a review

paper on 100 years of Weyl law and how it is implemented in a variety of

applications. For quantum graphs, the Weyl’s law is given by the counting

function [102]

N(k) =
L
π

k + A, (114)

where N(k) is the number of resonances less than or equal to k, and A is

the intercept. In general, A is function that is bounded by a constant in the

limit of large k. However, in Figure 30, we chose the best value of A that

fits the staircase. The total length of the graph L = ∑B
b=1 Lb is known as the

’volume’ of the graph.

Effectively, the counting function is a form of a staircase function which

increases by one whenever it encounters a resonance along the frequency

spectrum. Figure 30(a) shows a single realisation of a weakly coupled K6

network (as shown in the inset), where 1509 resonances were counted and

compared with the prediction of Weyl law. By weakly-coupled graphs, we

mean graphs whose losses through the leads to the external environment

are negligible.

The details of how to mathematically achieve weak coupling while main-

taining unitarity at the vertex was proposed in Section 4.5.1. After investiga-

tion, we found the intercept term in Figure 30 to be A = −5 for this example.
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(a) Weyl law for a K6 network. (b) Blow up.

Figure 30.: Comparison between staircase function and the prediction of

Weyl law for a weakly coupled K6 network where the lengths

in metres are randomly generated with uniform distribution be-

tween 0 and 10 where 1509 resonances were counted in a single

realisation.

The blue curve is a staircase function which goes up one step whenever a

resonance is encountered. The red line is the plot Weyl’s prediction in (114).

Bond lengths in this example were chosen to be uniformly distributed be-

tween 0 and 10 m. Figure 30(b) is the magnified version of (a) and it only

shows the resonances from the 800th to 820th. This allows for the details of

the staircase to be displayed. We could see that the resonance count fits the

prediction of Weyl law so well.

4.6 graph analogue of rcm

In this section, we propose a graph analogue of RCM which is useful in

the study of propagating microwaves in irregular chaotic cavities. It also
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provides a flexible platform in the study of interference effects as the cou-

pling regimes create avenues for signal leakages. This is central to the study

of electromagnetic compatibility (EMC). Additionally, this model will pro-

vide us with tractable alternatives regarding rate of information transfer in

multichannel communication systems. In particular, we will derive, from

this model, closed-form solutions for the distribution of channel capacity in

low-loss systems as well as systems with high losses. We begin with the

procedure for symmetrising the transfer matrix T = σxxSxx in (97). The

symmetrised transfer matrix T̂ is an alternative of T which allows for direct

comparison with the transfer matrix in RCM.

4.6.1 Symmetrised QGM

If we write Sxx =
√

Sxx
√

Sxx, then (97) can be written as an infinite sum.

That is

SM = σ00 + σ0x
√

Sxx
√

Sxx
1

I2B − σxx
√

Sxx
√

Sxx
σx0

= σ00 + σ0x
√

Sxx
√

Sxx

[
I + σxx

√
Sxx
√

Sxx +

σxx
√

Sxx
√

Sxxσxx
√

Sxx
√

Sxx + · · ·
]

σx0.

(115)
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By multiplying the terms in the square bracket by
√

Sxx from the left hand

side and factorising same from the right hand side, we can write the scatter-

ing matrix SM in terms of a symmetrised transfer matrix T̂ as below.

SM = σ00 + σ0x
√

Sxx

[√
Sxx +

(√
Sxxσxx

√
Sxx

)√
Sxx +(√

Sxxσxx
√

Sxx

) (√
Sxxσxx

√
Sxx

)√
Sxx + · · ·

]
σx0

= σ00 + σ0x
√

Sxx

[
I +

(√
Sxxσxx

√
Sxx

)
+(√

Sxxσxx
√

Sxx

) (√
Sxxσxx

√
Sxx

)
+ · · ·

]√
Sxxσx0

= σ00 + σ0x
√

Sxx
1

I2B − T̂

√
Sxxσx0,

(116)

where T̂ =
√

Sxxσxx
√

Sxx.

Furthermore we can use eigenvalue decomposition to write T̂ as T̂ =

V†ΛV, where V is a 2B× 2B matrix whose ith column forms the ith eigen-

vector of T̂. Λ is a 2B× 2B diagonal matrix with diagonal elements forming

the respective eigenvalues. Since T̂ is unitary for closed (or weakly coupled)

systems, the eigenvalues lie on a complex unit circle. We are therefore able

to write (116) as

SM = σ00 + σ0x
√

SxxV
1

I2B −Λ
V†
√

Sxxσx0

= σ00 + Y
1

I2B −Λ
Y†,

(117)

where Y = σ0x
√

SxxV and the symbol † is the conjugate transpose.

In order for (117) to qualify as an analogue of RCM, which was presented

as (87), we need to compare the variables and parameters of both equations

to ensure that they model the same events. At this point, σ00 in (117) and

j=[Zrad] in (87) are both diagonal matrices modelling the prompt reflections
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(radiation impedances); Λ in (117) and ΛZ in (87) are both diagonal matrices

with their diagonal elements constituting the eigenvalues of their respective

transfer matrices. What is left at this stage is to answer the question of

whether or not Y is a vector of non-correlated Gaussian random variables

with zero mean and unit variance just like the variable W which has been

presented in (89). The analysis of variable Y, which is analogous to variable

W in (87), is treated in Section (4.6.2).

4.6.2 Distribution of Y

In Section 3.3.2, we have seen how the type of boundary condition affects

the distribution of energy in graphs, which also dictates the distribution of

Y. For example, we have seen that the Neumann boundary condition results

in unequal scattering of energy at vertices of graphs. The scattering events

at the nodes favours reflection (back scattering) when v > 4. The unequal

distribution of energy affects the distribution of Y.

As you recall from the theory of RCM, the random variable W, which is

analogous to Y is assumed to be Gaussian distributed. The assumption of

’Gaussianity’ is based on effective mixing of the underlying waves, which

Neumann boundary conditions do not satisfy. This culminates in making Y

non-Gaussian. Investigating the distribution of Y further, we found Y, em-

pirically, to be Laplace distributed for Neumann graphs. A random variable
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Y is said to be a Laplace distribution, with location and scale (or diversity)

parameters µ and b respectively, if the probability distribution is given by

f (Y) =
1
2b

exp
(
−|Y− µ|

b

)
, (118)

with variance 2b2.

The distribution of the real part of Y is shown in Figure 31(a) for a graph

with Neumann nodes and the topology of a HEX6 graph as shown in the

inset. The histogram is obtained by simulating an ensemble of 8000 HEX6

graphs each with uniformly distributed random lengths. The lengths l are

chosen such that 0 ≤ kl ≤ 2π, where k is the wave number. The red curve is

a Laplace distribution with parameter b = 0.0425. To reiterate, the real and

imaginary parts are independent and identically distributed (iid) random

variables and therefore it is enough to show only the real part. In addition

to HEX6 graph, the distribution of Y has been investigated for HEXv graphs,

which have larger numbers of bonds and each case resulted in the same

distribution of Y. Specifically, we simulated HEX8, HEX10, HEX14, HEX18

and HEX20. These are large graphs in terms of the number of bonds B they

contain. For example, the number of bonds in the HEX20 graph is 440.

However, because HEXv graphs are graphs with a medium level of con-

nectivity (i.e. connectivity index γ ≈ 0.5), it is not enough to use only HEXv

graphs to make a general statement about the distribution of Y. Therefore,

we further investigated fully-connected graphs, which have the maximum

level of connectivity. These are graphs where each node is connected to ev-

ery other node in the graph network. Therefore the connectivity index for

89



4.6 graph analogue of rcm

fully-connected graphs is always 1. In particular we have looked at K(v + 1)

graphs. These graphs generally contains v + 1 vertices, which each vertex

has a valency of v. Specifically, we have considered K10 and K16, and Y is

Laplace distribution in both cases. Although it is not possible to consider

each and every type of graph, it is reasonable to hypothesise that the dis-

tribution of Y is generally Laplace distributed at least for large graphs with

medium to high connectivity.

The variance of Y is defined for a Laplace distribution as 2b2. The analyti-

cal expression for the variance of Y, for Neumann graphs, is calculated later

in Section 4.6.2.2 as 2(v− 1)/v2B. Relating 2b2 with the analytical expres-

sion, it is easy to establish the relationship between the parameter b with

the graph size B and the valency of the node v to which an external lead is

attached.

Figure 31(b) shows the distribution of Y for the same HEX6 graphs, as

in (a), but with Fourier nodes. It is apparent that Y is normally distributed

with zero mean but with a variance that is different from unity. However,

the variance of Y can always be standardised to unity. Therefore, with

Fourier graphs, we can always find a standardised version of the random

variable Y which satisfies all the properties discussed in section 4.2 for ran-

dom coupling model. The standardisation process will be discussed after

deriving the variance of Y for Fourier graphs.
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(a) Real part of Y for Neumann graph. (b) Real part of Y for Fourier graph.

Figure 31.: (a) is the distributions of Y for HEX6 Neumann graph, while

(b) is the distribution of Y for the same graph as (a) but with

Fourier boundary conditions. In each case, an ensemble average

of 8000 graphs were used with lengths randomly generated from

a uniform distribution such that kL ∈ [0 2π].

4.6.2.1 Variance of Y for Fourier graphs

Before finding the variance of Y = σ0x
√

SxxV, we need to first calculate the

square root of the shift matrix
√

Sxx which is one of the constituent variable

of Y. From (78) and (79), we know that Sxx is a block diagonal matrix where

the ith block is given by

Sxx(i) =

 0 ejkLi

ejkLi 0

 . (119)

Therefore calculating
√

Sxx reduces effectively to finding the matrix-square-

root of each block. Hence we focus on one of such blocks first and then
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generalise later. Each block of Sxx is a unitary matrix and therefore it is

diagonalisable as

Sxx(i) =
1√
2

1 −1

1 1


ejkLi 0

0 −ejkLi

 1√
2

 1 1

−1 1

 . (120)

Therefore a square root can be written as

√
Sxx(i) =

1
2

1 −1

1 1


ejkLi/2 0

0 jejkLi/2


 1 1

−1 1



=
1
2

ejkLi/2

1 + j 1− j

1− j 1 + j


(121)

By noting that 1 + j =
√

2exp(jπ/4), and 1− j = −j
√

2exp(jπ/4), we can

write √
Sxx(i) =

1√
2

ej(kLi/2+π/4)

 1 −j

−j 1

 . (122)

This implies (√
Sxx(i)

) (√
Sxx(i)

)†
=
∣∣∣√Sxx(i)

∣∣∣2 = I2, (123)

where I2 is a 2× 2 unit matrix. Therefore
√

Sxx is a unitary matrix and there-

fore preserves the inner product of complex vectors. Now if we represent

the nth eigenvector as Vn, then its variance is 〈|Vn|2〉 = 1/2B, where 2B is

the size of the underlying matrix. Consequently〈
|
√

SxxVn|2
〉
=
〈
|Vn|2

〉
=

1
2B

. (124)

Figure 32 shows the distributions of the real and the imaginary parts of

√
SxxVn of a HEX6 Fourier graph with B = 48 bonds. The red curve in each

case represents a normal distribution with the standard deviation 1/2
√

B =

0.072169 as shown in the legends of the figure.
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(a) <
(√

SxxV
)

for Fourier graph. (b) =
(√

SxxV
)

for Fourier graph.

Figure 32.: (a) and (b) are the distributions of <
(√

SxxV
)

and =
(√

SxxV
)

respectively. The Fourier graph is made up of HEX6 architecture

(as illustrated in the inset) with B = 48. The red curve is the

distribution of a zero mean Gaussian random variable with vari-

ance of 1/4B. The distribution is generated from an ensemble of

5000 of such Fourier graphs.

For a Fourier graph connected to a lead at a vertex with valency v, the

variance of Y is calculated as〈
|Yn|2

〉
=
〈
|σ0x|2

〉 〈
|
√

SxxVn|2
〉

=

(
v−1

∑
i=1

1
v

)(
1

2B

)

=
v− 1
2vB

.

(125)

From (125), we have seen that
〈
|Yn|2

〉
6= 1. But we can always standardise

Y to have a unit variance by using the transformation X = (1/σY)Y, where

σY =
√
(v− 1)/2vB is the standard deviation of Y. That is, if Y is a Gaus-

sian random variable with zero mean and standard deviation σY, then its

probability density function is given by

fY(y) =
1

σY
√

2π
e−

1
2

(
y

σY

)2

. (126)
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Now let X = (1/σY)Y. Then

fX(x) = fY(y)
dY
dX

=
1

σY
√

2π
e−

1
2

(
y

σY

)2

σY

=
1√
2π

e−
1
2 x2

.

(127)

Therefore X is a standard normal random variable with zero mean and unit

variance.

For a HEX6 Fourier graph, standard deviation of the real part of Y is√
(v− 1)/(4vB) = 0.066815. This is shown in Figure 31(b) where the the-

oretical prediction accurately described the numerical simulation. In that

case the random variable X = (1/σY)Y ∼ N(0, 1) and has all the properties

of the random variable W as discussed in the random coupling model in

(89). The distributions of <(X) and =(X) are shown in Figure 33.

(a) Distribution of < (X). (b) Distribution of = (X).

Figure 33.: (a) and (b) are the distributions of real and imaginary parts of

X respectively. The red curve is the distribution of a zero mean

Gaussian random variable with standard deviation 1/
√

2.
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We are now able to re-write our graph model in (117) in terms of the

random variable X as an analogue of random coupling model as follows:

SM = σ00 + Y
1

I2B −Λ
Y†

= σ00 + σYX
1

I2B −Λ
X†σY

= σ00 +

√
v− 1
2vB

ξ

√
v− 1
2vB

,

(128)

where ξ = X(I2B − Λ)−1X† is the analogue of the normalised impedance

matrix ξZ, representing the statistical part of the model. Detailed discus-

sions of the statistics of ξ are presented in Chapter 6 for Fourier graphs,

and in Chapter 7 for Neumann graphs. For now, it suffice to note that, the

distribution of ξ (depending on losses and boundary conditions) interpo-

lates between t-distribution and Gaussian distribution.

The statistics of both ξ and ξZ are system independent with characteristics

that are predictable by random matrix theory. The expression
√
(v− 1)/2vB

represents the system specific part of the graph model and it is non-statistical.

This is analogous to the real part of the radiation impedance [<
(
Zrad)]1/2

in (87) which is also non-statistical and contains the system-specific features

of the random coupling model. Finally, σ00 is a diagonal matrix with the

diagonal elements representing the prompt reflections of the graph model

and this plays the role of the imaginary part of the radiation impedance

[=
(
Zrad)] matrix which is also diagonal and impedes the flow of energy.

Now, the only thing left is the question of how we incorporate losses

(apart from those due to radiating leads) into the graph model. We will
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discuss that after calculating the variance of Y for Neumann graphs and for

weakly-coupled graphs.

4.6.2.2 Variance of Y for Neumann Graphs

For a Neumann graph, the bond-lead transmission amplitudes are given by

σ0x = 2/v. Therefore 〈
|Yn|2

〉
=
〈
|σ0x|2

〉 〈
|
√

SxxVn|2
〉

=

(
v−1

∑
i=1

(
2
v

)2
)(

1
2B

)

=
2(v− 1)

v2B
.

(129)

This implies that the real and imaginary parts of Y will each have a variance

given by (v− 1)/(v2B). Similarly, we can scale Y to have unit variance as

before. We call this scaled variable X. In this case, the graph analogue of

RCM as written in (128) will change for Neumann graphs. The modified

formula is therefore given by

SM = σ00 + Y
1

I2B −Λ
Y†

= σ00 + σYX
1

I2B −Λ
X†σY

= σ00 +

√
2(v− 1)

v2B
ξ

√
2(v− 1)

v2B
.

(130)

A closer look at (128) and (130) reveals that, although the distribution of Y

for Fourier and Neumann graphs remains different, their variance coincides

when the valency is v = 2. Equations (128) and (130) are valid for fully-

connected graphs, as well as the hexagonal graphs (i.e. graphs with medium

connectivity index as defined in Chapter 3). A large ensemble (above 2000)

of these randomly selected graphs are required to simulate the statistics of ξ.
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The bond lengths are randomly selected from a uniform distribution such

that the phases of the underlying waves 0 ≤ kl ≤ 2π. Additionally, the

number of bonds B of the graphs must large enough (graphs with B > 48

have been found to be sufficient in this thesis).

From Figure 31(a), we have seen that for Neumann graphs, Y is Laplace-

distributed with zero mean. The variance of Laplace distribution is given

by 2b2, and so the real (or the imaginary) part of the scaled variable X will

have a variance of 1/2. This corresponds to b = 1/2, when one equates the

two variances.

Figure 34 shows the distribution of the real part of X for HEX10 Neumann

graph with B = 120 as shown in the inset. We used an ensemble of 5000 of

such Neumann graphs with their lengths randomly selected from a uniform

distribution such that kLi ∈ [0 2π], where k is the wave number and Li is

the length of bond i.

Figure 34.: Distribution of the standardised random variable < (X) for a

HEX10 Neumann graph. The red curve represents the pdf of

Laplace random variable with variance 1/2.
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4.6.2.3 Variance of Y for Weakly Coupled Graphs

For a weakly-coupled graph, the bond-lead transmission amplitudes are

given by σ0x = sin δ/
√

v− 1. Therefore〈
|Y|2

〉
= σ2

Y =
〈
|σ0x|2

〉〈
|
√

SxxVn|2
〉

=
v−1

∑
b=1

sin2 δ

v− 1

(
1

2B

)
= (v− 1)

sin2 δ

v− 1

(
1

2B

)
=

sin2 δ

2B
.

(131)

Equation (131) is the variance of Y for a weakly-coupled graph regardless

of whether the boundary conditions in the compact part of the graph are

Fourier or Neumann. Again, Y can be scaled to have unit variance as pre-

viously discussed. Consequently the graph analogue of RCM, for a weakly-

coupled graph is given by

SM = σ00 +

√
sin2 δ

2B
ξ

√
sin2 δ

2B
. (132)

Figure 35(a) shows the distribution of Y, while (b) shows the distribution

of the scaled variable X for a weakly-coupled HEX10 Fourier graph. We

chose the free parameter, which controls the level of energy leakage through

the leads, to be δ = 0.1.

After finding the variance of Y for various boundary conditions, we define

the coupling strength next.
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4.6 graph analogue of rcm

(a) < (Y) at δ = 0.1. (b) < (X) at δ = 0.1.

Figure 35.: (a) is the distribution of real part of Y compared with the pdf

of a normal distribution with zero mean and variance sin2 /4B

(red solid curve), while (b) the distribution of the standardised

random variable X. The red curve is the pdf of a zero mean

Gaussian random variable with variance 1/2.

4.6.3 Graph Coupling Strengths

From the second line of (128) the off-diagonal, SM
t , of SM is given by σ2

Yξ.

Therefore

|SM
t |2 = σ4

Y|ξ|2

= τ|ξ|2,

(133)

where we define the coupling strength τ as the square of the variance of Y.

That is,

τ = σ4
Y. (134)

Consequently, we have three expressions for coupling strengths each corre-

sponding to a specific boundary condition at the graph node that is con-

nected to a lead.
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4.7 loss parameter

From (128), (130), (132), the expressions for the coupling strength of

Fourier, Neumann, and weakly-coupled graphs are respectively given by

the equations

τ =

(
v− 1
2vB

)2

, (135)

τ =

(
2(v− 1)

v2B

)2

, (136)

and

τ =

(
sin2 δ

2B

)2

. (137)

Finally, the next item which will complete the graph model is how losses

are incorporated into the graph system. This is discussed next.

4.7 loss parameter

In the random coupling model, the loss parameter, α is a dimensionless

parameter which determines the level of losses in chaotic systems [31, 35].

This has been discussed for chaotic cavities in (90).

In this section, we derive a corresponding expression of the loss param-

eter in quantum graphs. Before we begin these calculations, we note that

there are two main sources of losses. These are radiation through the leads

to the outside environment and internal losses we introduce at the local ver-

tex scattering. For lossless systems, the eigenvalues λn of the transfer matrix

T̂ are uniformly distributed on the unit circle. This is because T̂ is unitary

and the Perron-Frobenius theorem guarantees that |λn| = 1 for all values of
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4.7 loss parameter

n ∈ 1, 2, · · · , 2B [108]. This implies that, for a graph consisting of B bonds,

we can write λn = exp(jφn) for n = 1, 2, 3, · · · , 2B and φ = kL.

However, for lossy systems where T̂ is sub-unitary, |λn| = r, where r < 1

is the spectral radius of T̂ and the eigenvalues lie strictly inside the unit cir-

cle. In this case we write λn = rexp(jφn), where r = exp(−ε0 − ε). ε0 and ε

are small positive real numbers such that exp(−ε0) and exp(−ε) represent

the external losses due to radiating leads, and the internal losses in the com-

pact part of the graph, respectively. This is generalised as λn = exp(jθn),

where θn = φn + j(ε0 + ε). Therefore, the imaginary part of the complex

phase represents the losses in the system. We therefore define the loss pa-

rameter as

α =
〈=(θn)〉
〈∆θn〉

=
ε0 + ε

2π/(2B)

=
B
π
(ε0 + ε)

= α0 + α1

(138)

where 〈∆θn〉 is the average spacing between the complex phases, α0 =

Bε0/π characterises losses due to radiations through the leads, and α1 =

Bε/π characterises the losses within the internal (compact) part of the

graph.

As we have seen earlier in Section 4.2 of this chapter, the analogue loss

parameter in RCM is given by

α =
k2

∆k2
nQ

, (139)
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where k is the wave number, ∆k2
n is the mean level spacing, and Q is the

quality factor of the chaotic cavity, which is defined as the ratio of energy

stored in the cavity to the power losses within the cavity (i.e. ohmic and

dielectric losses) as well as losses due to radiating ports [35]. Similarly, the

loss parameter in the graph model also depends on the average spacing of

the complex phases, and losses in the internal part of the graph (i.e. ohmic

and dielectric losses) as well as losses due to radiating leads. It is clear that,

both parameters characterise the same types of losses within the system

under consideration.

It must be noted that unlike ε that depends on the ohmic and dielectric

losses, the value of ε0 is dictated by the boundary conditions at the nodes

to which the leads are attached. To be able to control α0, we use the weak-

coupling mechanism we discussed in section 4.5.1. This will allow us to

control the amount of energy that goes in and out of the graph while main-

taining unitarity of the vertex scattering matrix. Refer to section 4.5.1 for

details of how we implemented weak-coupling of leads to graphs.

Figure 36 shows the distribution of eigenvalues for a HEX10 graph with

α ∈ {0, 5, 10}. To achieve α = 0 (shown as blue curve), we weakly coupled

the lead to the graph so that the graph behaves as if it were a closed graph.

The red and yellow curves represent the same graph topology but with

losses introduced such that α = 5 and α = 10 respectively. The larger the

losses the smaller the radius of the circle. This is in conformity with the

Perron-Frobenius theorem.
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4.7 loss parameter

Figure 36.: Distribution of eigenvalues on a complex plane for a HEX10

Fourier graphs with α = 0, 5, 10.

In the random coupling model, although the chaotic cavities are open

systems (because they are coupled to multiple channels), losses are added

through a perturbative approach so that it allows the use of statistical predic-

tions of closed systems from RMT. This means that the statistical properties

of the normalised impedance matrix ξZ are predicted by that of a closed

system even though the cavity is open [36]. Similarly, attaching leads to

graphs cause them to behave as open systems just like in the case of RCM.

For example, Figure 37 shows the losses due to radiating leads α0 with

increasing graph size B. We used HEXv graphs (as discussed in Chapter

3) with Fourier boundary condition for which v = 2, 4, 6, · · · , 20. From

(138), α0 represent losses that are purely as a result of radiating leads when

the compact part of the graph is entirely made up of lossless cables. This
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implies that the losses through the leads are not negligible especially as the

graph size increases.

Figure 37.: Variation of α0 with increasing graph size, B. The values shown

are averages of an ensemble of 5 randomly chosen HEXv Fourier

graphs.

However, we are able to implement an approximately closed graph, using

the weak-coupling mechanism discussed in this chapter, and that was the

reason why the Weyl and Wigner predictions worked so well in sections 4.5.

4.8 conclusion

We have derived an analogue of the random coupling model (RCM) using

graph theory. This graph model has all the characteristics of RCM if Fourier

boundary conditions are applied at vertices of the graph. This model is

useful in modelling the propagation of microwaves in both wired network

and wireless communication systems. The application of this model is dis-

cussed in subsequent chapters. For example, in Chapter 5, we use the model

to predict the scattering parameters of a cable network with experimental
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validation. We also use the graph model to predict the distribution of ca-

pacity of wireless communication channels in Chapter 6.

Although the Fourier boundary conditions are not accessible experimen-

tally, they provide us with a useful conceptual tool for predicting the prop-

agation of microwaves through both wired and wireless networks. How-

ever, for graphs with Neumann boundary conditions, the normalised ran-

dom variable X in (130) assumes a Laplace distribution instead of being a

Gaussian-distributed as assumed in the RCM. Therefore not all the assump-

tions of RCM can be achieved with Neumann graphs. Nevertheless, we

have achieved a new statistical model for the distribution of the un-scaled

random variable Y, which was presented in (130).

Additionally, we have shown how losses are introduced into graph net-

works. The loss parameter α which depends only on the graph size is di-

mensionless and measures the level of losses in the entire graph system.

This is analogous to the loss parameter as discussed in Section 4.2, which

focused on random coupling model.

Finally, we have successfully implemented an approximately closed graph.

This is important because of two main reasons. The predictions of RMT for

chaotic systems are based on closed systems and by implementing quasi-

closed graphs, we can effectively test for the presence of wave chaos. Sec-

ondly, coupling of leads create avenues for energy leakages in the underly-

ing system. By reducing these leakages through weak-coupling, we are able

to reduce the interference effects on (or from) other systems. This is an im-
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portant subject and remains an active field in electromagnetic compatibility

studies.
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5
L A B O R AT O RY E X P E R I M E N T S

5.1 introduction

We measure the reflection coefficient, S11, of microwaves interacting with

networks of cables through a single port. The aim is to compare the ex-

perimental measurements with the graph model predictions developed in

Chapter 4. Measurements of several network topologies have been carried

out. These include a simple T-junction network, where two arms of the three

constituent cables have equal lengths. This network was designed to have

periodic resonances. This has been compared with the theoretical model

predictions focusing on the resonance spectrum. Another measurement is

made of a T-junction network but with cables of unequal lengths. Addition-

ally, the S11 response of cable networks with a more complex topologies has

been measured, where we selected a cable network consisting of a single

loop as well as of double-loop architecture.
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5.2 measurement of cable characteristics

Before starting the main experimental measurements, there was the need

to characterise the cables used in the experiments. These include the per

unit length resistance (R), capacitance (C), conductance (G) and inductance

(L) over a wide range of frequencies (usually 0− 3 GHz.) The values of the

cable characteristics are required in the theoretical model in order to predict

a more realistic propagation of microwave in cable networks. The results of

the model predictions has been compared eventually with the experimental

measurements. We used a procedure by Smartt et. al [136], which enables

the calculation of such cable characteristics as explained in Section 5.2.

After characterising the cables, Section 5.3 focuses on the main laboratory

measurements, which determine the reflection coefficients S11 of the cable

networks as a whole. The discussion of the experimental results, together

with the theoretical model predictions, is presented in Section 5.4. Finally,

the concluding section presents a summary of the key results from the chap-

ter and establish a link to subsequent chapters.

5.2 measurement of cable characteristics

The measurements of the cable characteristics, as well as of the scattering

parameters of the whole cable networks have been conducted at the Cable

Network Laboratory, George Green Institute for Electromagnetic Research

(GGIEMR). In both experiments, Farnell coaxial cables PP000663 and Ag-

ilent 59657917E Vector Network Analyser (VNA) were used. Although the
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5.2 measurement of cable characteristics

cable characteristics were obtained through the method described in [136],

here we summarise the main ideas behind the method for completeness.

From TL model discussed in Chapter 2, the transmission of currents and

voltages on a shielded cables with braided screens may be modelled by the

following Telegrapher’s equations in matrix form [137–139] as

∂

∂z

 Is(z)

Iw(z)

 =

Ys 0

0 Yw


Vs(z)

Vw(z)

 , (140)

∂

∂z

Vs(z)

Vw(z)

 =

Zs Zm

Zm Zw


 Is(z)

Iw(z)

 (141)

where Iw, Is Vw and Vs are the inner wire and external shield currents and

voltages respectively. The cable impedances per unit lengths of the inner

wire, external shield and mutual coupling are Zw, Zs and Zm respectively.

Similarly,

Yw = Gw + jωCw, Ys = Gs + jωCs (142)

are the per unit length admittance of the inner wire and the external shield-

ing. Here, Gw, Cw and Gs, Cs are the conductance and capacitance of the

inner coaxial and the external shield respectively.

Also, the frequency dependent parameters may be represented in the

form

Zs, Zw, Zm ≈
∑∞

i=0 ai(jω/ω0)
i

1 + ∑∞
i=1 bi(jω/ω0)i , (143)

where j =
√
−1 and ω0 is the frequency normalisation constant. In prac-

tice, the first or second order approximation of (143) is adequate enough to

model the transfer impedance matrix [136]. The admittance matrix is mod-
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elled in a similar fashion. Although the admittance equations in (142) may

be approximated to have purely capacitive admittance

Yw = jωCw, Ys = jωCs (144)

for the majority of cables [136], in this experiment we used the more accu-

rate equations where Gw, Gs 6= 0, as stated in (142).

The cable characteristics are determined by first measuring the scattering

parameters of the cable under test. Figure 38 shows an illustration of the

experimental setup for measuring the scattering parameters. The propaga-

tion of the internal coaxial mode is characterised by the measured S11, while

that of the shielding is characterised by S22. The mutual coupling between

the shielding and the coaxial cable, which are assumed to be symmetrical,

is characterised by S21 or S12. In order to determine values of the scatter-

ing parameters accurately, care must be taken to connect the VNA ports

correctly to the cable under test. Here, port 1 is connected to the internal

coaxial cable, while the port 2 is connected to the external shielding or the

ground circuit as shown in Figure 38.

Effectively, only three (i.e. S11, S22 and S21 or S12) out of the total four scat-

tering parameters are required to find the cable characteristics. By measur-

ing the S parameters over a wide range of frequencies in this way, it is easy

to transform them to impedances and admittances per unit length. For ex-

ample, the relationship between the scattering matrix S and the impedance

Z is given by [140]

Z = Z1/2
0 (I2 + S)(I2 − S)−1Z1/2

0 , (145)
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5.2 measurement of cable characteristics

Figure 38.: Experimental setup for measuring the scattering parameters of a

shielded cable. Port 1 is connected to the internal coaxial cable

mode, while port 2 is connected to the external shielding.

where Z0 is a 2× 2 diagonal matrix with diagonal elements representing the

characteristics impedances of the coaxial cable and the external shielding; I2

is a 2× 2 identity matrix.

Finally, from Z = R + j ωL, we can find the resistance per unit length R,

and inductance per unit length L of the cable. The conductance and capac-

itance per unit lengths may also be calculated mutatis mutandis. Figure 39

shows the results of the cable characteristics. It is important to note that the

values of the conductance per unit length are non zeros in this experiment.

This increases the accuracy of the measurement as mentioned earlier in this

chapter.

By knowing the values of the wave number and the graph scattering ma-

trices σ00, σ0x, σxx and σx0 in (97) across a frequency range, we can accurately

predict the behaviour of propagating microwaves across the cable network.

This theoretical prediction is compared with experimental measurements in
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Figure 39.: Cable characteristics of Farnell coaxial cables PP000663 and their

dependence on frequency.

the following sections. In particular, we focus on the measurement of the

S11 parameter for selected topologies of the cable network.

5.3 measurement of S11 in cable networks

In this section, the experimental set-up and the measurement procedures are

introduced. This is followed in section 5.4 by the results of measurement as

compared with the theoretical model predictions from the model in (97).
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5.3.1 Experimental set-up

Figure 40 shows a picture of the cable laboratory layout adopted in our

experiments. Figure 40(a) shows the general set-up, where the network of

cables is connected to the a VNA through a probe. The probe connection is

shown in Figure 40(b). The VNA is calibrated in such a way that the point of

probe-cable contact is set as the reference point of the measurement. If there

is the need for more than three cables to be connected a vertex, then several

T-junction connectors may be used to implement such vertex. For example,

Figure 40(b) shows how four cables may be connected to one another at

a common vertex. These types of connections are tricky because of the

limitations imposed by the geometry of the T-junction connectors. It is

important to note that each T-junction connector in a network increases the

effective lengths of the cable. This increase in length was carefully measured

and found to be 0.012 m on each arm of the connector. Figure 41 illustrates

the extra length contribution from a T-junction connector.

In order to provide an extra layer of precaution, the T-junction connectors

were further secured in place with black tapes as seen in Figure 41. It

is important to note the length of the cable that is directly connected to

the probe, so that the correct cable length can be used in the theoretical

model. To achieve that, all cables were labelled with a yellow tape and their

positions noted. This yellow labels are visible in Figure 40(b) and in Figure

41. After taking all the above precautions, a procedure used in measuring
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(a) (b)

Figure 40.: Experimental set-up to measure reflection coefficients (S11). (a)

shows a photo of how the cable networks are connected to the

measuring instrument (i.e. the VNA), while (b) shows a cable

connection to the probe (i.e. the measurement reference point).

the S11 scattering parameter is outlined in subsection 5.3.2.

5.3.2 Measurement Procedure

The measurement procedure is made of three steps. The first step involves

making some initial settings on the measuring equipment (i.e. VNA). These

settings include frequency range, number of sweep points, scale of fre-

quency sweep, sweep time, and format of the measurement output. Most of

these settings can be made by navigating through the Sweep Setup dialogue

box on the VNA. Although there may be slight differences in achieving

these settings, depending on the model type of VNA used, the steps gener-

ally involves either using a set of buttons on the VNA or using a computer
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Figure 41.: A photo of how a T-junction connector adds an extra length of

0.012 m to each cable connected to it.

monitor and a mouse connected to the VNA. More information on how to

navigate the settings may be found at [141]. In this experiment, the follow-

ing initial settings were made:

1. Frequency range: 10 MHz - 3 GHz

2. Number of sweep points: 1601

3. Scale of Frequency: Linear

4. Power level: 0 dBm (default)

5. IF Bandwidth: 100 kHz

6. Time of sweep: Auto

7. Output format: Linear (i.e. complex S11 values in linear format)

After the initial settings, the second step is to perform a suitable cali-

bration using an instrument called electronic calibration module (ECal). By

connecting the ECal to the VNA, it is easy to set the position of the reference
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plane and to transfer the factory accuracy of the ECal to the VNA. The ECal

ensures consistency in measurement for repeatability and also minimises

the errors introduced by human interaction with the measurements. In this

experiment the ECal was used to set the reference measurement plane at

the probe-cable connection point as shown in Figure 40(b).

The third and last step is to connect the device under test (DUT), which in

our case is the network of cables whose S11 parameter is to be measured. A

photo of this is shown in Figure 40(a). It is important to note that out of the

three boundary conditions discussed in chapter 3, only two are experimen-

tally accessible. These are the Neumann and Dirichlet boundary conditions

(or any impedance boundary condition which interpolates between them).

In this experiment, we require a total reflection at dead-end vertices,

where the valency is unity. This is equivalent to Dirichlet boundary con-

dition (or short circuit). All other vertices have Neumann boundary condi-

tions. For example, Figure 42(a) shows a diagram of a T-junction network

connected to a VNA. The Neumann and Dirichlet boundary conditions are

labelled as NBC and DBC, respectively.

The Fourier boundary condition on the other are idealised boundary con-

ditions which ensures equal distribution of power at every vertex of the net-

work. However, they can be implemented as an average scattering matrix

of a large, overmoded, mode stirred enclosure connecting the ports through

antennas radiating inside the cavity. In this case, the attenuation due to

cavity losses and energy diffusion need to be modelled in the equivalent
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node. While this is not central in this experiment, the condition is common

in experiments involving reverberation chambers [142, 143].

The experimental results and analysis of cable networks are discussed in

Section 5.4 for various network topologies.

5.4 measurement results and model predictions

We start with the simple case of a single T-junction network consisting of

three cables of lengths 0.767 m, 0.778 m and 0.778 m as shown in Figure

42(a). The 0.767 m cable was connected to the VNA at one vertex, while

the other vertex is connected to two cables of equal lengths. The red arrows

represent the out-going waves, while the green arrows depict the in-coming

waves. The boundary conditions at the first two vertices are Neumann,

while the other two vertices have Dirichlet boundary conditions as shown.

Since the 0.767 m cable only contribute to a phase shift exp(jkL), where

L = 0.767 m, we expect the S11 response to be periodic because the other

two cables have equal lengths.

The absolute value of S11 are plotted against frequency (in GHz) and the

plot is shown in Figure 42(b). The solid green curve represents the exper-

imental measurement, while the solid blue curve is the theoretical predic-

tions of the graph model in (97). As it can be seen from the results, the QG

model predicts the resonances of |S11| with high degree of accuracy. The

nearest neighbour spacing distribution of these resonances is an important
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feature of cable networks, and has been discussed in chapter 4 section 4.5.

The minor differences between the measured and the simulated results have

to do with machine precision, the noise level from the measured data, the

non-symmetrical nature of the T-junction connectors’ geometry, and the fact

that we assumed the connectors to have the same characteristics (i.e. R, L,

C, G) as the cables.

(a) T-junction network. (b) |S11| vs frequency.

Figure 42.: Comparison of experimental results with QG model predictions.

(a) illustrates a T-junction network where the two arms of the

network have equal cable lengths of 0.778 m and the third cable

of length 0.767 m is connected to the VNA.

Next, the results of a more complicated graph topology is shown in Figure

43. The network architecture, together with the cable lengths and boundary

conditions, is shown in Figure 43(a), while the laboratory measurement is

compared with theoretical prediction in Figure 43(b). The boundary con-

dition at each of the three vertices are Neumann. The effective lengths of

the cables are 0.012 m, 0.774 m, 0.774 m, 0.774 m and 0.784 m as shown

in Figure 43(a). The blue and the green curves, in Figure 43(b), represent
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the results of theoretical predictions and the experimental measurements

respectively. Again, the theoretical model is able to predict accurately the

S11 laboratory measurements.

(a) Double loop architecture. (b) S11 response for double loop

Figure 43.: Diagram and S11 response for double loop.

In order to achieve an accurate comparison between the theory and mea-

surement, it is important to include the extra length of 0.012 m introduced

by the T-junction connectors. For example, Figure 44 shows the comparison

between the theoretical predictions and the laboratory measurements when

the extra length of 0.012 m is not taken into account. It is easy to observe a

significant difference between the measurement and theoretical predictions

when the effective lengths are not used in the graph model.

The results of other networks of different topologies are shown in ap-

pendix A. The main idea of this chapter is to validate the graph model

with experimental results. At this stage, there is no doubt that the theo-

retical model adequately predicts the propagation of microwaves in cable

networks.
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(a) (b)

Figure 44.: |S11| response with non-effective cable lengths. (a) is the results

of a T-junction network with cable lengths 0.743 m, 0.754 m and

0.754 m, while (b) is the results of a cable network with the dou-

ble loop architecture. The non-effective lengths in (b) are 0.75 m,

0.75 m, 0.75 m and 0.76 m.

5.5 conclusion

We have been able to successfully compare the theoretical predictions of

quantum graph model with experimental measurements. The graph model

was able to predict, in great detail, the reflection coefficient S11 of cable

networks of various topologies. This ranges from T-junction networks to

double loop cable networks. In all cases, except for negligible differences,

the graph model agrees well with the experimental results.

The graph model therefore provides a flexible model, which can be used

to predict the propagation of microwaves in complex networks of arbitrary

topology. Modelling the coupling of leads to graph networks can provide
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a significant insight when investigating interference effects. This is because

energy may leak out of the cable network at the point where leads are cou-

pled to the network.

Additionally, the graph model may be used to effectively predict the

propagation of microwaves in wireless communication channels such as

multiple-input multiple-output (MIMO) wireless communication channels.

This is discussed in Chapter 6 for idealised Fourier graphs and in Chapter

7 for realistic Neumann graphs.

Finally, in its own right, the graph model may be used as a test-bed to

predict the scattering parameters in wired communications. This has been

discussed in Chapter 8 to predict the distribution of channel capacity in Dig-

ital Subscriber Line (DSL) technologies, which is chiefly used in providing

internet access to various households and for commercial purposes.
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6
D I S T R I B U T I O N O F C H A N N E L C A PA C I T Y O N F O U R I E R

G R A P H S

6.1 introduction

We are interested generally in communication across wired networks for

a number of reasons. In its own right, wired communication has a wide

range applications such as Digital Subscriber Line (DSL) and its variants

like the Asymmetric DSL (ADSL) and very high bit-rate DSL (VDSL) [144].

Additionally, the wired model can be used as a theoretical model to learn

about Multiple-Input Multiple-Output (MIMO) systems in chaotic cavities.

Realistic cable models have behaviour that is non-generic from the point of

view of existing theories such as random matrix theory (RMT), and random

coupling model (RCM).

We therefore start with idealised boundary condition which allows us

to establish more simple connections with the existing theories. These ide-

alised boundary conditions are Fourier boundary conditions which are ap-
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plied at the vertices of the compact part of the graph. As discussed in

Chapter 3, Fourier boundary condition ensures democratic scattering at the

vertices and hence enables the waves to mix properly as they will in chaotic

cavities. At vertices to which leads are attached, we implement vertex scat-

tering matrices which allow us to weakly couple the leads to the rest of

the graph (see section 4.5.1 for details of how this is achieved.) By Fourier

graphs, we refer to graphs with Fourier boundary conditions at the ver-

tices of the compact part of the graph. In Chapter 7, these assumptions are

relaxed to go towards more realistic models.

In this chapter, the distribution of channel capacity is determined for

Fourier graphs that are weakly connected to leads. In telecommunications

for example, the leads represent the input and output devices like transmit-

ters and receivers. In general, MIMO systems are communication systems

involving multiple input systems and multiple output systems coupled to

the communication channel. MIMO systems have been used as a strategy

to increase both reliability and throughput of the communication link [145].

In particular, we focus our attention, in this work, on the special case of

MIMO systems with either Single-Input Multiple-Output (SIMO) or Mutiple-

Input Single-Output (MISO). Both SIMO and MISO abound in real life ap-

plications. For instance, in Digital Subscriber Line (DSL) network and its

variants (i.e. ADSL and VDSL) [144], data transmission from street cabinets

to households is an example of a SIMO application. Similarly, in mobile

communications, the downlink in the physical layer is responsible for data
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transmission from base stations to mobile devices. This is an example of

a SIMO system. The reverse transmission, the uplink, is a MISO system.

Generally, all broadcast networks are examples of SIMO systems. Mathe-

matically SIMO and MISO systems are equal since one is easily converted

to the other by swapping the role of the transmitters and receivers. There-

fore all calculations done for one are applicable to the other.

The aim of this chapter is to show how quantum graphs (QGs) can be

used, as an analogue of random coupling model (RCM) (see Chapter 3) Sec-

tion 4.2, to analytically predict field properties of these communication chan-

nels. Therefore QGs may be used to simulate propagation of microwaves

in cable networks as well as information transfer in chaotic cavities. The

ultimate aim is to calculate, from first principles, the distribution of channel

capacity, which serves as the main measure of maximum allowable rate of

data transmission.

The following summarises the steps towards achieving this goal:

1. We first model the communication matrix H by the symmetrised graph

scattering matrix SM calculated in Chapter 4.

2. We then replace H with SM in the channel capacity formula and use

the distribution of SM to analytically determine the distribution of the

channel capacity depending on whether we are in the low loss regime

or high loss regime.

3. We test the validity of the analytical calculations with numerical sim-

ulation of graphs networks of various topologies.
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6.2 channel capacity and the communication matrix

The rest of this chapter is organised into four sections. Section 6.2 gives

a summary of background information about the channel capacity and the

communication matrix, and then establishes the link to the RCM formula-

tion. We explain how the scattering matrix is extracted and used as an ana-

logue of the transfer matrix H traditionally used communications theory.

This is followed in Section 6.3 by the discussion of methods and mathemat-

ical manipulation required to obtain the distribution of channel capacity,

starting from systems with single input and single output devices. This is

then generalised in Section 6.4 to cover systems with multiple inputs (or

outputs). The final section in this chapter summarises the key achievements

of the chapter by comparing and contrasting the various methods of pre-

dicting the channel capacity using weakly-coupled Fourier graph.

6.2 channel capacity and the communication matrix

Channel capacity may be defined as the maximum rate at which data can

be transmitted reliably through a communication channel. There are two

formulas for calculating capacity of a channel. For a noiseless channel, the

Nyquist bit rate formula is used, while the Shannon Capacity formula is

used for a realistic noisy channel. In reality, there are no ideal noiseless

channels and therefore we concentrate on the Shannon channel capacity

formula in all our discussions in this chapter. The Shannon channel capacity

formula and its variants have been widely researched [146–149]. However,
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6.2 channel capacity and the communication matrix

the one which is linked directly to MIMO systems has been derived in the

Appendix of [146] and it is given, in bits per second per Hertz, by

C = log2

[
det

(
Inr +

ρ

nt
HH†

)]
bps/Hz, (146)

where Inr and H are the nr × nr identity matrix and nr × nt transfer ma-

trix [146] respectively; nt and nr are the number of transmit and receive

antennas, respectively. H is generally a complex matrix also referred to as

the communication matrix; we shall use both terminologies interchangeably.

The transfer matrix connects the received signal, y, to the transmitted signal

x through the equation

y = Hx + ς, (147)

where ς is the received noise. This means that the received signal is made up

of both the transmitted signal as well as the noise from the channel. HH†

therefore represents the normalised channel power transfer characteristic

[146]. The symbol † denotes the complex-conjugate transposition. ρ is the

signal-to-noise ratio (SNR) and is defined as the ratio of the total power

transmitted from the antennas to the noise power at each of the receiving

antennas. The SNR is usually given in dB. In this case, it is the difference

between the received power (measured in dBm) and the noise floor (in dBm).

The relationship between SNR in dB and ρ is given by

SNRdB = 10 log10(ρ). (148)

This means that if the SNR is given in dB, then the value of ρ in (146) is

calculated from

ρ = 10
(

SNRdB
10

)
. (149)
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6.2 channel capacity and the communication matrix

Higher values of SNR indicate better signal quality and channel condition.

For example, two separate telephone lines with equal channel bandwidths

will have two different data rates depending on the SNR values of each

channel.

Furthermore, we assume that signals propagating through the channel,

undergo Rayleigh fading. Rayleigh fading is based on the assumption that

signals that arrive at the receiver, after undergoing multiple reflections and

transmissions, randomly vary in magnitude. In Rayleigh fading, the inde-

pendent paths taken by signals are such that, there is no dominant line of

sight transmission [150]. This type of fading is the most widely used to

model propagating signals in environments such as urban cities. In experi-

mental settings, it is not uncommon to model such multipath environments

in reverberation chambers [151] and chaotic cavities [32, 38]. Unless other-

wise stated, the transmission medium are assumed to be Rayleigh channels.

Coming back to our case where there are multiple transmitters coupled

to a single receiver, the Shannon capacity formula in (146) simplifies to

C = log2

[
det

(
1 +

ρ

nt

nt

∑
i=1
|h1i|2

)]
bps/Hz, (150)

where the communication matrix H =
(
h11, h12, h13, ..., h1nt

)
is now a vector

of length nt such that HH† = ∑nt
i=1 |h1i|2. This case is not different from

the scenario of multiple receivers combined with a single transmitter. In the

random coupling model discussed in Chapter 4, the Zcav is used to model

H. We propose using the symmetrized scattering matrix SM, introduced in

Section 4.6, to model H. It is important to note from (128) that, the prompt
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6.2 channel capacity and the communication matrix

reflection matrix σ00, is diagonal; and so the off-diagonal elements which

represent the transmission part of the model are all zeroes. Therefore σ00 can

be ignored when considering transmission from transmitters to receivers.

Hence, for a weakly coupled Fourier graphs with losses in the compact part

of the graph,

SM =

(
sin2δ

2B
e−

απ
B

)
X

1
I2B −Λ

X†, (151)

where the expression in the bracket is the non-statistical and system depen-

dent part of the model, while ξ = X(I2B −Λ)−1X† represents the statistical

part with universal characteristics that can be predicted in RMT.

This means that, although the graph model was derived for wired net-

works, it is has the characteristics of wireless communication channels that

are coupled to multiple transmitters and receivers. This idea is illustrated in

Figure 45. In particular, Figure 45(a) is an illustration of a graph connected

to three transmitters, Tx1, Tx2 and Tx3, and one receiver Rx which we use to

model the scenario of a chaotic cavity illustrated in Figure 45(b).

(a) Our wired scenario. (b) Wireless MIMO scenario.

Figure 45.: QG model as an analogue to MIMO system
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6.2 channel capacity and the communication matrix

If we consider the scenario in Figure 45(b) for example, then the trans-

mission vector of the graph scattering matrix, SM, is represented by ele-

ments of the sub-matrix, SM
t , enclosed by the red box as shown in Figure

47. Across the frequency spectrum, the absolute values of these elements

are presented in the various plots. The elements of SM
t are denoted by S1i

where i = 1, 2, · · · , nt. Although these plots are for illustrative purposes,

they have been obtained numerically by simulating a graph with a tetra-

hedral topology connected to three transmitters and one receiver. This is

shown schematically in Figure 46, where the ith transmitter is denoted by

Txi and Rx denotes the receiver.

Figure 46.: Illustration of a tetrahedral connected to three transmitters, Tx1,

Tx2 and Tx3, and one receiver, Rx.

Using the scattering matrix SM
t to model MISO systems, the channel ca-

pacity may then be written as

C = log2

[
det

(
1 +

ρ

nt
|SM

t |2
)]

bps/Hz, (152)

where |SM
t |2 = ∑nt

i=1 |S1i|2 = τ ∑nt
i=1 |ξi|2. From (131) and the fact that τ = σ4

Y,

we have

τ =

(
sin2 δ

2B
e−ε

)2

, (153)
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6.2 channel capacity and the communication matrix

Figure 47.: Extracted 1× 3 transmission vector, SM
t .

where τ is the coupling strength and depends on three attributes of the

graph. Namely, graph size B, the damping factor exp(−ε), and the free

parameter δ, whose value allows us to control the strength of coupling to

the leads, while keeping the vertex scattering matrix unitary. (NB: The

expression of τ and the construction of a vertex scattering matrix which

ensures weak coupling of leads were derived in Section 4.5.1).

It is essential to remember that both the statistical (system-independent)

and the non-statistical (system-dependent) parts of the graph model are

accounted for in (152) just like in random coupling model. We will use (152)

in the next section to calculate the distribution of channel capacity.
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6.3 distribution of channel capacity for siso systems

6.3 distribution of channel capacity for siso systems

In this section, we begin with the simplest case of one transmitter (nt = 1)

and one receiver (nr = 1). From (152), the channel capacity for SISO systems

simplifies to

C = log2

[
det

(
1 + ρτ|ξ|2

)]
bits/Hz. (154)

The distribution of channel capacity may be derived in two ways:

1. Convolution Approach

2. Characteristic Function Approach.

Regardless of which method we use, we always start by constructing a

model of the distribution of ξ.

From random coupling model, it was shown that ξ is Cauchy (or Lorentzian)

distributed in the low-loss regime, and Gaussian distributed in the high-loss

regime [38,152]. In the graph model however, we found (through numerical

simulations graphs) that ξ is generally a t-distributed random variable. A

t-distributed random variable interpolates smoothly between a Cauchy dis-

tribution and a Gaussian distribution. A Cauchy distribution is a special

case of t-distribution where ν = 1. In the limit of large ν, t-distribution

becomes Gaussian. Since ξ is t-distributed, its probability density function

(pdf) given by

fξ(x) =
1

σ
√

νβ
(

1
2 , ν

2

) [1 +
(x− µ)2

σ2ν

]− ν+1
2

, (155)
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6.3 distribution of channel capacity for siso systems

where −∞ < x < ∞. µ, σ and ν are the location, scale and shape parameters,

respectively; and β(·, ·) denotes the beta function. When ν = 1, then the pdf

in (155) simplifies to that of Cauchy distribution as

fξ(x) =
1

σπ

[
1 +

(
x− µ

σ

)2
]−1

. (156)

Figure 48 shows an example of the distribution of the real and imaginary

parts of ξ. The location parameter which is also the mean of the distribu-

tion is zero (i.e. µ = 0) and so (155) leaves us with two parameters σ and

ν which we will use in calculating the distribution of the channel capacity.

ν is also known as the degree of freedom (dof) and we will use the two

terms interchangeably. In (155), it must be noted that σ is not the standard

deviation of the random variable ξ. In fact, in the special case when ν = 1,

the distribution has undefined standard deviation. For ν > 2, the variance

of a generalised t-distribution is rather given, in terms of the two parame-

ters, by σ2
ξ = σ2ν/(ν − 2). However, in the limit of large ν, σ2

ξ ≈ σ2 and

the distribution of ξ becomes Gaussian with mean µ and variance σ2. Since

the transition between t-distribution and Gaussian distribution interpolates

rather smoothly, it becomes difficult to pinpoint a particular value of ν for

which ’Gaussianity’ is attained. However, ν ≥ 30 always provides a good

approximation to normal distribution and we shall use that as a rule of

thumb to refer to a scenario when the distribution of ξ is approximately

Gaussian.

Notation: Whenever a random variable X is t-distributed with parameters

µ, ν and σ, we will write X ∼ t(µ, σ, ν). In the special case when µ = 0,
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6.3 distribution of channel capacity for siso systems

we will simply write X ∼ t(σ, ν). Similarly, we write X ∼ N(µ, σ) when

a random variable X is Gaussian distributed with mean µ and standard

deviation σ. We classify as low-loss regime any regime where ξ ∼ t(σ, ν)

and as high-loss the regime where ξ ∼ N(µ, σξ).

The graph network simulated in Figure 48 consists of 120 bonds with

HEX10 topology as shown in the inset of Figure 48(a). The graph is weakly

coupled to two leads each with coupling strength, τ = 1.7269× 10−13. The

loss parameter α = 0.1 and the free parameter is δ = 0.01. The lengths of

the graphs were randomly chosen from a uniform distribution. Each plot

in Figure 48(a) and (b) is created from 8000 realisations of such randomly

chosen graphs. The distribution of ξ is compared with both t-distribution

(red curve in the figure) and a Gaussian distribution (yellow curve) of the

same variance. For this example with small damping (i.e. =(k) = ε =

2.618 × 10−3), ξ is t-distributed with small dof, ν = 2.2 as shown in the

legend of the figure. Here, a Gaussian distribution, chosen to have the same

variance, is quite different from the observed distribution. Figure 48(a) and

(b) reveals that, the real and imaginary parts are identically distributed with

equal variance. They are both t-distributed with equal parameter values.

From (138) in Chapter 4, we know that the loss parameter, α = α0 + α1,

where α0 = Bε0/π and α1 = Bε/π denote losses due to radiating leads and

losses within the compact part of the graph, respectively. The free parameter

δ in (153) allows us to control the level of energy leakages due to radiating

leads, while ε allows us to control the losses in the rest of the graph. As we
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6.3 distribution of channel capacity for siso systems

(a) Real part of ξ (b) Imaginary part of ξ

Figure 48.: The real and imaginary parts of ξ for a HEX10 Fourier graph

with α = 0.1, δ = 0.01 and the number of bonds B = 120.

Therefore the coupling strength, which depends on α, B and

δ, is evaluated for each of the transmitter and the receiver as

τ = 1.7269× 10−13. The red curve represents t-distribution with

parameters σ = 76.9 and ν = 2.2, while the yellow curve rep-

resents a Gaussian distribution with the same variance as the

t-distribution.

increase the loss parameter in this way, ν also increases and consequently,

the profile of ξ approaches a more Gaussian distribution. This transition is

illustrated in Figure 49(a)-(d) and Figure 50(a)-(b), where the distribution

of the real part of ξ, <(ξ) for some selected values of α ∈ [0.5, 5] are

shown. Specifically, Figure 49(a)-(d) shows the distribution of <(ξ) in the

low-loss regime where ν < 30. On the other hand, Figure 50(a)-(b) shows

the distribution of <(ξ) in the high-loss regime where ν > 30. In each case,

a HEX10 Fourier graph (see the inset in Figure 49(a)) was used with B = 120.

The free parameter δ was fixed at δ = 0.5, while ε values were chosen so that
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6.3 distribution of channel capacity for siso systems

the desired losses (i.e. α) are obtained. In Figure 49(a)-(d), α = 0.5, 1, 2, 3,

while in Figure 50(a)-(b), α = 4, 5. Since the real and imaginary parts are

identically distributed, we only show the effects of increasing losses on the

distribution of the real part.

(a) α = 0.5, τ = 9.1216× 10−7 (b) α = 1, τ = 8.8859× 10−7

(c) α = 2, τ = 8.4326× 10−7 (d) α = 3, τ = 8.0025× 10−7

Figure 49.: The effect of increasing loss parameter on the distribution of

<(ξ) for a graph with HEX10 topology in the low-loss regime

where ν < 30. From (a)-(d), the distribution become more Gaus-

sian as α increases. But in each case, the ’Gaussianity’ criterion

of ν > 30 is not attained.

Figure 51 shows how the two parameters ν and σ change with increas-

ing α. In this figure, we have divided the range of α ∈ [0.3949, 5] into

21 equally-spaced incremental points. This helps us to see a more gradual
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(a) α = 4, τ = 7.5942× 10−7 (b) α = 5, τ = 7.2063× 10−7

Figure 50.: The distribution of <(ξ) for a graph with HEX10 topology as in

the inset of (b). Both (a) and (b) are in the high-loss regime where

the degree of freedom ν > 30. In (a) α = 4 and the coupling

strength τ = 7.5942× 10−7, while in (b), the loss parameter is

increased to α = 5 and τ = 7.2063× 10−7. In both figures, an

ensemble average of 8000 randomly generated graphs were used.

transition of both parameters as we increase α. It can be seen that, the shape

parameter ν increases with increasing α, while the scaling parameter, which

is proportional to the variance, decreases with increasing losses. Increas-

ing α reduces the ’fatness’ of the tails and causes ξ to approach Gaussian

distribution. This is in conformity with RCM predictions [38, 152]. For ex-

ample, in Figure 50, ν > 30 in each of the subplots (a) and (b). In both

instances, we assume that ξ is effectively normally distributed because the

shape parameter exceeded the threshold of ν = 30.

From the distribution of ξ, we next calculate analytically the distribution

of the channel capacity, fC (c), of a SISO system that works in both low and

high loss regimes. We begin with the convolution method.
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(a) ν vs α (b) σ vs α

Figure 51.: Effects on increasing α on (a) the shape parameter and (b) scale

parameter. Both plots were produced from an ensemble average

of 2000 randomly chosen HEX10 Fourier graphs with coupling

strength τ = 9.172× 10−7.

6.3.1 Convolution method

The convolution theorem states that: If X and Y are two independent contin-

uous random variables with fX (x) and fY (y) as their respective densities,

then the density of Z = X + Y may be written as

fZ (z) =
∞∫
−∞

fY (z− x) fX (x) dx, (157)

where fZ (z) is known as the convolution of fX (x) and fY (y). From (154),

we can use the distribution of |ξ|2 to find the distribution of the channel

capacity, C. We start with the distribution of |ξ|2.

Since ξ is a complex variable, we can write it as ξ = ξr + jξi, where ξr and

ξi are the real and imaginary part of ξ, respectively. Consequently,

|ξ|2 = ξ2
r + ξ2

i . (158)
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This implies that |ξ|2 is a sum of two random variables, ξ2
r and ξ2

i , whose

distributions we need to know first before calculating f|ξ|2
(
|ξ|2
)
. Remem-

bering that both ξr ∼ t(σ, ν) and ξi ∼ t(σ, ν), then each has a pdf given by

fξr (t) = fξi (t) =
1

σ
√

νβ(1
2 , ν

2 )

[
1 +

t2

σ2ν

]− 1+ν
2

, (159)

where −∞ < t < ∞ and β(·, ·) denotes the beta function.

We can use (159) to determine the distribution of ξ2
r , by using a one-to-

one transformation X = g(T) = T2 from {t| −∞ < t < ∞} to {x|x > 0}.

This implies, for every value of X, there are two corresponding values of T.

T = g−1(X) =
√

X and the Jacobian of transformation dT/dX = 1/2
√

X.

Then

fξ2
r
(x) = 2 fξr

(√
x
) ∣∣∣∣ dt

dx

∣∣∣∣
=

1
σ
√

xνβ(1
2 , ν

2 )

[
1 +

x
σ2ν

]− 1+ν
2 .

(160)

ξ2
r is therefore a non-standard, F-distributed random variable with scaling

parameter σ and degrees of freedoms ν1 = 1 and ν2 = ν. We denote by

X ∼ F(σ, 1, ν), a random variable X, which is F-distributed with scaling

parameter σ and degrees of freedoms ν1 = 1 and ν2 = ν. This implies

ξ2
r ∼ F(σ, 1, ν). Similarly, ξ2

i ∼ F(σ, 1, ν).

Figure 52 shows the distributions of ξ2
r and ξ2

i compared with the analyt-

ical expression in (160). The solid red curve represents an F-distribution

while the histogram represents a network simulation of a graph with a

HEX10 topology. The numerical results agrees well with the analytical pre-
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diction, even in the tails. The irregular tails and their sudden termination

are the result of finite-size effects.

(a) Distribution of ξ2
r (b) Distribution of ξ2

i

Figure 52.: Distributions of the squares of real and imaginary parts of ξ for

a graph with a HEX10 topology. The number of bond in the

graph is B = 120, the loss parameter α = 0.5, the free parameter

δ = 0.5, and the coupling strength τ = 9.1216× 10−7.

From (158), if we let Z = |ξ|2, X = ξ2
r and Y = ξ2

i , then Z is a sum of two

F-distributed random variables. Hence we can use the convolution equation

in (157) to find the distribution of |ξ|2 in terms of Z as

f|ξ|2(z) =
1

σ2νβ(1
2 , ν

2 )
2

∞∫
−∞

1√
x(z− x)

[
1 +

z− x
σ2ν

]− 1+ν
2 [

1 +
x

σ2ν

]− 1+ν
2

·H(x)H(z− x)dx,

(161)

where H(x) is the Heaviside step function. Since x > 0 and y > 0, then

z− x > 0 which implies x < z. Consequently, the support of the integration

is 0 < x < z. Simplifying (161) and applying the support, we arrive at the

pdf of |ξ|2 being of the form

f|ξ|2(z) =
1

σ2νβ(1
2 , ν

2 )
2

z∫
0

1√
x(z− x)

(
1 + z

σ2ν
+ x(z−x)

σ4ν2

)1+ν
dx. (162)
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Figure 53 shows the distribution of |ξ|2 using the same graph as indicated

in Figure 52 and compared with the analytic calculation in (162). The red

curve represents the theoretical prediction. It is important to note that x > 0

and y = z− x > 0 and therefore the pdf in (162) is defined only for x, y > 0.

Figure 53.: Distribution of |ξ|2 with α = 0.5 for a graph of HEX10 topology

with number of bonds B = 120, δ = 0.5, the coupling strength

τ = 9.1216× 10−7. The topology of the graph used is as in the

inset.

Next, we use the distribution of |ξ|2 to obtain the distribution of channel

capacity, C. Remembering that the channel capacity formula in (154) relates

|ξ|2 with C, we can deduce the following:

fC(c)dC = f|ξ|2 (z)d|ξ|2 (163)
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and

Z = |ξ|2 =
2C − 1

ρτ
. (164)

The Jacobian of transformation is given by

d|ξ|2
dC

= log(2)
2c

ρτ
. (165)

This implies

fC(c) = f|ξ|2 (z) log(2)
2c

ρτ
. (166)

From (162), we know f|ξ|2 (z) and we can therefore substitute it in (166) to

obtain the distribution of channel capacity as

fC(c) =
log(2)2c

ρτσ2νβ(1
2 , ν

2 )
2

z∫
0

1√
x(z− x)

(
1 + z

σ2ν
+ x(z−x)

σ4ν2

)1+ν
dx, (167)

where z = (2c − 1)/ρτ, ρ is the signal to noise ratio and the coupling

parameter, τ, is as defined in (153). Comparison of the numerical results

and the analytical expression in (167) is shown in Figure 54. The numerical

simulation is done using the same HEX10 graph with the same low loss

characteristics: B = 120, α = 0.5, δ = 0.5, τ = 9.1216× 10−7 and ρ = 40

dB. Typical values of ρ > 20 dB are required for applications involving

data networks, while ρ > 25 dB are recommended in voice applications

[153]. Therefore the choice of ρ = 40 dB is not uncommon in a typical

communication system.

As the system losses increase, the pdf in (167) is still able to accurately

predict the distribution of channel capacity irrespective of the level of losses,

provided the graph is coupled to a single input and a single output devices.

For example, Figure 54(b) shows distribution of channel capacity in the high-
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loss regime where ξ ∼ N(µ, σ) with α = 4. In Figure 54(a), the losses in the

channel are low (α = 0.5) and so the capacity of the channel is larger than

in a more lossy channel. This is evident, for example, when Figure 54(a) at

α = 0.5 is compared with Figure 54(b) at α = 4. In Figure 54(a), the capacity

reached as high as 11 bps/Hz, while in Figure 54(b), the highest value of

the channel capacity is reduced to a little over 6 bps/Hz. This difference is

significant. For example, if the two channels have equal bandwidths, then

the channel with a lower loss will have a larger capacity than the one with

a higher loss.

The main result of the present subsection is that, we have been able to

analytically predict the distribution of channel capacity of Fourier graphs

which are coupled to a single transmitter and a single receiver for both low-

and high-loss scenarios.

However, when the number of transmitters is more than one, the convo-

lution approach cannot be used to predict distribution of channel capacity.

Under such circumstances, an alternative approach is required. In Section

6.3.2, we introduce such an alternative approach and we call it the Charac-

teristic Function Approach (CFA).

6.3.2 Characteristic Function Approach

The characteristic function approach provides another angle of attack in

finding the distribution of channel capacity. The underlying mathematical
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(a) channel capacity at α = 0.5 (b) channel capacity at α = 4

Figure 54.: Predictions of distribution of channel capacity using the convolu-

tion approach (solid red curve) in the (a) low-loss regime when

α = 0.5 and (b) high-loss regime when α = 4. In both cases,

The graph size B = 120, δ = 0.5. In (a), the coupling strength

τ = 9.1216× 10−7, while in (b) τ = 7.5942× 10−7. The topol-

ogy of the graph as indicated in the inset of Figure 53. The SNR

ρ = 40 dB in each case.

manipulations are presented as follows:

Let Xi, be the ith random variable such that X1, X2, X3, · · · , Xn are n inde-

pendent and identically distributed random variables (iid’s) each with pdf

fX1(x), fX2(x), fX3(x), · · · , fXn(x) respectively. If Z is a another random vari-

able such that

Z =
n

∑
i=1

Xi, (168)

then the pdf of Z, fZ(z) may be written in terms of a delta function δ(·) as

fZ(z) =
∫

Rn
dX1dX2 · · ·dXn fX1(x) fX2(x) · · · fXn(x)δ

(
Z−

n

∑
i=1

Xi

)

=
∫

Rn

n

∏
i=1

dXi fXi(x)
[

1
2π

∫ ∞

−∞
ejt(Z−∑n

i=1 Xi)dt
]

.

(169)
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6.3 distribution of channel capacity for siso systems

Therefore

fZ(z) =
1

2π

∫ ∞

−∞
ejtZdt

∫
Rn

n

∏
i=1

dXi fXi(x)e−jtXi

=
1

2π

∫ ∞

−∞
ejtZdt

[∫ ∞

−∞
fX(x)e−jtXdX

]n
.

(170)

The reason for the last step in (170) is because all Xi are identically dis-

tributed and we set X = Xi for X ∈ {X1, X2, X3, · · · , Xn}. If we let

f̃ (t) =
∫ ∞

−∞
fX(x)e−jtXdX, (171)

then f̃ (t) is called the Fourier transform (FT) of fX(x). This means that

f̃ (−t) is the characteristic function of fX(x) and (170) simplifies to

fZ(Z) =
1

2π

∫ ∞

−∞
f̃ (t)nejtZdt. (172)

Equation (172) is the inverse Fourier transform (IFT) of f̃ (t)n which is the

nth power of the Fourier transform of fX(x). Generally, for a graph with

nt > 1 transmitters,

Z =
nt

∑
m=1
|ξm|2

=
nt

∑
m=1

ξ2
rm + ξ2

im ,

(173)

and each |ξm|2 contributes f̃ (t)2 to (172). This implies that for nt > 1

fZ(Z) =
1

2π

∫ ∞

−∞
f̃ (t)2ntejtZdt. (174)

The characteristic function approach of finding fZ(z) can therefore be

summarised in three(3) steps as follows:

1. Fourier Transform: Find the Fourier transform of fX(x)

2. Exponentiation: Raise the result in step 1. to the power of 2nt, and

3. Inverse Fourier Transform: Find the inverse Fourier transform of the

result in step 2., to obtain fZ(z).
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6.3 distribution of channel capacity for siso systems

For nt = 1, Figure(55)(a) shows the comparison between the convolution

approach and the characteristic function approach in the low-loss regime

when α = 0.5, while Figure (55)(b) shows a high-loss regime comparison

when α = 4. The dashed yellow curve is analytical prediction from the

convolution approach, while the red curve results from the characteristic

function approach. Predictably, the two results are identical. The difference

at |ξ|2 = 0 is due to low convergence accuracy in implementing the integrals

of the characteristic function approach (This is one of the limitations of CFA).

However, at nt = 1, both methods give the same level of accuracy.

Similar to what was done in Section 6.3.1, we can now use the distribution

of |ξ|2 to find that of the channel capacity by using (166) which we can write

more explicitly as

fC(c) = fZ=∑
nt
m=1 |ξm|2

(
nt (2c − 1)

ρτ

)
log(2)2c

ρτ
. (175)

This is what we refer to, in this thesis, as the characteristic function ap-

proach. However, as we add more transmitters to the underlying system,

it is not possible to use the convolution approach in predicting the distri-

bution of channel capacity. Therefore we can resort to the characteristic

function approach for MISO systems which is a generalisation of the SISO

architecture. Section 6.4 presents the MISO systems and how to accurately

predict their distributions of channel capacity in low as well as high loss

regimes. In summary, for SISO systems, both the convolution and character-

istic function approach work well in predicting the distribution of channel

capacity. This is true regardless of the level of losses in the system.
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6.4 generalisation to miso systems

(a) Distribution of |ξ|2 at α = 0.5 (b) Distribution of |ξ|2 at α = 4

Figure 55.: Comparison between the predictions of the characteristic func-

tion approach (solid red curve) and the Convolution approach

(dashed yellow curve) in estimating the distribution of |ξ|2 in

(a) low loss regime when α = 0.5 and (b) high loss regime

when α = 4. In both cases, The graph size B = 120, δ = 0.5.

In (a), the coupling strength τ = 9.1216 × 10−7, while in (b)

τ = 7.5942× 10−7. The topology of the graph as indicated in

the inset of (a).

6.4 generalisation to miso systems

For MISO systems, the channel capacity formula is given in (152). In this

generalisation, the convolution approach is not possible. We therefore resort

to the characteristic function approach (CFA) which works for all regimes

of system losses and for any number of leads attached. This is significant

because it creates the opportunity of obtaining a model which is ’one-model-

fits-all’. The convergence of the integrations required in CFA is important
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6.4 generalisation to miso systems

(a) Capacity distribution at α = 0.5 (b) Capacity distribution at α = 4

Figure 56.: Comparison between the characteristic function approach and

the convolution method in the estimation of channel capacity in

the low loss regime when α = 0.5 and in the high loss regime

when α = 4. All other parameters are as in the caption of Figure

55 and graph topology is as indicated in the inset of Figure 55(a).

in obtaining an accurate theoretical predictions of the underlying channel

capacity distribution.

Additionally, in the limit of high losses when the distribution of ξ be-

comes Gaussian, we will also derive a closed-form expression which effi-

ciently predicts the distribution of channel capacity in this regime. With

this closed-form solution, there is no need to worry about any convergence

issues regarding the CFA implementation. Details of this calculation is pre-

sented in Section 6.4.2. We begin with characteristic function approach and

subsequently show how to derive the closed form solution for systems with

high losses.
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6.4 generalisation to miso systems

6.4.1 Characteristic Function Approach

Going back to the characteristic function (CF) calculations in (174), we have

shown that the method is able to predict the capacity distribution of a chan-

nel coupled to multiple transmitters from low to high losses. Examples

of systems with low losses (α = 0.5) are given in Figure 57 and it shows

the distributions of channel capacity with varying number of transmitters,

nt = 1, 2, 3 and 4. Figures 58 and 59 show scenarios for medium (α = 2) as

well as high losses (α = 5), respectively. In each case, the graph simulation

result agrees well with the predictions of the CFA. However, as the number

of transmitters is increased, a noticeable difference, between the graph sim-

ulation and the CFA predictions, begins to emerge particularly in the low

loss regimes.

Increasing the number of transmitters (i.e. nt > 3), further increases the

error levels. This may be attributable to the numerical approximations in-

volved in the implementation of the CFA mentioned in 6.3.2. The second

step involves exponentiation,
[

f̃ (t)
]2nt , which depends on nt. The error

therefore increases in the limit of large nt, especially in the low loss regime.

To go round the challenge of implementing the characteristic function ap-

proach, a closed-form expression is derived in the high loss regime when

the ξ is Gaussian distributed. This is presented in Section 6.4.2.
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6.4 generalisation to miso systems

(a) nt = 1 (b) nt = 2

(c) nt = 3 (d) nt = 4

Figure 57.: Characteristic function approach of predicting the distribution

of channel capacity with transmitters ranging from one to four

at α = 0.5, B = 120, δ = 0.5, τ = 9.1216× 10−7 and ρ = 40 dB

6.4.2 High Loss Regime

Previous section has results that are general across all loss regimes but not

without some drawbacks. They are complicated to implement numerically,

and involves several steps. We therefore introduce a simpler analytical ap-

proach where we derive a closed-form expression for the distribution of

channel capacity in the high loss regime. This is important because it is com-
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6.4 generalisation to miso systems

(a) nt = 1 (b) nt = 2

(c) nt = 3 (d) nt = 4

Figure 58.: Distribution of channel capacity with transmitters ranging from

one to four for a HEX10 Fourier graph at α = 2, B = 120, δ = 0.5,

τ = 8.4326× 10−7 and ρ = 40 dB

monplace for communication channels to be modelled as having Rayleigh

fading with high losses [150, 154–159].

As usual, we begin from the distribution of ξ. Since the distribution

of ξ is Gaussian in high loss cases, then |ξ|2 = ξ2
r + ξ2

i is a sum of two

chi-squared distributions each with scaling parameter σ which is equal to
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6.4 generalisation to miso systems

(a) nt = 1 (b) nt = 2

(c) nt = 3 (d) nt = 4

Figure 59.: Distribution of channel capacity for a HEX10 Fourier graph with

transmitters ranging from one to four at α = 5, B = 120, δ = 0.5,

τ = 7.2063× 10−7 and ρ = 40 dB

standard deviation of the underlying Gaussian distribution, and degree of

freedom ν = 1. That is

fξ2
r
(x) = fξ2

i
(x) =

1
σ
√

2π
x−

1
2 e−

x
2σ2

=
1

σ2
ν
2 Γ( ν

2 )
x

ν
2−1e−

x
2σ2 ,

(176)

where Γ(·) denotes the gamma function. In such cases we write ξ2
r ∼

χ2(σ, 1) and ξ2
i ∼ χ2(σ, 1), to denote that ξ2

r and ξ2
i are both chi-squared

distributed with parameter scaling, σ and degree of freedom ν = 1. Since
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6.4 generalisation to miso systems

|ξ|2 is the sum of two chi-squared distributed random variables, each with

ν = 1, then |ξ|2 ∼ χ2(σ, 2) with pdf given by

f|ξ|2(x) =
1

2σ2 e−
x

2σ2 . (177)

Consequently, Z = ∑nt
m=1 |ξm|2 ∼ χ2(σ, 2nt) with pdf given by

fZ(z) =
1

(2σ2)nt Γ(nt)
znt−1e−

z
2σ2 . (178)

Figure 60 shows the distribution of Z with increasing number of transmit-

ters. In each case the red curve represents the theoretical prediction derived

in (178). The graph simulation was implemented for a HEX10 Fourier graph

where the loss parameter α = 5, δ = 0.5, B = 120 and τ = 7.2063× 10−7. An

ensemble average of 8000 realisations was used to produce the histogram

in each of the plots. There is a good level of agreement between the closed-

form expression in (178) and the numerical simulations even as we increase

the number of transmitters.

We have calculated the pdf for Z. The pdf for C is easy to obtain from

this by using equations (164), (166) and (178). Consequently, we obtain the

pdf for C in the high-loss regime as

fC(c) =
log(2)
Γ(nt)

(
nt

2σ2ρτ

)nt

2c (2c − 1)nt−1 e
− nt(2c−1)

2σ2ρτ . (179)

Figure 61 shows a comparison between the characteristic function approach

(CFA) and the closed form expression in (179). The red curve represents the

CFA method, while the yellow curve is the prediction of the closed form

expression. The number of transmitters nt = 1, 2, 3, and 4 in Figures 61 (a),

(b), (c), and (d), respectively. The other parameters in this example are α = 5,

B = 120, δ = 0.5, τ = 7.2063× 10−7 and ρ = 40 dB.
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(a) nt = 1 (b) nt = 2

(c) nt = 3 (d) nt = 4

Figure 60.: Comparison between the theoretical prediction (red solid curve)

in (178) and the numerical simulation of an ensemble of 8000

HEX10 Fourier graphs (histogram) with number of transmitters

ranging from one to four at α = 5, B = 120, δ = 0.5 and τ =

7.2063× 10−7.

Figures 62 (a) - (d) show examples with higher number of transmitters,

from nt = 5 to nt = 8, respectively. The other parameters remain the same as

those reported in Figure 61. The analytical results works well even with high

number of input systems. While the closed-form expression in (179) and the

CFA are two different ways of calculating the same pdf, they each have a

unique advantage. The closed-form expression is a single equation, while

the CFA involves several steps in its implementation (i.e. finding Fourier
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6.4 generalisation to miso systems

(a) nt = 1 (b) nt = 2

(c) nt = 3 (d) nt = 4

Figure 61.: Comparison between the numerical simulation and analytical

predictions of channel capacity distribution. The closed-form ex-

pression is the yellow curve and the CFA is the solid red. Other

parameters are α = 5, B = 120, δ = 0.5, τ = 7.2063× 10−7 and

ρ = 40 dB.

transform, exponentiation of result, and finding inverse Fourier transform),

which may lead to problems of numerical convergence. However, the closed-

form equation only works in high-loss regimes, whiles CFA works across all

regimes.
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6.5 conclusion

(a) nt = 5 (b) nt = 6

(c) nt = 7 (d) nt = 8

Figure 62.: Comparison between the numerical simulation and analytical

predictions of channel capacity distribution with nt = 5, 6, 7, 8.

All other parameters are as reported in Figure 61.

6.5 conclusion

A simple model of quantum graphs on Fourier nodes weakly coupled to

leads has been presented using an analogue of the Random Coupling Model.

Although Fourier graphs can not be realised experimentally, it provides us

with a simple alternative way of numerically simulating chaotic cavities us-

ing graph analogue RCM. This is because it satisfies all the assumptions

of RCM in a natural way. It is therefore useful as a test-bed for numeri-
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cal simulations of information transfer rates in both wired networks and

communications within chaotic cavities.

We have shown different ways of obtaining the density functions for the

distribution of capacity of communication channels. We began with the sim-

ple case of single-input single-out systems where we employed two meth-

ods. Both the convolution and the characteristic function approaches were

shown to be able to describe the capacity distribution with remarkable level

of accuracy. These worked both in the low loss regime as well as high loss

regime in SISO systems.

However, in dealing with a more general scenario of multiple-input single-

output systems, both the characteristic function approach and the closed-

form expression are useful in predicting the channel capacity distribution

in the high loss regime. The convolution method becomes unusable mainly

because the distribution of sum of more than two F-distributed random

variables is generally unknown in the form of explicit function. It remains

an open problem in the field of probability theory to find the resultant dis-

tribution of the sum of F-distributed random variables. The convolution

approach is therefore not suitable under such circumstances.

The characteristic function approach can be used for MISO/SIMO sys-

tems in across all regimes, but has convergence issues, especially in the low

loss regime when the number of transmitters is increased. Therefore, in the

high-loss regime where the distribution of ξ is Gaussian, we have derived

a closed-form expression for the capacity distribution whose accuracy is
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6.5 conclusion

independent on the number of transmitters. Since many wireless applica-

tions involves high-loss communication channels with increasing number of

transmit antennas, the closed-form expression provides a significant infor-

mation in the study of channel capacities and the characteristics of wireless

channels.
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7
D I S T R I B U T I O N O F C H A N N E L C A PA C I T Y O N

N E U M A N N G R A P H S

7.1 introduction

Having calculated the distribution of the channel capacity for idealised

Fourier graphs in the previous chapter, this chapter concentrates on a more

realistic and experimentally accessible set of boundary conditions. These

are graphs with Neumann boundary conditions at their vertices. We group

these graphs into two main categories depending on the strength of lead

coupling to the underlying graphs.

1. Weakly-coupled Neumann Graphs: These are graphs whose compact

part are made of Neumann vertices and are weakly-coupled to leads.

2. Strongly-coupled Neumann Graphs: These are graphs where all the

vertices, including those attached to leads, have Neumann boundary

conditions.
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In Chapter 6, the boundary conditions at the graph vertices are Fourier

boundary conditions, which makes the random variable Y in (117) Gaussian

distributed. However, Neumann boundary conditions make the distribution

of Y a Laplace distribution. As discussed in Section 4.6.2, the variances of

Y have been analytically determined for strongly-coupled Neumann graphs

as well as for weakly-coupled graphs. It is important to note that, the ex-

pression of the variance of Y in (131) for a weakly-coupled graph remains

unchanged whether the internal nodes have Fourier or Neumann boundary

conditions. It is the distribution of Y that changes depending on the type of

vertices under consideration.

In this chapter, we investigate the impact of Neumann boundary condi-

tions on the distribution of channel capacity. Under each category, we will

investigate the impact of the loss parameter α on the shape of the ξ distribu-

tion and hence on the capacity distribution. Additionally, we will explore

the effects of increasing the number of transmitters while keeping the loss

parameter constant. This will be done for both half-connected graphs (i.e.

HEXv graphs with connectivity index, γ ≈ 0.5) as well as fully-connected

graphs (i.e. graphs with γ = 1).

We begin with the weakly-coupled Neumann graphs and subsequently

discuss graphs that are strongly-coupled to leads.
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7.2 weakly-coupled neumann graphs

7.2 weakly-coupled neumann graphs

This section treats graph networks with Neumann boundary conditions that

are weakly-coupled to leads. Vertices that are not connected to leads have

Neumann boundary conditions imposed on them, while vertices connected

to leads have weakly-coupled boundary conditions discussed in Section

4.5.1 applied to them. This section explores the impact of weak coupling

of leads on the distribution of channel capacity. We begin with the distribu-

tions of random variables X and Y.

7.2.1 Distributions of Y and X

In Chapter 6,we have seen that

SM = σ00 + Y
1

I2B −Λ
Y†

= σ00 + σYX
1

I2B −Λ
X†σY

= σ00 + σ2
Yξ,

(180)

where Y (for Fourier graphs) is a non-standard Gaussian random variable,

and X is the standardised version of Y.

In this section, we investigate the distributions of Y and X for Neumann

graphs that are attached weakly to external leads. The distribution of Y

is shown in Figure 63(a) for a Neumann graph with a HEX10 topology as

shown in the inset. As we saw in Section 4.6.2, the variance of a Laplace

distributed random variable with parameter b, is given by 2b2. Comparing
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7.2 weakly-coupled neumann graphs

this with the analytical form of the variance of Y given in (131), we see that

the parameter b can be written as b = exp(−ε/2) sin δ/(2
√

B) for complex

Y. Keeping in mind that <(Y) and =(Y) are iid’s, the parameter b for

each of the real and imaginary parts is b = exp(−ε/2) sin δ/(2
√

2B). The

variables δ and ε are free parameters whose values determine the level of

losses through the leads and the compact part of the graph, respectively.

For the distribution shown in Figure 63(a), the graph has B = 120 bonds

and we chose δ = 0.5 and ε = 1.9154× 10−3. This implies that b ≈ 0.0155

and the coupling parameter is τ = (exp(−ε) sin2 δ/(2B))2 = 9.1369× 10−7.

At α = 0.5, Figure 63(b) shows the distribution of the standardised ran-

dom variable X = (1/σY)Y scaled so that its variance is
〈
|X|2

〉
= 1. There-

fore the variance of the real and imaginary parts of X after normalisation

is 0.5 which corresponds to b = 0.5. The red curve is the distribution of

Laplace random variable with variance 2b2 = 0.5.

7.2.2 Distribution of ξ

From (128), the normalised scattering matrix is given in terms of the random

variable X

ξ = X
1

I2B −Λ
X†, (181)

where Λ is a 2B× 2B diagonal matrix whose diagonal elements are eigen-

values of the transfer matrix T̂.
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(a) Distribution of <(Y) at α = 0.5 (b) Distribution of <(X) at α = 0.5

Figure 63.: Distribution of (a) <(Y) and (b) <(X) for a Neumann graph

of HEX10 topology (histogram) at α = 0.5, B = 120, δ = 0.5,

τ = 9.1369× 10−7 and nt = 1. The variances of <(Y) and <(X)

are 9.577× 10−4 and 0.5 respectively. In both plots, an ensemble

of 8000 graphs was used.

In this section, the distribution of ξ is investigated. Figure 64 shows the

distribution of the real and the imaginary parts of ξ. As expected from

Chapter 6, both the real and the imaginary parts are t-distributed in the low

loss regime (note that α = 0.5 in this example) with identical parameters σ

and ν.

However, comparing the values of the two parameters here with those in

an equivalent Fourier graph as in Figure 49(a), it is obvious that the values

of both the scale parameter σ and the shape parameter ν are significantly

different. It is important to note that both graphs are HEX10 graphs with

equal attributes apart from boundary conditions. The HEX10 Fourier graph

has σ = 54.6 and ν = 6.2, while this HEX10 Neumann graph, as shown

in Figure 64, has σ = 30.9 and ν = 2.3. Consistently, the values of σ and ν
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from Fourier graphs are large compared to those from equivalent Neumann

graphs. This is true regardless of the amount of losses in the underlying

system as will be seen later in this chapter. Despite the difference in the

parameter values, ξ has the same functional form in both Neumann and

Fourier graphs. The difference in the distributions of X has resulted in

different values of σ and ν, where the Fourier graphs have their ξ closer to

Gaussian distribution than the Neumann counterparts.

(a) Distribution of <(ξ) at α = 0.5 (b) Distribution of =(ξ) at α = 0.5

Figure 64.: Distribution of (a) <(ξ) and (b) =(ξ) for a Neumann graph of

HEX10 topology (histogram) at α = 0.5, B = 120, δ = 0.5, τ =

9.1369× 10−7 and nt = 1. In both plots, an ensemble of 8000

graphs was used.
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7.2.3 Distribution of Channel Capacity for SISO Systems

From (128), the scattering matrix SM is related to the normalised scattering

matrix ξ through

SM =
√

τξ

= e−ε sin2 δ

2B
ξ.

(182)

This implies that the communication matrix H, which is modelled by SM,

can be used to calculate the distribution of channel capacity as we saw in

Chapter 6. The convolution approach (CA) introduced in Section 6.3.1 and

the characteristic function approach (CFA) in Section 6.3.2 together with the

derived equations, are still applicable in this chapter. Again, since the ξ is

t-distributed in the low loss regime, then |ξ|2 = ξ2
r + ξ2

i is a sum of two

F-distributed random variables ξ2
r and ξ2

i , where ξr and ξi are the real and

imaginary of parts of ξ.

Figure 65 compares the distributions of ξr and ξi with the theoretical

predictions (red curves) in (160). The theoretical calculations agree well

with numerical simulations for a HEX10 Neumann graph. We can therefore

use these predictions to calculate the distribution of their sum |ξ|2. This

could be calculated in two different ways as was discussed in Chapter 7,

where we used the CA (discussed in Section 6.3.1) and the CFA (discussed

in Section 6.3.2) to calculate the pdf of the channel capacity.

The distribution of |ξ|2 is shown in Figure 66. This is compared with the

two analytical solutions of Sections 6.3.1 and 6.3.2. The solid red curve is the
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(a) Distribution of ξ2
r at α = 0.5 (b) Distribution of ξ2

i at α = 0.5

Figure 65.: (a) and (b) are the distributions of the squares of real and imag-

inary parts of ξ for a Neumann graph with HEX10 topology at

α = 0.5, B = 120, δ = 0.5, τ = 9.1369× 10−7 and nt = 1. In both

plots, an ensemble of 8000 graphs was used.

prediction from the characteristic function approach, while the dashed yel-

low curve represents the convolution approach as presented in (167). Since

the figure was generated from ξ distribution with a small value of ν = 2.3, it

cannot be compared with the closed-form solution, derived in (178), which

was derived for ν > 30. Both the convolution and the characteristic function

approaches agree well with the numerical simulation.

As shown in Chapter 6, we can always derive the channel capacity dis-

tribution from the distribution of |ξ|2 using the transformation fC(c) =

f|ξ|2(z)dZ/dC, where z = nt(2c − 1)/(ρτ) and Jacobian of transformation

dZ/dC = log(2)2c/(ρτ). This was summarised in (175). Using both the

convolution and characteristic function approaches, we compare the predic-

tions of the two approaches with the numerical simulation of a HEX10 Neu-

mann graph. This is shown in Figure 67 where the solid red and dashed
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Figure 66.: Distribution of |ξ|2 for a Neumann graph with HEX10 topology

at α = 0.5, B = 120, δ = 0.5, τ = 9.1369× 10−7 and nt = 1. An

ensemble of 8000 graphs was used to create this distribution. The

solid red curve is the theoretical prediction of the characteristic

function approach, while the dashed yellow is the convolution

approach.

yellow curves are the theoretical predictions of the characteristic function

and the convolution approaches respectively.

However, from a critical examination of this figure as compared with Fig-

ure 56(a) of Chapter 6, we can see that the predictions in Figure 56(a) fit the

numerical simulation better. This is because, the more the distribution of

ξ approaches that of a Cauchy distribution (i.e. ν = 1), the more challeng-

ing it is to maintain the level of accuracy we see in Figure 56. It is worth

mentioning that, although both figures are simulated at α = 0.5, the Fourier

graph produces larger values of the degrees-of-freedom parameter ν than

the Neumann graph. This is ascribed to the fact that Fourier graphs ensure

equal scattering amplitudes at the nodes, while Neumann graphs favour

back scattering with an increasing valency of the node.
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Figure 67.: Distribution of channel capacity for a Neumann graph with

HEX10 topology at α = 0.5, B = 120, δ = 0.5, τ = 9.1369× 10−7

and nt = 1. An ensemble of 8000 graphs was used to create

this distribution. The solid red curve is the theoretical predic-

tion obtained from the characteristic function approach, while

the dashed yellow is the result obtained from the convolution

approach.

Next, we investigate the impact of augmenting system losses by increas-

ing the value of α. Figure 68 shows the distribution of ξ when the loss

parameter is α = 5. It is instructive to note that the shape parameter ν = 7.1

is still far below the threshold of ν = 30 at which the distribution approxi-

mately Gaussian. The red curve is a t-distribution with σ = 11.5 and ν = 7.1,

while the yellow curve represents a Gaussian distribution with same vari-

ance as the t-distribution. It is obvious that the distribution of ξ in this

plot is significantly different from the normal distribution. Again, compar-

ing this plot with its Fourier graph equivalent, in terms of size and level

of losses as depicted in Figure 50(b), one finds that the distribution of ξ
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in Figure 50(b) is approximately Gaussian distributed, while Figure 68 still

remains t-distributed.

(a) Distribution of <(ξ) at α = 5 (b) Distribution of =(ξ) at α = 5

Figure 68.: Distribution of (a) <(ξ) and (b) =(ξ) for a Neumann graph of

HEX10 topology (histogram) at α = 5, B = 120, δ = 0.5, τ =

7.2189× 10−7 and nt = 1. In both plots, an ensemble of 8000

graphs was used.

In fact, for half-connected Neumann graphs that are weakly-coupled to

leads, the distributions of ξ never attains ’Gaussianity’ no matter what level

of losses we consider. As α increases, the shape parameter ν initially in-

creases rapidly and then plateaus. After it plateaus, the shape parameter

broadly remains constant at ν = 7. Figure 69 shows how the parameters of

ξ changes with increasing system losses. In Figure 69(a), it can be observed

that ν < 30 regardless of how much we increase the value of α. Unlike

Fourier graphs, which transition from t-distribution to Gaussian distribu-

tion with increasing losses, ξ is always t-distributed for half-connected Neu-

mann graphs. Therefore the closed-form solution derived in section 6.4.2

does not apply for half-connected Neumann graphs with weakly-coupled
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leads. However, we still have the choice between convolution approach and

characteristic function approach (for SISO systems). On the other hand, un-

der MISO or SIMO systems, we are stuck with using only the characteristic

function approach for these graphs, since the convolution approach only

applies to SISO systems.

(a) Variations of ν with α (b) Variations of σ with α

Figure 69.: Effects of increasing losses on parameters of ξ for a Neumann

graph of HEX10 topology (histogram). B = 120, δ = 0.5 and

nt = 1. In both plots, an ensemble of 8000 graphs was used.

Figure 70 shows a comparison between the characteristic function ap-

proach (i.e. solid red curve in the figure) and the convolution approach

(dashed yellow curve) for a HEX10 Neumann graph coupled to a single in-

put and single output system at α = 5. The theoretical predictions agree

well with the numerical simulation. The topology of the simulated graph is

shown in the inset of Figure 70, and an ensemble of 8000 such graphs were

used to create the distribution. Despite the fact that both CA and CFA are

different ways of computing the same formula, the CA cannot be used for
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systems with multiple transmit antennas. In the next section, we discuss

graph networks coupled to multiple transmit or multiple receive antennas.

(a) α = 5 (b) α = 10

Figure 70.: Distribution of channel capacity for a weakly-coupled Neumann

graph with HEX10 topology at α = 5, B = 120, δ = 0.5 and nt =

1. In each case, an ensemble of 8000 graphs was used to create

the distribution. The solid red curve is the theoretical prediction

of the characteristic function approach, while the dashed yellow

is the convolution approach. The coupling strength in (a) is τ =

7.2189× 10−7, while , τ = 5.5561× 10−7 in (b).

7.2.4 Distribution of Channel Capacity for MISO Systems

In this subsection, we focus on the effects of increasing the number of trans-

mitters nt = 1, 2, 3, 4. Since both the convolution approach and the closed-

form expression cannot be applied in this scenario, we will only compare

the simulations with the characteristic function approach at α = 10, for an

ensemble of 8000 randomly generated HEX10 Neumann graphs with weak
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coupling of leads. The coupling parameter τ = 5.5561 × 10−7, and the

signal to noise ration ρ = 40 dB. In Figure 71, the prediction of the charac-

teristic function approach (i.e. the red curve) agrees well with the numerical

calculations in all the four sub-figures.

Figure 71.: Distribution of channel capacity for a weakly-coupled HEX10

Neumann graph with (a) nt = 1, (b) nt = 2, (c) nt = 3, and

(d) nt = 4 at α = 10, B = 120, δ = 0.5 and ρ = 40 dB. The

red curve is the theoretical prediction using the characteristic

function approach. In each case, the coupling parameter is τ =

5.5561× 10−7.
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7.3 strongly-coupled neumann graphs

In this section we discuss the distribution of channel capacity for Neumann

graphs where all the nodes, including those attached to leads, have Neu-

mann boundary conditions. This is what we refer to as the strongly-coupled

Neumann graphs. It is important to note that, the coupling parameter τ for

strongly-coupled Neumann graphs is an order of magnitude higher that its

counterpart which is weakly-coupled. We begin with the distribution of the

random variable Y and how it compares with Neumann as well as Fourier

graphs that are weakly-coupled to leads. This comparison will also be done

for ξ and for the channel capacity distributions for SISO systems. Finally,

we will consider the general case of MISO systems with particular atten-

tion placed on how increasing the number of transmitters affect the channel

capacity distribution.

7.3.1 Distribution of X

The variance of Y for strongly-coupled Neumann graphs is given by σ2
Y =

2(v− 1)/(v2B) as we saw in section 4.6.2.2. This implies that the normalised

random variable X = (1/σY)Y =
√
(v2B)/2(v− 1)Y has a variance of 1.

Figure 72 shows the distributions of real and imaginary parts of X compared

with a Laplace distribution of unit variance. Since the real and imaginary
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parts of X are iid’s, then each will have a variance of 0.5. This corresponds

to the Laplace distribution parameter b = 0.5 as indicated in the figure.

(a) α = 0.5 (b) α = 0.5

Figure 72.: Distribution of real and imaginary parts of X for a strongly-

coupled Neumann graph with HEX10 topology at α = 0.5. In

each case, an ensemble of 8000 graphs was used to create the

distribution. The solid red curve is the theoretical prediction.

The coupling strength is τ = 1.8544× 10−6.

7.3.2 Distribution of ξ

The next step is to find the distribution of the normalised scattering ma-

trix ξ and use its distribution parameters σ and ν to calculate the channel

capacity distributions by following the calculations discussed in Chapter

6. We first consider systems with small values of α, and then later deal

with higher values of α. Figure 72 shows the distribution of ξ for a HEX10

strongly-coupled Neumann graph when α = 0.5. This is compared with

the distribution of a Gaussian random variable (yellow curve) of the same
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variance as the t-distribution (red curve). Like its weakly-coupled counter-

part, the distribution of ξ is t-distributed. However, the difference is that the

value of the shape parameter ν has increased from ν = 2.3 (see Figure 64) in

the weakly-coupled case to ν = 3 in the strongly-coupled graph of the same

topology. There is also an increase in the scale parameter from σ = 30.9 to

σ = 34.2. These changes result in a significant reduction in the range of ξ

values from [−300, 300] in the case of weakly-coupled to [−200, 200] in

the strongly-coupled case.

(a) α = 0.5 (b) α = 0.5

Figure 73.: Distribution of real and imaginary parts of ξ for a strongly-

coupled Neumann graph with HEX10 topology at α = 0.5. In

each case, an ensemble of 8000 graphs was used to create the

distribution. The coupling strength is τ = 1.8544× 10−6. The

t distribution (red curve) is compared with a Gaussian distribu-

tion (yellow) of the same variance.

The rest of the calculations remain the same as previously discussed. We

use the parameter values σ and ν to calculate the distributions of ξ2
r and ξ2

i

and use these identical distributions to find the distribution of |ξ|2 = ξ2
r + ξ2

i .
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Finally we transform the distribution of |ξ|2 in to the distribution of channel

capacity. The rest of the figures in this chapter are based on the simulation

of a strongly-coupled Neumann graph with a HEX10 topology. In each dis-

tribution presented, we use an ensemble average of 8000 randomly chosen

graphs of the same topology.

7.3.3 Distribution of Channel Capacity SISO Systems

7.3.3.1 HEXv or Half-connected Graphs

We begin with the single-input single-output systems. Figure 74 shows the

distribution of the squares of real and imaginary parts of ξ. The red curve

in each case is the theoretical prediction based on the values of σ and ν

obtained from Figure 73. Specifically, ξ2
r and ξ2

i are scaled F-distributed

random variables each with degrees of freedoms ν1 = 1 and ν2 = ν and

scale parameter σ.

The distribution of |ξ|2, which is effectively the sum of two iid’s obtained

in Figure 74, is presented in Figure 75. We used the two approaches (i.e. con-

volution approach and the characteristic function approach) in predicting

the pdf of |ξ|2. The solid red curve represents characteristic function tech-

nique, while the dashed yellow curve represents the convolution approach.

Again, this comparison is possible only when nt = 1 and nr = 1. For multi-

ple transmitters, only the characteristic approach may be used when ν < 30.
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(a) α = 5 (b) α = 10

Figure 74.: Distribution of ξ2
r and ξ2

i for a strongly-coupled Neumann graph

with HEX10 topology at α = 0.5. In each case, an ensemble of

8000 graphs was used to create the distribution. The coupling

strength is τ = 1.8544× 10−6. The red curve in each case is the

theoretical prediction of a scaled F-distribution in (160).

Figure 76 shows the distribution of channel capacity at a small value of

α = 0.5. The solid red curve is the result of the characteristic function ap-

proach, while the dashed yellow curve represents the results obtained from

the convolution approach. Even though the theoretical predictions of the

channel capacity work well at low values of α, the accuracy of the predic-

tion gets even better when the shape parameter increases. The increase in

the shape parameter can be achieved by increasing the losses in the system.

When we increase the system losses to α = 5, the shape parameter ν in-

creases from ν = 3 to ν = 6.9. This is depicted in the legend of Figure 77(a)

which shows the distribution of the real part of ξ at α = 5. However, this

increase in the value of ν does not go on indefinitely for half-connected Neu-

176



7.3 strongly-coupled neumann graphs

Figure 75.: Distribution of |ξ|2 for a strongly-coupled Neumann graph with

HEX10 topology, as indicated in the inset, at α = 0.5. An en-

semble of 8000 graphs was used to create the distribution. The

coupling strength is τ = 1.8544× 10−6. The theoretical predic-

tions using both the convolution approach (dashed yellow curve)

and characteristic function approach (solid red curve) show a sat-

isfactory agreement with the numerical simulation.

mann graphs. As we saw in the case of weakly-coupled graphs, the value

of ν initially increases with increasing α but never reaches values that are

high enough to make the distribution of the normalised scattering matrix ξ

Gaussian.

In the specific case of strongly-coupled Neumann graphs, as the value of

α increases, the shape parameter ν initially increases, then attains a peak

value α = 5 and then gradually decreases towards a saturated value of

ν ≈ 7 for values of α > 5. This is shown in Figure 79(a) for values of

α ∈ [0.0396, 40]. Figure 77(a) shows the distribution of ξ at α = 5, while

Figure 77(b) shows the ξ distribution at α = 10. As it can be seen, the value

of ν at α = 5 is greater than the value obtained at α = 10.
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Figure 76.: Distribution of channel capacity for a strongly-coupled Neu-

mann graph with HEX10 topology, as indicated in the inset, at

α = 0.5. An ensemble of 8000 graphs was used to create the dis-

tribution. The coupling strength is τ = 1.8544× 10−6. The theo-

retical predictions using both the convolution approach (dashed

yellow curve) and characteristic function approach (solid red

curve) agrees well with the numerical simulation.

Next, we use the parameter values in Figure 77(a) and (b) to calculate

the distribution of channel capacity. The results are shown in Figure 78(a)

and 78(b) respectively. It is obvious that the accuracy of the theoretical

prediction here is better than what was found in the case when α = 0.5 for

the same strongly-coupled Neumann graph as depicted in Figure 76.

Just like in the case of half-connected weakly-coupled Neumann graphs,

the distribution of ξ for strongly-coupled HEX10 Neumann graph remains

t-distributed regardless of how high the value of the loss parameter α goes.

Unlike the weakly-coupled Neumann graphs whose ν value approaches 7

with increasing α, the limiting value of ν in a strongly-coupled HEX10 Neu-

mann graph is ν ≈ 4. The values of both parameters ν and σ are generally
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(a) α = 5 (b) α = 10

Figure 77.: Distribution of real parts of ξ for a strongly-coupled Neumann

graph with HEX10 topology at α = 5 in (a) and α = 10 in (b).

In each case, an ensemble of 8000 graphs was used to create the

distribution. The coupling strength is τ = 1.4651× 10−6 for (a),

while τ = 1.1277× 10−6 in (b).

lower in strongly-coupled graphs than in weakly-coupled graphs. For ex-

ample, for a graph with HEX10 topology, the variations of both parameters

are shown in Figure 79.

However, fully-connected graphs have a different story compared to half-

connected graphs described above. The results for fully-connected graphs

are presented next.

7.3.3.2 Complete or Fully-connected Graphs

As was discussed in chapter 3, fully-connected graphs have maximum con-

nectivity γ = 1 where every vertex is connected to all other vertices. In

this subsection, we focus on K(v + 1) graphs. K(v + 1) graphs are complete

graphs with polygonal topology, and v + 1 vertices where the valency of
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(a) α = 5 (b) α = 10

Figure 78.: Distribution of channel capacity for a strongly-coupled Neu-

mann graph with HEX10 topology, as indicated in the inset, at

α = 5 in (a) and α = 10 in (b) . An ensemble of 8000 graphs was

used in each of the distributions with nt = 1 and signal-to-noise

ratio ρ = 40 dB. The coupling strength is τ = 1.4651× 10−6 in (a),

while τ = 1.1277× 10−6 in (b). The theoretical predictions using

both the convolution approach (dashed yellow curve) and char-

acteristic function approach (solid red curve) agrees well with

the numerical simulation.

each vertex is v. For example, Figure 80(a) illustrates a graph with K5 topol-

ogy, while Figure 80(b) shows a K10 graph. A closer look at K(v+ 1) graphs

reveals that the number of bonds in such graphs

B =
v(v + 1)

2
. (183)

This is in contrast with HEXv graphs where the number of bonds is

B = v(v + 2). (184)

From (183) and (184) we can see that the number of bonds in both K(v +

1) graphs and HEXv graphs increases quadratically with increasing v, but
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(a) (b)

Figure 79.: An example of the comparison between the variations of (a) ν

and (b) σ with increasing losses for a strongly-coupled (SC) and

weakly-coupled (WC) HEXv Neumann graphs. In both plots, a

HEX10 graph, as indicated in the inset, was used. From (a), it is

obvious that the distribution of ξ is never Gaussian distributed

no matter level of losses in the system.

the size of K(v + 1) graphs increase half as fast as that of HEXv in the

limit of large v. But the connectivity index of K(v + 1) graphs is twice the

connectivity of HEXv.

As we saw in chapter 3, the connectivity index γ for an arbitrary graph

with n vertices and B bonds is given by

γ =
2B

n(n− 1)
. (185)
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(a) K5 network. (b) K10 network

Figure 80.: Illustration of K(v + 1) graphs.

For K(v + 1) graphs, n = v + 1, and from (183) and the formula for the

connectivity index in (185), it implies that for all values of v in K(v + 1)

graphs, the connectivity index is calculated as follows:

γ =
2B

n(n− 1)

=
2v(v+1)

2
(v + 1)v

= 1.

(186)

As hinted before, the K(v + 1) graphs with Neumann boundary condi-

tions have a rather different story when compared to HEXv graphs. Like the

Neumann HEXv graphs, the normalised random variable X in (181) is also

Laplace distributed in complete K(v + 1) graphs, but unlike the Neumann

HEXv graphs, the distribution of the universal random variable ξ interpo-

lates between t-distribution and Gaussian distribution with increasing loss

parameter α.
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Figure 81(a) shows the plot of the shape parameter ν versus the loss pa-

rameter α ∈ [0, 3]. The dashed turquoise curve indicates the threshold

value of ν = 30 above which the ξ distribution becomes approximately

Gaussian. As can be seen from the figure, the distribution of ξ interpolates

between t-distributed (ν < 30) and Gaussian distributed (ν > 30) with in-

creasing losses. Generally, as the loss parameter α increases, the value of

the shape parameter ν initially increases and later plateaus. Interestingly,

K(v + 1) graphs with smaller number of bonds B plateau earlier compared

to K(v + 1) graphs with a larger B. This is because, graphs with a relatively

smaller B require a higher damping factor ε to achieve the same value of α

(Remember that α = B(ε0 + ε)/π, and ε0 remains constant for a particular

coupling strength).

If we take a strongly-coupled K10 Neumann graph for example, the dis-

tribution of the non-normalised random variable Y and the corresponding

normalised variable X are Laplace distributed as shown respectively in Fig-

ure 82(a) and (b). The red curves in the plot show the results obtained from

the theoretical predictions.

However the real and imaginary parts of ξ may be t-distributed or Gaus-

sian distributed depending on whether or not ν > 30. This means that for

fully-connected Neumann graphs, the distribution of ξ is not limited only

to the t-distribution. It rather interpolates between t-distribution (in the low

loss regime) and Gaussian distribution at high loss regime. The distribution

shown in Figure 83 is for the real parts of ξ. The figure on the left shows the
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(a) Variations in ν with increasing α (b) Variations in σ with increasing α

Figure 81.: Comparison between the variations of ν and σ with increasing

losses for complete K(v + 1) graphs which are strongly-coupled

with Neumann boundary conditions. According to the ν values

in (a), it is obvious that the distribution of ξ starts from being

t-distributed (ν < 30) to Gaussian distributed (ν > 30) as the

loss parameter increases. The dashed turquoise curve indicates

the threshold value for the shape parameter ν.

distribution in the low-loss regime at α = 1, while the figure on the right

represents the ξ distribution in the high-loss regime where α = 4. In each

case, the solid red curve represents a t-distribution with scale parameter σ

and shape parameter ν the values of which are shown in the legends. On

the other hand, the dashed yellow curve is a Gaussian distribution whose

variance is equal to the variance of the t-distribution shown. In (a), it ob-

vious that the distribution of ξ is significantly different from Gaussian dis-

tribution, while in (b) the ξ is Gaussian distributed. From the values of σ

and ν, we analytically estimate the distribution of the channel capacity as

discussed before.
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(a) Distribution of Y (b) Distribution of X

Figure 82.: Distribution of the random variable Y and the standardised vari-

able X for a strongly-coupled K10 Neumann graph at α = 4.

(a) Distribution of ξ at α = 1 (b) Distribution of ξ at α = 4

Figure 83.: Distribution of ξ for a strongly-coupled K10 Neumann graph at

(a) α = 1 and (b) α = 4.

Figure 84(b) shows the distribution of channel capacity for a strongly-

coupled K10 Neumann graph where ε = 0.2743, ρ = 40 dB, α = 4 and τ =

9.2442× 10−6. In each case, an ensemble of 20, 000 randomly chosen K10

graphs was used to generate the figure, and then compared with theoretical

predictions. Since the simulation was done in high-loss regime (i.e. ν >

30), and nt = 1, each of the three theoretical approaches of predicting the

capacity distribution may be used. The solid red curve represents the results
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obtained from the characteristic function approach, the dashed yellow curve

is the results from the convolution approach, while the dashed indigo curve

represents the closed-form solution.

However, in the low-loss regime, we can only use the characteristic func-

tion approach or the convolution approach. This is shown in Figure 84(a),

where ε = 0.06486, ρ = 40 dB, α = 1 and τ = 1.4054× 10−5. Predictably,

the maximum value of the channel capacity in Figure 84(a) is greater than

the one in Figure 84(b). This is because the range of the capacity is inversely

proportional to the system losses.

(a) α = 1 (b) α = 4

Figure 84.: Distribution of channel capacity for a strongly-coupled K10 Neu-

mann graph at α = 4.

After examining the capacity distribution of SISO systems for strongly-

coupled Neumann half-connected (i.e. HEXv) graphs as well as complete

graphs (i.e. K(v + 1)) graphs, we next discuss what happens in MISO sys-

tems where multiple transmitters are coupled to the underlying graphs. We

will start with half-connected graphs whose connectivity index γ ≈ 0.5 for

all v, and then subsequently treat fully-connected graphs where γ = 1.
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7.3.4 Distribution of Channel Capacity MISO Systems

7.3.4.1 HEXv Graphs

In this subsection, we will keep the loss parameter constant at α ≈ 5, and

inspect the effect of increasing the number of transmitters nt = 1, 2, 3, 4. As

can be seen in Figure 85, the theoretical prediction, using the characteristic

function approach, fits the graph simulation well for multiple transmitters.

As the number of transmitters increases, there is a corresponding increase

in radiated losses through the leads. Although this increase in radiation is

small compared to the total internal losses, it still affects the support of the

channel capacity probability distribution. For example, the maximum value

of c in Figure 85(a), which represent the scenario of a single transmitter, is

c = 6 bits/s/Hertz, while the maximum value of c with nt = 4 in 85(d)

reduces to c ≈ 5.5.

Increasing the number of transmitters may seem to bring about a negative

effect. However the benefit of having MISO is to increase robustness against

fading and interference effects, thus making the channel more stable and

resilient. This is known, in the literature of wireless systems, as the diversity

gain.

7.3.4.2 Fully-connected Graphs

Here, we focus on fully-connected graphs in general, but show an example

for a K10 Neumann graph in particular. Specifically, we investigate the
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(a) nt = 1 (b) nt = 2

(c) nt = 3 (d) nt = 4

Figure 85.: Distribution of channel capacity for a HEX10 strongly-coupled

Neumann graph with increasing number of transmitters (nt =

1, 2, 3, 4) at α ≈ 5, B = 120 and ρ = 40 dB. The red curve is the

theoretical prediction using the characteristic function approach.

In each case, the coupling parameter is τ = 1.4651× 10−6.

effects of increasing the number of transmitters nt while keeping the loss

parameter at α = 4. We chose α = 4 because it is large enough to make the

distribution of ξ Gaussian, thus taking us well into the high-loss regime.

Figure 86 shows the distribution of channel capacity for graphs with K10

topology which are strongly-coupled to 1, 2, 3 and 4 transmitters respec-

tively. The boundary conditions at all vertices are Neumann. At α = 4,

the shape parameter for is ν = 47.04, which verifies that the simulations
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are made in the high-loss regime. When nt = 1, all three approaches (i.e.

characteristic function, convolution and closed-form solution) may be used

to determine the pdf of the channel capacity. This is shown in Figure 86(a),

where the red, yellow and indigo curves represent characteristic function,

convolution and closed-form solution respectively.

(a) nt = 1 (b) nt = 2

(c) nt = 3 (d) nt = 4

Figure 86.: Distribution of channel capacity for a K10 strongly-coupled

Neumann graph with increasing number of transmitters (nt =

1, 2, 3, 4) at α ≈ 4, B = 45 and ρ = 40 dB. The red curve is the

theoretical prediction using the characteristic function approach.

In each case, the coupling parameter is τ = 9.2442× 10−6.

However, the convolution approach cannot be used for nt > 1. In such

scenarios, we show the predictions of both characteristic function approach

189



7.4 conclusion

(CFA) and the closed-form solution (CFS). For nt = 2, 3, 4, the red curve in

each case represents the CFA predictions, while the dashed-yellow curve de-

notes the CFS predictions. In all cases, the theoretical predictions agree well

with the numerical simulations. In each case, we used 20, 000 realisations of

randomly selected K10 graphs. After investigating other K(v + 1) graphs,

we have found the same level of accuracy in the theoretical predictions.

7.4 conclusion

For graphs with medium connectivity, we have shown that, unlike Fourier

graphs, the distribution of ξ never becomes Gaussian, when Neumann

boundary conditions are applied and as losses increase. This is true whether

the graphs are weakly- or strongly-coupled to leads. Therefore it is not pos-

sible to use the closed-form solution in (179) (which works only in the high-

loss scenario) in predicting the probability density function of the channel

capacity. However, in the case of single-input single-output systems, two

approaches have been used to calculate the distribution of channel capacity.

These are the characteristic function approach and the convolution approach.

For multiple-input single-output systems, the only approach suitable for

theoretically predicting the probability density function is that of the char-

acteristic function approach. In general, the values of the shape parameter ν

of the universal random variable ξ are higher in weakly-coupled Neumann

graphs than in its strongly-coupled counterparts. But, both are never high
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enough to make the distribution of ξ Gaussian. Furthermore, the theoretical

predictions in systems with higher values of ν are more accurate than those

with lower value of ν.

However, for complete graphs with Neumann boundary conditions, the

distribution of ξ starts as a t-distribution and gradually approaches Gaus-

sian distribution as the system loss increases. Therefore, for SISO systems

in low-loss regimes, both the convolution approach and the characteristic

function approach may be used to calculate the pdf of their channel capac-

ities. In the high loss regimes however, the closed-form expression in (179)

can be used in addition to the other two approaches to predict the pdf of

the channel capacity. In the generalised MISO systems, only the character-

istic function approach can be used in the low-loss regime, while both the

closed-form expression and characteristic function approach can be used in

the high-loss regime.

The convolution approach is limited to SISO systems, while the closed-

form expression is also limited to high-loss regimes. This makes the char-

acteristic function approach superior to both convolution approach and the

closed-form expression, because it works for MISO systems in both low- and

high-loss regimes whenever the integrals involved behaves well in terms of

convergence.

In conclusion, we have shown how to calculate the distribution of channel

capacity of a more realistic and experimentally accessible boundary condi-

tion (i.e. the Neumann boundary condition). Although the universal ran-
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dom variable ξ has one of its constituent variables Laplace distributed, we

still have a structure of the graph scattering matrix that is identical to the

RCM. This provides a simple but essential tool capable of predicting the

distribution of channel capacities of both wired as well as wireless commu-

nication channel.
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8
W I R E D C O M M U N I C AT I O N S S Y S T E M S

8.1 introduction

We have used quantum graph theory to model data transmission in chaotic

cavities and have estimated the distribution of channel capacities for such

multiple-input single-output (MISO) systems. Chapters 6 and 7 have fo-

cused on modelling wireless communication channels using Fourier and

Neumann boundary conditions, respectively.

In this chapter, we focus on the applications of quantum graphs in wired

communications, where we model data transmission within the Digital Sub-

scriber Line (DSL) networks. A DSL network uses copper cables, on the

existing telephone network infrastructure, as its channel to transmit data

between the central office (CO) and subscribers (DSL end-users) [17]. An il-

lustration of DSL network architecture is shown in Figure 87. Depending on

the generation of DSL involved, the entire link from the CO to the end-users

may be made up of copper cables or a combination of fibre optic cable and
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copper. DSL technology is by far the most widely-used medium for broad-

band internet access. For example, by the end of the second quarter of 2018,

there were in excess of 1 billion fixed broadband users worldwide [14]. De-

tails of the DSL networks is treated next.

Figure 87.: Illustration of DSL Network connecting subscribers to the central

office (adopted from [160]). Whenever there is no subscriber at

a branch, all the data is redirected back onto the network. We

implement that by applying Dirichlet boundary condition at the

end of the branch.

The rest of the chapter is organised as follows. Section 8.2 summarises the

theory behind DSL technologies, their types, and the evolutions they have

undergone since inception. This is followed, in Section 8.3, by a treatment of

the cable characteristics of DSL networks. Finally, the numerical simulations

of in-house DSL networks is presented in Section 8.4, where we estimate the

distribution of channel capacity of such realistic networks.
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8.2 dsl technologies

DSL technology has evolved over the years. The first generation leveraged

the existing telephone networks, whose infrastructure is already widely

available to prospective customers, to transmit both data and voice over

different frequency ranges of the same copper wire. Typically, data is trans-

mitted in the frequency range of 26− 1104 kHz, while the plain old tele-

phone service (POTS) (i.e. the ordinary voice telephone communication)

is transmitted at a lower frequency band of 30− 4000 Hz [161, 162], with

sub-carrier separation of 4.3125 kHz.

DSL technologies can be separated into two categories according to whether

the downstream and the upstream transmissions support equal data rates

or not. These are symmetric DSL (SDSL) and asymmetric DSL (ADSL).

In SDSL, both the downlink and the uplink have equal maximum speeds,

while in ADSL the downlink speed is greater than the uplink. In prac-

tice however, many applications such as video-on-damand, 4K TV, require

higher downstream speed more than upstream. This makes the ADSL the

most commonly used technology. A power spectrum density (PSD) of the

first generation ADSL is illustrated in Figure 88.

Since its inception, the ADSL has evolved chiefly as a result of ever-

increasing demand for a faster broadband connectivity. So far, there are

four main generations of DSL technologies that are classified according to
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Figure 88.: An illustration of a PDP of first generation ADSL [163].

achievable data rates and improvement in technology [17, 164]. These gen-

eration of DSL technologies are illustrated in Figure 89.

Figure 89.: Generations of DSL technology. The diagram is adopted and

modified from [17].

The first and second generation DSL access networks are made up of en-

tirely twisted pairs copper wires from the CO to customer premises with

loop distances of several kilometres. The standards of the first generation

DSL is the integrated services digital network (ISDN) followed by the Inter-

national Telecommunication Union (ITU) (ITU-T, 1991), supporting a band-
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width of 1.1 MHz with maximum achievable data rates of 10 Mb/s. The

standards of the second generation DSL are governed by the ITU-T series

1999a, 2003, and 2005a, with data rates of up to 20 Mb/s. The doubling

of the data rates was mainly effected by the wider bandwidth supported

in the second generation. This was made possible by the improvements

in the signal processing techniques such as the well-known dynamic spec-

trum management (DSM) [17,164–167], which mainly reduced the crosstalk

effects of the cables in DSL networks [144].

The improvements in the third and fourth generation DSL technologies

were mainly achieved by minimizing the attenuation levels through the util-

isation of shorter lengths of copper cables. Optical network units (ONU),

also known as the primary cross-connection point (PCP) street cabinet, are

placed between the CO and the customer premises. The link between

the CO and ONU is replaced by fibre optic cables, which significantly re-

duces transmission losses and therefore increases achievable data rates (or

throughput).

The third generation DSL technology reduces the final loop drop to less

than 1 km, while the fourth generation reduces the length of the copper

cable to less than 300m. The third and fourth generations DSL network can

support a maximum of 30 MHz and up to 300 (depending on cable quality

[168]) MHz in bandwidths, while data rates may reach up to 100 Mb/s and

1 Gb/s, respectively. However, the latest in the series of ITU standards for

the fourth generation DSL (popularly known in the marketing circles as the

197



8.2 dsl technologies

G.fast [169]) does not include the 300 MHz bandwidth. The latest standard

is the ITU-T G.9701, which was approved in 2014. The updated standard

was published in 2019, can be found in [16]. Although higher bit rates of

up to 1 Gbps [161] and beyond [170,171] have been achieved theoretically, it

is almost impossible for the Internet Service Providers (ISPs) to practically

implement such high speeds over copper networks.

The G.fast technology comes in two main profiles. The 106 MHz band

plan and the 212 MHz band plan, with respective frequency range of 2.12175−

105.984 MHz and 2.12175− 211.968 MHz. The entire frequency spectrum

from 0− 211.968 MHz is divided into 4096 tones with a frequency spacing

of 51.75 kHz. The first 40 sub-carriers are used for telephone applications

similar to the previous three generations. The 41st sub-carrier frequency is

the first within the G.fast frequency band, and corresponds to 2.12175 MHz,

while the last sub-carrier corresponds to 105.984 MHz or 211.968 MHz de-

pending on the choice of profile. However, the first sub-carrier carrying data

on a G.fast network is the 43rd tone and this corresponds to f43 = 2.22525

MHz [16].

Data transmission from the PCP street cabinet in the direction of DSL

subscribers is known as the downlink or downstream, while the reverse trans-

mission from subscribers towards the street cabinet is known as the uplink

or upstream [160]. The downlink network is a single-input multiple-output

(SIMO) system. But the system is MISO in the uplink, where data is trans-

mitted from multiple DSL subscribers to the ONU. By swapping the role of
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the transmitter(s) and the receiver(s), the network changes from a SIMO to

a MISO. In both cases, the quantum graph model developed in Chapter 4

can provide an accurate prediction of the channel capacity statistics.

Unlike the three previous generations of DSL technology, which employ

frequency-division duplexing, the G.fast scheme uses time-division duplex-

ing (TDD), and so both the down and upstream transmission utilise the

same frequency band. Table 1 gives a summary of the ITU-T G.9701 trans-

mitter specifications for the 106 and 212 MHz profiles.

Table 1.: ITU-T G.9701 profiles

Parameter 106 MHz Profile 212 MHz Profile

Standard ITU-T G.9701 ITU-T G.9701

Bandwidth 105.984 MHz 211.968 MHz

Sampling Frequency 211.968 MHz 423.936 MHz

No. of Tones 2048 4096

Tone spacing 51.75 kHz 51.75 kHz

UP- or Down-stream band plans 2.12173− 105.984 MHz 2.12173− 211.968 MHz

Transmit Power 4 dBm 8 dBm

No. of Bits per Sub-carrier 0− 12 0− 12

Symbol Rate 48, 000 baud 48, 000 baud

Noise Margin 6 dB 6 dB

At the customer premises, the DSL signal requires an in-house distribu-

tion network. A network interface device (NID) connects the rest of DSL
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network to the in-house network, usually through a POTS splitter (which

separates voice spectrum from the ADSL signal) [162].

The goal of the present research is to model data transmission within

this in-premises network, starting from the NID to the end-users within the

premises, or the reverse transmission from the end-users to the NID. In this

scenario, we investigate the architecture proposed in Appendix I of the ITU-

T G.9701 standard [16] as shown in Figure 90. The network is generally a

cascade of sub-networks each with a star topology. The end of each branch

is connected to an end-user (denoted a terminal A, B, etc ) or terminated

with a matched load so as to minimise signal reflections. This is because,

within the premises, every phone jack is ideally terminated with a 100Ω

impedance matching plug when not in use [162].

Figure 90.: Illustration of the topology of in-premises wiring of a G.fast net-

work, adopted from Appendix I of [16].

In Chapter 3 Section 3.2.1, we have shown that the connectivity index of

a cascade of star networks is γ ≤ 0.5. This makes the DSL networks fall
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into the category of networks with low connectivity index. Additionally, we

have shown that the connectivity index of a cascade of star network with n

vertices is given by

γ =
2B

n(n− 1)

=
2(n− 1)
n(n− 1)

=
2
n

,

(187)

where the number of bonds B = n− 1 in a cascade of star networks. As the

number of vertices n (n ≥ 4 in a cascade of start networks) increases, the

index of connectivity decreases (approaching zero in the limit of large n).

It is important to reiterate that, in Chapters 6 and 7, we have treated ap-

plications involving networks with medium connectivity (i.e. HEXv graphs

with connectivity index of γ ≈ 0.5 ), and fully-connected graphs (networks

with γ = 1) respectively. By treating networks with low connectivity in-

dices (such as in the in-house distribution network of G.fast) in this chapter,

we will have completed examining the three main categories of graphs (in

terms of their connectivity) in this thesis.

Next, we briefly discuss the channel (cable) characteristics of a G.fast net-

work, before the numerical calculations are presented in Section 8.4.

8.3 dsl cable modelling

From the transmission line theory in Chapter 2, we have seen that the char-

acteristic features of copper cables depend on four primary parameters, the
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resistance (R), inductance (L), conductance (G), and capacitance (C). These

frequency-dependent parameters can be used to define two secondary pa-

rameters as follows.

κ =
√

ZY

=
√
(R + jωL) (G + jωC)

= ακ + jβκ

(188)

where Z and Y are the impedance and admittance of the underlying cable

respectively, ω = 2π f is the angular frequency, ακ and βκ are the attenuation

and phase constants respectively, and κ is the propagation constant.

The purpose of the subscript in ακ is to differentiate it from the loss pa-

rameter α which was described in Chapter 4, Section 4.6. It is also important

to note the difference between the two definitions of propagation constants

κ (as defined in this chapter) and k (as defined in Chapters 3 and 4). In previ-

ous chapters, the =(k) characterises the damping in the propagating waves,

while the <(κ) in this chapter represents the damping. The definition in

(188) is popular in the Engineering community, while the k defined in (32),

for example, is popular in the physics and mathematics communities.

The second of the two secondary parameters is the characteristic impedance

of the cable and it is define as

Z0 =

√
Z
Y

=

√
R + jωL
G + jωC

,
(189)

where Z0 is the characteristic impedance of the underlying cable.
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The goal of this section to discuss how κ is modelled for cables in DSL

networks. Depending on the frequency range (hence the generation of the

DSL) under consideration, several models have been studied [15, 172–177].

While [172–176] modelled κ for the cables in the frequency ranges of the

first three generations of DSL networks (up to 30 MHz), [15, 16, 177, 178]

modelled the propagation constant of cables in the G.fast frequency range.

However, of the many G.fast-compliant models, only the TNO-Ericsson

(An acronym coined from Ireland’s Telephone Network Options Ltd, and Swe-

den’s Ericsson) model is currently adopted by ITU [16]. The TNO-Ericsson

model, which depends on ten parameters, is given by

[Z, Y] = model
(
Z0∞, ηVF, Rs0, qL, qH, qc, qx, qy, φ, fd

)
, (190)

where

Z(jω) = jωLs∞ + Rs0

[
1− qsqx +

√
q2

s q2
x + 2

jω
ωs

(
q2

s + jωqy/ωs

q2
s /qx + jωqy/ωs

)]
(191)

and

Y(jω) = jωCp0 (1− qc)

(
1 +

jω
ωd

)−2φ/π

+ jωqcCp0 (192)

are the impedance and admittance of the underlying cable respectively, such

that

Ls∞ =
Z0∞

ηVF · c0
, (193)

Cp0 =
1

ηVF · c0
× 1

Z0∞
, (194)
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qs =
1

q2
H · qL

, (195)

ωs = q2
H ·ωs0 = q2

H

(
4π · Rs0

µ0

)
, (196)

ωd = 2π fd. (197)

Here, ω = 2π f is the angular frequency c0 = 3× 108 [m/s] is the speed of

light, while µ0 = 4π × 10−7 [H/m] is the permeability in free space [16].

Different types of wires are used for different segments of G.fast network,

and since our focus is the in-house distribution network, we consider a B05a

(also known as the CAD55) cable. A CAD55 cable is a 0.5 mm unshielded

aerial cable that is commonly used for household wiring. Fortunately, the

values of all the ten parameters in the TNO-Ericsson model above have been

reported in [16] for a B05a cable. For a given frequency f , we could find

κ( f ) =
√

Z(jω)Y(jω), where ω = 2π f .

According to Appendix I of [16], the values of the ten parameters for B05a

cables (within the G.fast frequency range) are Z0∞ = 105.0694, ηVF = 0.6976,

Rs0 = 0.1871, qL = 1.5315, qH = 0.7415, qx = 1, qy = 0, qc = 1.0016,

φ = −0.2356, and fd = 1. In the next section, we use these parameter

values to simulate the in-house distribution of data at G.fast frequencies

and compare it with the predictions our quantum graph model discussed

in Chapter 4.
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8.4 numerical simulation of dsl networks

In this section, the numerical results of how data is distributed within a

household connected to a G.fast network, starting from the NID as illus-

trated in Figure 90. We do this analysis assuming the in-premises distribu-

tion network is made up entirely of CAD55 cables. Starting from the NID,

if a branch in the star section of Figure 90 is not connected to a terminal, we

terminate by a matching impedance (in this case a 100Ω for CAD55 cables).

In the following example, two star sections (made up of four branches

each) forms the in-premises distribution network and are connected to ter-

minals as illustrated in Figure 91. Figure 92 shows the distribution of real

Figure 91.: Illustration of the topology of in-premises wiring of a G.fast net-

work, adopted from Appendix I of [16].

and imaginary parts of ξ. The sub-carrier frequency f = 105.93225 MHz

was used. This is the sub-carrier with the highest frequency in the 106 MHz

profile of G.fast network. The loss parameter is α = 34.6, while the coupling

205



8.4 numerical simulation of dsl networks

parameter is τ = 4.6079× 10−4. The cable lengths are randomly chosen to

be between 1 m and 30 m long. These are reasonable lengths of cables

commonly found in households.

Figure 92.: The distribution of real and imaginary parts of ξ at α = 34.6

and τ = 4.6079 × 10−4 of a B05a wire with lengths randomly

chosen between 1 m and 30 m, where 4 nodes are connected to

the home network. An ensemble of 100, 000 simulations, each at

a frequency of f = 105.93225 MHz, were used.

Since the cascade of star networks is sparsely connected (i.e. in terms of

connectivity index), we expect the distribution of ξ to never approach Gaus-

sian distribution regardless of the level of losses in the distribution network.

This was discussed in Chapters 6, 7). Hence, the real and imaginary parts

of ξ remain t-distributed even though the parameter α is significantly high

for this scenario.

It follows that the random variables <(ξ)2 and =(ξ)2 are scaled F-distributed

with scale parameter σ = 6.1 and shape parameter ν = 1.6. Figures 93(a), (b)

compare the numerical simulation (histograms) with the analytical results

(red curve). Furthermore, the distribution of |ξ|2 = <(ξ)2 +=(ξ)2 is shown
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Figure 93.: The distribution of real and imaginary parts of ξ2. The red curve

denotes the analytical prediction (i.e. F-distribution with degree

of freedom ν = 1.6 and scale parameter σ = 6.1).

in Figure 94(a), while the pdf of the channel capacity was shown in Fig-

ure 94(b). In each case, the red curve represents the analytical calculation,

and the histogram represents the numerical simulation of the in-premises

distribution network depicted in Figure 91.

Figure 94.: The distribution of |ξ|2 and channel capacity using the parame-

ters of CAD55 wire of lengths between 1 m and 30 m at α = 34.6,

τ = 4.6079× 10−4, and sub-carrier frequency of f = 105.93225

MHz.

It is important to note that, even though the quantum graph model in

Chapter 4 was derived for chaotic systems, the model works well even with

the cascade of star topologies (which is generally ’non-chaotic’) depicted in

207



8.4 numerical simulation of dsl networks

Figure 91. In this specific case, the connectivity index is γ = 2/8 = 0.25,

since the cable network is made up of 8 vertices. There is good agreement

between the theoretical prediction and the numerical simulation. Since ξ in

this scenario was t-distributed (and not Gaussian distributed, see Figure 92),

and consists of multiple out-puts (four in this case), the characteristic func-

tion approach in (174) was used to predict the pdf of the channel capacity.

Figure 95 shows the effect of increasing sub-carrier frequency on channel

capacity distribution. Higher sub-carrier frequency corresponds to higher

data rates in bits/s/Hz. Increasing the sub-carrier frequency from f =

20.02725 MHz to f = 80.0055 MHz, increases the range of the capacity

from 2 bits/s/Hz to 3 bits/s/Hz. The gaps between the graph simulations

(blue histograms) and the analytical prediction (red curves) are attributed

to the ’non-chaoticity’, and the low connectivity of the underlying network

topologies.

The next example shows the effects of increasing the number of terminals

connected to the CAD55 cable network illustrated in Figure 96. In this sce-

nario, six users are connected to the network, while three nodes are unused.

The idle connection points are therefore terminated in a matched load. We

are interested in analysing the impact of increased terminals on the pdf of

channel capacity.

It is important note that the scenario of Figure 96 has longer total cable

length than the scenario in Figure 91. Therefore the former will experience

more losses on average than the latter, and this translates into a lower data

208



8.4 numerical simulation of dsl networks

(a) f = 20.02725 MHz (b) f = 40.00275 MHz

(c) f = 60.03 MHz (d) f = 80.0055 MHz

Figure 95.: The pdf of channel capacity of a network of CAD55 cables with

Figure 91 topology at (a) f = 20.02725 MHz, (b) f = 40.00275

MHz, (c) f = 60.03 MHz, and (d) f = 80.0055 MHz. In each

case, four terminals are active, and so nr = 4

rate for the former, when both networks are operated at the same conditions.

Figure 97 shows the results of the scenario in Figure 96, where there are six

active terminals (i.e. nr = 6).

For comparison purposes, we used the same frequencies (i.e. f = 20.02725

MHz, f = 40.00275 MHz, f = 60.03 MHz, and f = 80.0055 MHz) of the

results in Figure 95. Comparing the two results at each frequency, Figure

95 results have superior performance, in terms of the range of capacity cov-

ered, than the results in Figure 97. This is a result of the increased number
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Figure 96.: Illustration of the topology of in-premises wiring of a G.fast net-

work, where six nodes are attached to the network and three

nodes are idle (i.e. those terminated as an open circuit to pre-

vent back scattering).

of users on the network. This confirms what is experienced in every distri-

bution networks, whether DSL or not. The higher the number of users on a

network, the slower data rates.

8.5 conclusion

The chapter presented the results of modelling the communication chan-

nel of fourth-generation DSL networks (G.fast networks), using realistic ca-

ble parameters from the so-called TNO-Ericsson model. In particular, we

have shown that quantum graph modelling can be used to simulate the

in-premises distribution network at G.fast frequencies. The parameters of

CAD55 cables (which are commonly found in houses around the world),
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(a) f = 20.02725 MHz (b) f = 40.00275 MHz

(c) f = 60.03 MHz (d) f = 80.0055 MHz

Figure 97.: The pdf of channel capacity of a network of CAD55 cables

with topology as in Figure 96 at (a) f = 20.02725 MHz, (b)

f = 40.00275 MHz, (c) f = 60.03 MHz, and (d) f = 80.0055

MHz. In each case nr = 6

and the in-house distribution network (reported in the ITU documentation)

were used in the simulations.

Even though such networks have low connectivity indices, which results

in ξ behaving as a non-Gaussian random variable, we have shown that the

characteristic function approach can accurately predict the pdf of channel

capacity of the underlying cable networks. These predictions were accu-

rate with as many as six nodes connected to the in-premises network, and

operating at the high end of G.fast frequencies.
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Combining the results in Chapters 6 and 7 with the results in this chapter,

we have shown how distribution of channel capacity can be predicted, with

high level of accuracy, regardless of the level of connectivity of the underly-

ing communication networks. These predictions also work well with both

wired and wireless systems as was shown in previous chapters.
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9
F I N A L C O N C L U S I O N S A N D F U T U R E O U T L O O K

This chapter provides a summary of the main achievements and findings

in this research work, and offers suggestions as to how this work may be

extended in future. We categorise the achievements according to chapters

of this thesis.

9.1 summary of achievements

Quantum Graph theory has been established as a successful paradigm for

studying complex scattering problems. In this thesis, we have used the

theory of quantum graphs to model the propagation of microwaves in com-

plex networks. In Chapter 3, we have derived a unified mathematical ex-

pression for the vertex scattering matrix which includes both uniform and

non-uniform cable networks.

We have derived an analogue of the so-called random coupling model.

Although random coupling models are designed for microwave propaga-
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tion in chaotic cavities, the analogue model derived in Chapter 4 is appli-

cable to wired as well as wireless communication media. Additionally, the

normalised scattering matrix of the analogue model depends on random

variables that are not necessarily Gaussian. As a consequence, the distri-

bution of the scattering parameters interpolates smoothly between scaled

t-distribution and Gaussian distributions, as one graduates from low loss

regimes into high loss regimes. The loss regimes were characterised by a

dimensionless (i.e. depending only on the number of bonds in the graph

network) parameter analogous to what is reported in random coupling mod-

els. In this case, we have calculated the statistics of communication channels

that spans loss regimes.

Furthermore, we have successfully formulated a framework for imple-

menting quasi-closed graphs, where the losses in the graph systems can be

controlled, while maintaining the unitarity of the constituent vertex scatter-

ing matrices. Quasi-closed graphs allows for a more accurate verification

of the level of ’chaoticity’ (or lack thereof) within graphs networks. Also,

controlling the amount of energy radiating through the coupled-leads, has

direct applications in electromagnetic compatibility studies.

In Chapter 5 we have experimentally validated the graph model of Chap-

ter 4, where we discussed how to correct for the additional lengths intro-

duced by the T-junction connectors.

On one hand, Chapter 6 was based on idealised vertex scattering matrices

(i.e. in Fourier graphs) that distribute energy equally at graphs nodes, and
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the impact of such Fourier nodes on the statistics of scattering parameters.

This has allowed us to learn about the main mechanisms of variability in

the normalised scattering matrix ξ (as well as the channel capacity), before

extending to more realistic models. On the other hand, Chapter 7 dealt

with a more realistic (i.e. experimentally accessible) boundary conditions

(i.e. Neumann boundary conditions) at the vertices of the underlying graph

network. In both cases, we have shown three different approaches (to be

used depending on the number of input and/or output systems, and loss

regimes involved) of calculating the density functions for the distribution of

channel capacity.

The convolution approach gives a closed-form expression that is applica-

ble to single-input single-output systems, regardless of the regime. The

second approach is the characteristic function approach, and it works for

multiple-input single-output (or single-input multiple-output (SIMO)) sys-

tems, across all loss regimes. The third and final approach (a closed-form

solution) is another SIMO/MISO-compliant approach that works only in the

high loss regime, where the normalised scattering parameters are normally-

distributed.

We have presented numerical results across graphs with varying lev-

els of connectivity. For fully-connected graphs, we have shown that the

distribution of the normalised scattering parameters approaches a Gaus-

sian distribution when losses are increased. This is true for both Fourier

and Neumann graphs. However, in the case of half-connected (and low-
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connected) graphs, we have shown that, while Fourier graphs can gradu-

ate to Gaussian-distributed scattering parameters (in the high loss regimes),

Neumann graphs never escape the domain of the t-distribution.

Finally, in Chapter 8, we have successfully applied the statistical predic-

tions of the graph model to a realistic scenario in G.fast network, which is

the most current DSL technology as at the time of writing this thesis.

9.2 future outlook

It is worth noting that the statistical model predictions in this thesis do

not apply to full MIMO systems, where multiple-input multiple-output are

involved at the same time. A future perspective of this work will be to

formulate predictions for fully MIMO systems. The main challenge in this

scenario will be finding det
(

Inr +
ρ
nt

HH†
)

, where the number of transmit

antennas nt and the receive antennas nr are simultaneously greater than

one.

Another interesting research in future is to look into systems where the

nodes in the graphs are replaced by electrical equipments having their own

internal impedances.

Finally, there is a growing interest among telecom researchers in the area

of reconfigurable intelligent surfaces (RIS) [22, 112, 114, 179–183]. In RIS-

aided communication channels, some of the classical assumptions underpin-

ning current communication systems (the idea that the radio environments
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are beyond the control of scientists, and their dynamics are assumed to be

solely controlled by natural phenomena) are dropped. The RIS can be used

as smart surfaces made up programmable meta-materials (or large antennas

arrays) that act as anomalous scatterers capable of modifying the properties

of impinging radio waves from the transmitter to be reflected towards the

receiver [22, 114]. The incident radio waves may be modified by control-

ling their reflection [179] (or refraction) angle, or applying phase shifts [181]

or modifying their polarisations [182]. The incident radio waves may also

be controlled by using the RIS as a passive beamformer which re-directs

the impinging waves towards specified receive-antenna locations [180, 183].

There is convincing evidence among telecom researchers that the RIS may

be implemented to solve a variety of problems in wireless communication,

including enhancement in coverage, interference suppression, and security

enhancement.

Recently, the work of Drinko et al. [112] have shown that simple structures

of quantum graphs may act as filters. This may have a direct application

in RIS-aided channels to suppress unwanted interference by allowing only

signals of specific frequencies.

I propose the use of quantum graphs to model an RIS-aided communi-

cation system. Figure 98 shows an illustration of a communication system

aided by an RIS when a line-of-sight (LOS) transmission may or may not be

possible because of shielding of radio waves at high frequencies. The Figure

is adopted from [181] and slightly modified for illustrative purposes. Data
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transmission may take two possible routes. In the LOS transmission, data

transfer takes the Tx-Rx link, while the non-LOS (NLOS) transmission goes

through the Tx-RIS followed by the RIS-Rx sub-channels. Single or multiple

transmit (receive)-antennas can be supported in this model.

Figure 98.: An illustration of a communication system aided by a reconfig-

urable intelligent surface. The figure was adopted from [181],

and simplified to suit current discussion.

The unit cells in the RIS system are envisaged to be modelled by quantum

graphs of simple topological structures. In [112], a combination of equilat-

eral triangle(s) and square(s) have shown promising indications to be able

to suppress some frequencies ranges. An example is shown in Figure 99,

where they proposed a square structure sandwiched by two equilateral tri-

angles. The transmission coefficient depends jointly on the wave number k

of the impinging radio waves and the length l of the edges connecting the

nodes of the graph.
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Figure 99.: A series representation of triangle-square-triangle

In the Drinko et al. however, the scale of bond lengths used are in the

order of a metre. For example, figure 100 shows a repeat (reproduction)

of their results in [112], where the length connecting any two vertices is 1

m long, and the wave number 0 ≤ k ≤ 2π. The figure is the response of

the transmission coefficient S12 as a function of the phase 0 ≤ kl ≤ 2π. Al-

though they used a Green’s function approach to model the quantum graph,

I reproduced this result using the graph model in this thesis, by finding the

scattering matrices at each vertex, and aggregating them into the so-called

graph scattering matrix (GSM). It is worth mentioning that their approach

resulted in a closed-form expression of the transmission coefficient. How-

ever, their approach can only be applied to graphs with very low complexity,

such as the examples in their paper. The approach in this thesis on the other

hand, can model graphs with arbitrary complexity since, it only requires dis-

aggregation of the problem into a set of vertex scattering matrices (VSM),

and aggregating them, in a special way, to form the GSM.

Instead of using triangles and squares, I propose the use of simple loop

structure as an equivalent, but a more efficient way of creating the building

blocks. For instance, Figure 101 is an equivalent representation of Figure
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9.2 future outlook

Figure 100.: Transmission power distribution for 0 ≤ l ≤ λ such that 0 ≤

kl ≤ 2π, where λ = 50 mm.

99 when Neumann boundary conditions are imposed at the vertices. But

this representation is more efficient because it reduces the size of the graph

- in terms of the number of edges B in the graph - significantly. The reduc-

tion in B corresponds directly to a reduction in computational cost because

majority of the matrices in the calculations are 2B× 2B in dimensions.

Figure 101.: An equivalent representation of the same scenario of Figure 99.

This is more efficient because it reduces the matrix dimension

we have to deal with, which in turn reduces the numerical cost.
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9.2 future outlook

For example, the representation in Figure 99 consists of 12 edges while

that of Figure 101 requires only 8. This savings are for each unit cell in the

RIS and so multiplying it by the number of unit cells in an RIS will amount

to huge savings in numerical computation.

9.2.1 Initial Calculations

Preliminary calculations of the transmission amplitudes as a function of the

wave number k and the graph length is presented in Figure 102. The hori-

zontal and the vertical axes represent k and l respectively, while the trans-

mission from input lead to output lead |S12|2 is represented by the colour

bar. In all cases, the constraint that 0 ≤ kl ≤ 2π is satisfied. Additionally

l ≤ λ/2, where λ is the wavelength of the propagating wave. In this specific

example, I chose λ = 100 mm, but in general λ can be chosen to be arbitrary

small. This means that the so-called homogenisable [114] RIS surface can be

implemented.

From Figure 102, we can see that for any given wave number k (and hence

frequency f ), we can find a length l which transmits the impinging wave

but suppresses waves of other frequencies. This way, we could implement

the RIS to suppress interference from other users. We could also use the

proposed model for security enhancement to prevent an eavesdropper from

listening to transmitted "message".
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9.2 future outlook

Figure 102.: Transmission power distribution for 0 ≤ l ≤ λ such that 0 ≤

kl ≤ 2π, where λ = 50 mm.

The advantage of using quantum graph in this sense is that, unlike the

dog-bone-shaped unit cell reported in [184] that require four degrees of

freedom (and hence four variables to tweak for optimisation), the unit cells

proposed here will require only one variable (i.e. l) for optimisation pur-

poses. This significantly reduces the complexity of the optimisation prob-

lem that may be required if joint-encoding of the transmitter and the RIS is

to be employed.

In each super cell, we may employ different arrangements of the building

blocks and/or different edge lengths. This will be periodically repeated

throughout the entire RIS surface.
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In this appendix, we show the results of laboratory measurements that were

not included in Chapter 5. The purpose of this appendix is to further but-

tress the point that the quantum graph model derived in Chapter 4 is useful

for predicting the propagations microwaves in cable networks. We show

two more examples of the graph model predictions compared with the lab-

oratory measurements of real cable networks.

Figure 103(a) is the diagram of a cable network consisting of a single loop

architecture. Care must be taken to include the extra cable length of 0.012

m introduced by the T-junction connector. The effective length of the main

cable forming the loop is 2.014 m. The experimental results of the reflection

coefficient, S11, is shown in Figure 103(b) as the solid green curve. the blue

curve is the graph model predictions.

Finally, we show the S11 results for a T-junction network, where all the

three cables have different lengths. Figure 104(a) shows an illustration of

the geometry and corresponding cable lengths of the underlying T-junction
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(a) A single loop network (b) S11 response for single loop network

Figure 103.: Diagram and S11 response for a single loop network with cable

lengths 0.012 m and 2.014 m.

network used in the laboratory, while Figure 104(b) shows the plot of |S11|

against frequency up to 2 GHz. The graph model is able to predict even

some of the minute details of the experimental results. We can therefore

conclude that the graph model works well in predicting the propagation of

high frequency waves in complex networks.

(a) T-junction network (b) S11 response

Figure 104.: A schematic representation and a plot of |S11| for a T-junction

network with cable lengths 0.3 m, 1.028 m, and 1.022 m.
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[98] L. Erdős and H.-T. Yau, “Universality of local spectral statistics of

random matrices,” Bulletin of the American Mathematical Society, vol. 49,

no. 3, pp. 377–414, 2012.
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